Advertisement

A novel cardiovascular death prediction model for Chinese individuals: A prospective cohort study of 381,963 study participants

  • Wei-Syun Hu
    Affiliations
    School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan

    Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 40447, Taiwan
    Search for articles by this author
  • June-Han Lee
    Affiliations
    Institute of Population Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan
    Search for articles by this author
  • Min-Kuang Tsai
    Affiliations
    Institute of Population Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan
    Search for articles by this author
  • Chi-Pang Wen
    Correspondence
    Corresponding author. Institute of Population Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan.
    Affiliations
    Institute of Population Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan

    China Medical University Hospital, Taichung 40447, Taiwan
    Search for articles by this author

      Highlights

      • This cohort came from Taiwan, with 381,963 individuals free from CVD, recruited from a private health surveillance program.
      • Compared with the traditional model, the value of C- index in the MJ model significantly increased from 0.901 to 0.913.
      • A novel cardiovascular death prediction model with high predictability for Chinese individuals was reported in this study.

      Abstract

      Background and aims

      We aimed at developing a novel risk prediction model for death from cardiovascular disease (CVD) for Chinese individuals, based upon a large cohort from Taiwan.

      Methods

      This Chinese cohort came from Taiwan, with 381,963 individuals free from CVD, recruited from a private health surveillance program. With a median follow-up of 8.8 years, 1894 CVD deaths out of a total of 10,829 deaths were identified by linking cohort ID with the National Death File.

      Results

      A novel CVD death risk prediction model for Chinese individuals was established from this cohort. An increase in the resting heart rate was the statistically independent predictor in this model. The discriminatory accuracy was measured by generating the receiver operating characteristic (ROC) curve, and the area under the ROC curve was 0.913 (95% CI = 0.907 to 0.920).

