Molecular and functional characterization of familial chylomicronemia syndrome


      • Panel sequencing is also useful in familial chylomicronemia syndrome.
      • LPL gene was found to be the major driver of this condition.
      • Hyperchylomicronemia may not be a cause of atherosclerosis.


      Background and aims

      Familial chylomicronemia syndrome is a rare autosomal recessive disorder leading to severe hypertriglyceridemia (HTG) due to mutations in lipoprotein lipase (LPL)-associated genes. Few data exist on the clinical features of the disorder or on comprehensive genetic approaches to uncover the causative genes and mutations.


      Eight patients diagnosed with familial hyperchylomicronemia with recessive inheritance were included in this study (two males and six females; median age of onset 23.0 years; mean triglyceride level 3446 mg/dl). We evaluated their clinical features, including coronary artery disease using coronary computed tomography, and performed targeted next-generation sequencing on a panel comprising 4813 genes associated with known clinical phenotypes. After standard filtering for allele frequency <1% and in silico annotation prediction, we used three types of variant filtering to identify causative mutations: homozygous mutations in known familial hyperchylomicronemia-associated genes, homozygous mutations with high damaging scores in novel genes, and deleterious mutations within 37 genes known to be associated with HTG.


      A total of 1810 variants out of the 73,389 identified with 94.3% mean coverage (×20) were rare and nonsynonymous. Among these, our schema detected four pathogenic or likely pathogenic mutations in the LPL gene (p.Ala248LeufsTer4, p.Arg270Cys, p.Ala361Thr, and p.Val227Gly), including one novel mutation and a variant of uncertain significance. Patients harboring LPL gene mutations showed no severe atherosclerotic changes in the coronary arteries, but recurrent pancreatitis with long-term exposure to HTG was observed.


      These results demonstrate that LPL gene plays a major role in extreme HTG associated with hyperchylomicronemia, although the condition may not cause severe atherosclerosis.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Fredrickson D.S.
        • Lees R.S.
        Familial hyperlipoproteinemia.
        in: Stanbury J.B. The Metabolic Basis of Inherited Disease. second ed. McGraw-Hill, New York1966: 429
        • Gotoda T.
        • Yamada N.
        • Kawamura M.
        • Kozaki K.
        • Mori N.
        • Ishibashi S.
        • et al.
        Heterogeneous mutations in the human lipoprotein lipase gene in patients with familial lipoprotein lipase deficiency.
        J. Clin. Invest. 1991; 88: 1856-1864
        • Yoshida T.
        • Gotoda T.
        • Okubo M.
        • Iizuka Y.
        • Ishibashi S.
        • Kojima T.
        • et al.
        A Japanese patient with lipoprotein lipase deficiency homozygous for the Gly188Glu mutation prevalent worldwide.
        J. Atheroscler. Thromb. 2000; 7: 45-49
        • Varbo A.
        • Benn M.
        • Tybjaerg-Hansen A.
        • Jorgensen A.B.
        • Frikke-Schmidt R.
        • Nordestgaard B.G.
        Remnant cholesterol as a causal risk factor for ischemic heart disease.
        J. Am. Coll. Cardiol. 2013; 61: 427-436
        • Do R.
        • Willer C.J.
        • Schmidt E.M.
        • Sengupta S.
        • Gao C.
        • Peloso G.M.
        • et al.
        Common variants associated with plasma triglycerides and risk for coronary artery disease.
        Nat. Genet. 2013; 45: 1345-1352
        • Surendran R.P.
        • Visser M.E.
        • Heemelaar S.
        • Wang J.
        • Peter J.
        • Defesche J.C.
        • et al.
        Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia.
        J. Intern Med. 2012; 272: 185-196
        • Chokshi N.
        • Blumenschein S.D.
        • Ahmad Z.
        • Garg A.
        Genotype-phenotype relationships in patients with type I hyperlipoproteinemia.
        J. Clin. Lipidol. 2014; 8: 287-295
        • Hodatsu A.
        • Konno T.
        • Hayashi K.
        • Funada A.
        • Fujita T.
        • Nagata Y.
        • et al.
        Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder MYBPC3 mutation: evidence from patients and zebrafish models.
        Am. J. Physiol. Heart Circ. Physiol. 2014; 307: H1594-H1604
        • Dello Russo C.
        • Di Giacomo G.
        • Mesoraca A.
        • D'Emidio L.
        • Iaconianni P.
        • Minutolo E.
        • et al.
        Next, generation sequencing in the identification of a rare genetic disease from preconceptional couple screening to preimplantation genetic diagnosis.
        J. Prenat. Med. 2014; 8: 17-24
        • Nomura A.