      Conclusions

      A novel cardiovascular death prediction model with high predictability for Chinese individuals was demonstrated in the present study.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Eckel R.H.
        • Jakicic J.M.
        • Ard J.D.
        • de Jesus J.M.
        • Houston Miller N.
        • Hubbard V.S.
        • Lee I.M.
        • Lichtenstein A.H.
        • Loria C.M.
        • Millen B.E.
        • Nonas C.A.
        • Sacks F.M.
        • Smith Jr., S.C.
        • Svetkey L.P.
        • Wadden T.A.
        • Yanovski S.Z.
        • Kendall K.A.
        • Morgan L.C.
        • Trisolini M.G.
        • Velasco G.
        • Wnek J.
        • Anderson J.L.
        • Halperin J.L.
        • Albert N.M.
        • Bozkurt B.
        • Brindis R.G.
        • Curtis L.H.
        • DeMets D.
        • Hochman J.S.
        • Kovacs R.J.
        • Ohman E.M.
        • Pressler S.J.
        • Sellke F.W.
        • Shen W.K.
        • Smith Jr., S.C.
        • Tomaselli G.F.
        American college of cardiology/American heart association task force on practice guidelines. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines.
        Circulation. 2014 Jun 24; 129: S76-S99
        • Alwan A.
        Global Status Report on Noncommunicable Diseases 2010.
        World Health Organization, 2011
        • Folsom A.R.
        Classical and novel biomarkers for cardiovascular risk prediction in the United States.
        J. Epidemiol. 2013; 23: 158-162
        • O'Donnell C.J.
        • Nabel E.G.
        Genomics of cardiovascular disease.
        N. Engl. J. Med. 2011 Dec 1; 365: 2098-2109
        • Lloyd-Jones D.M.
        Cardiovascular risk prediction: basic concepts, current status, and future directions.
        Circulation. 2010 Apr 20; 121: 1768-1777
        • Cooney M.T.
        • Dudina A.L.
        • Graham I.M.
        Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians.
        J. Am. Coll. Cardiol. 2009 Sep 29; 54: 1209-1227
        • Greenland P.
        • Smith Jr., S.C.
        • Grundy S.M.
        Improving coronary heart disease risk assessment in asymptomatic people: role of traditional risk factors and noninvasive cardiovascular tests.
        Circulation. 2001 Oct 9; 104: 1863-1867
        • McGorrian C.
        • Yusuf S.
        • Islam S.
        • Jung H.
        • Rangarajan S.
        • Avezum A.
        • Prabhakaran D.
        • Almahmeed W.
        • Rumboldt Z.
        • Budaj A.
        • Dans A.L.
        • Gerstein H.C.
        • Teo K.
        • Anand S.S.
        INTERHEART Investigators. Estimating modifiable coronary heart disease risk in multiple regions of the world: the INTERHEART Modifiable Risk Score.
        Eur. Heart J. 2011 Mar; 32: 581-589
        • D'Agostino Sr., R.B.
        • Vasan R.S.
        • Pencina M.J.
        • Wolf P.A.
        • Cobain M.
        • Massaro J.M.
        • Kannel W.B.
        General cardiovascular risk profile for use in primary care: the Framingham Heart Study.
        Circulation. 2008 Feb 12; 117: 743-753
        • Hippisley-Cox J.
        • Coupland C.
        • Vinogradova Y.
        • Robson J.
        • Minhas R.
        • Sheikh A.
        • Brindle P.
        Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2.
        BMJ. 2008 Jun 28; 336: 1475-1482
        • Ridker P.M.
        • Buring J.E.
        • Rifai N.
        • Cook N.R.
        Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score.
        JAMA. 2007 Feb 14; 297: 611-619
        • Woodward M.
        • Brindle P.
        • Tunstall-Pedoe H.
        SIGN group on risk estimation. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC).
        Heart. 2007 Feb; 93: 172-176
        • Conroy R.M.
        • Pyörälä K.
        • Fitzgerald A.P.
        • Sans S.
        • Menotti A.
        • De Backer G.
        • De Bacquer D.
        • Ducimetière P.
        • Jousilahti P.
        • Keil U.
        • Njølstad I.
        • Oganov R.G.
        • Thomsen T.
        • Tunstall-Pedoe H.
        • Tverdal A.
        • Wedel H.
        • Whincup P.
        • Wilhelmsen L.
        • Graham I.M.
        SCORE project group. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project.
        Eur. Heart J. 2003 Jun; 24: 987-1003
        • Assmann G.
        • Cullen P.
        • Schulte H.
        Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study.
        Circulation. 2002 Jan 22; 105: 310-315
        • Jee S.H.
        • Jang Y.
        • Oh D.J.
        • Oh B.H.
        • Lee S.H.
        • Park S.W.
        • Seung K.B.
        • Mok Y.
        • Jung K.J.
        • Kimm H.
        • Yun Y.D.
        • Baek S.J.
        • Lee D.C.
        • Choi S.H.
        • Kim M.J.
        • Sung J.
        • Cho B.
        • Kim E.S.
        • Yu B.Y.
        • Lee T.Y.
        • Kim J.S.
        • Lee Y.J.
        • Oh J.K.
        • Kim S.H.
        • Park J.K.
        • Koh S.B.
        • Park S.B.
        • Lee S.Y.
        • Yoo C.I.
        • Kim M.C.
        • Kim H.K.
        • Park J.S.
        • Kim H.C.
        • Lee G.J.
        • Woodward M.
        A coronary heart disease prediction model: the Korean Heart Study.
        BMJ Open. 2014 May 21; 4: e005025
        • Empana J.P.
        • Tafflet M.
        • Escolano S.
        • Vergnaux A.C.
        • Bineau S.
        • Ruidavets J.B.
        • Montaye M.
        • Haas B.
        • Czernichow S.
        • Balkau B.
        • Ducimetiere P.
        Predicting CHD risk in France: a pooled analysis of the D.E.S.I.R., Three City, PRIME, and SU.VI.MAX studies.
        Eur. J. Cardiovasc Prev. Rehabil. 2011 Apr; 18: 175-185
        • Vergnaud A.C.
        • Bertrais S.
        • Galan P.
        • Hercberg S.
        • Czernichow S.
        Ten-year risk prediction in French men using the Framingham coronary score: results from the national SU.VI.MAX cohort.
        Prev. Med. 2008 Jul; 47: 61-65
        • Liu J.
        • Hong Y.
        • D'Agostino Sr., R.B.
        • Wu Z.
        • Wang W.
        • Sun J.
        • Wilson P.W.
        • Kannel W.B.
        • Zhao D.
        Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study.
        JAMA. 2004 Jun 2; 291: 2591-2599
        • Hense H.W.
        • Schulte H.
        • Löwel H.
        • Assmann G.
        • Keil U.
        Framingham risk function overestimates risk of coronary heart disease in men and women from Germany–results from the MONICA Augsburg and the PROCAM cohorts.
        Eur. Heart J. 2003 May; 24: 937-945
        • D'Agostino Sr., R.B.
        • Grundy S.
        • Sullivan L.M.
        • Wilson P.
        CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation.
        JAMA. 2001 Jul 11; 286: 180-187
        • Wu X.
        • Tsai S.P.
        • Tsao C.K.
        • Chiu M.L.
        • Tsai M.K.
        • Lu P.J.
        • Lee J.H.
        • Chen C.H.
        • Wen C.
        • Chang S.S.
        • Hsu C.Y.
        • Wen C.P.
        Cohort Profile: the Taiwan MJ Cohort: half a million Chinese with repeated health surveillance data.
        Int. J. Epidemiol. 2017 Feb 15; ([Epub ahead of print])https://doi.org/10.1093/ije/dyw282
        • Chien K.L.
        • Lin H.J.
        • Lee B.C.
        • Hsu H.C.
        • Lee Y.T.
        • Chen M.F.
        A prediction model for the risk of incident chronic kidney disease.
        Am. J. Med. 2010 Sep; 123 (e2): 836-846
        • Damen J.A.
        • Hooft L.
        • Schuit E.
        • Debray T.P.
        • Collins G.S.
        • Tzoulaki I.
        • Lassale C.M.
        • Siontis G.C.
        • Chiocchia V.
        • Roberts C.
        • Schlüssel M.M.
        • Gerry S.
        • Black J.A.
        • Heus P.
        • van der Schouw Y.T.
        • Peelen L.M.
        • Moons K.G.
        Prediction models for cardiovascular disease risk in the general population: systematic review.
        BMJ. 2016 May 16; 353: i2416
        • Wessler B.S.
        • Lai Yh L.1
        • Kramer W.1
        • Cangelosi M.1
        • Raman G.1
        • Lutz J.S.1
        • Kent D.M.
        Clinical prediction models for cardiovascular disease: tufts predictive analytics and comparative effectiveness clinical prediction model database.
        Circ. Cardiovasc Qual. Outcomes. 2015 Jul; 8: 368-375
        • Park G.M.
        • Kim Y.H.
        Model for predicting cardiovascular disease: insights from a Korean cardiovascular risk model.
        Pulse (Basel). 2015 Sep; 3: 153-157
        • Cortes-Bergoderi M.
        • Thomas R.J.
        • Albuquerque F.N.
        • Batsis J.A.
        • Burdiat G.
        • Perez-Terzic C.
        • Trejo-Gutierrez J.
        • Lopez-Jimenez F.
        Validity of cardiovascular risk prediction models in Latin America and among Hispanics in the United States of America: a systematic review.
        Rev. Panam. Salud Publica. 2012 Aug; 32: 131-139
        • Chia Y.C.
        Review of tools of cardiovascular disease risk stratification: interpretation, customisation and application in clinical practice.
        Singap. Med. J. 2011 Feb; 52: 116-123
        • Ruwanpathirana T.
        • Owen A.
        • Reid C.M.
        Review on cardiovascular risk prediction.
        Cardiovasc Ther. 2015 Apr; 33: 62-70
        • Stein J.H.
        • Tattersall M.C.
        Carotid intima-media thickness and cardiovascular disease risk prediction.
        J. Am. Coll. Cardiol. 2014 Jun 3; 63: 2301-2302
        • Polonsky T.S.
        • McClelland R.L.
        • Jorgensen N.W.
        • Bild D.E.
        • Burke G.L.
        • Guerci A.D.
        • Greenland P.
        Coronary artery calcium score and risk classification for coronary heart disease prediction.
        JAMA. 2010 Apr 28; 303: 1610-1616
        • Hlatky M.A.
        • Greenland P.
        • Arnett D.K.
        • Ballantyne C.M.
        • Criqui M.H.
        • Elkind M.S.
        • Go A.S.
        • Harrell Jr., F.E.
        • Hong Y.
        • Howard B.V.
        • Howard V.J.
        • Hsue P.Y.
        • Kramer C.M.
        • McConnell J.P.
        • Normand S.L.
        • O'Donnell C.J.
        • Smith Jr., S.C.
        • Wilson P.W.
        American heart association expert panel on subclinical atherosclerotic diseases and emerging risk factors and the Stroke council. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American heart association.
        Circulation. 2009 May 5; 119: 2408-2416
        • Lloyd-Jones D.M.
        • Liu K.
        • Tian L.
        • Greenland P.
        Narrative review: assessment of C-reactive protein in risk prediction for cardiovascular disease.
        Ann. Intern Med. 2006 Jul 4; 145: 35-42
        • Miller V.M.
        • Redfield M.M.
        • McConnell J.P.
        Use of BNP and CRP as biomarkers in assessing cardiovascular disease: diagnosis versus risk.
        Curr. Vasc. Pharmacol. 2007 Jan; 5: 15-25
        • Cooney M.T.
        • Vartiainen E.
        • Laatikainen T.
        • Juolevi A.
        • Dudina A.
        • Graham I.M.
        Elevated resting heart rate is an independent risk factor for cardiovascular disease in healthy men and women.
        Am. Heart J. 2010; 159 (e3): 612-619
        • Diaz A.
        • Bourassa M.G.
        • Guertin M.C.
        • Tardif J.C.
        Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease.
        Eur. Heart J. 2005; 26: 967-974
        • Kolloch R.
        • Legler U.F.
        • Champion A.
        • Cooper-Dehoff R.M.
        • Handberg E.
        • Zhou Q.
        • Pepine C.J.
        Impact of resting heart rate on outcomes in hypertensive patients with coronary artery disease: findings from the INternational VErapamil-SR/trandolapril STudy (INVEST).
        Eur. Heart J. 2008; 29: 1327-1334
        • Fox K.
        • Ford I.
        • Steg P.G.
        • Tendera M.
        • Robertson M.
        • Ferrari R.
        BEAUTIFUL investigators. Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial.
        Lancet. 2008; 372: 817-821
        • Bathula R.
        • Francis D.P.
        • Hughes A.
        • Chaturvedi N.
        Ethnic differences in heart rate: can these be explained by conventional cardiovascular risk factors?.
        Clin. Auton. Res. 2008 Apr; 18: 90-95
        • Whincup P.H.
        • Gilg J.A.
        • Papacosta O.
        • Seymour C.
        • Miller G.J.
        • Alberti K.G.
        • Cook D.G.
        Early evidence of ethnic differences in cardiovascular risk: cross sectional comparison of British South Asian and white children.
        BMJ. 2002 Mar 16; 324: 635
        • Otgontuya D.
        • Oum S.
        • Buckley B.S.
        • Bonita R.
        Assessment of total cardiovascular risk using WHO/ISH risk prediction charts in three low and middle income countries in Asia.
        BMC Public Health. 2013 Jun 5; 13: 539
        • Menotti A.
        • Lanti M.
        • Agabiti-Rosei E.
        • Carratelli L.
        • Cavera G.
        • Dormi A.
        • Gaddi A.
        • Mancini M.
        • Motolese M.
        • Muiesan M.L.
        • Muntoni S.
        • Muntoni S.
        • Notarbartolo A.
        • Prati P.
        • Remiddi S.
        • Zanchetti A.
        • Riskard
        New tools for prediction of cardiovascular disease risk derived from Italian population studies.
        Nutr. Metab. Cardiovasc Dis. 2005; 15 (2005 Dec): 426-440
        • Menown I.B.
        • Davies S.
        • Gupta S.
        • Kalra P.R.
        • Lang C.C.
        • Morley C.
        • Padmanabhan S.
        Resting heart rate and outcomes in patients with cardiovascular disease: where do we currently stand?.
        Cardiovasc Ther. 2013 Aug; 31: 215-223
        • Rogowski O.
        • Shapira I.
        • Shirom A.
        • Melamed S.
        • Toker S.
        • Berliner S.
        Heart rate and microinflammation in men: a relevant atherothrombotic link.
        Heart. 2007; 93: 940-944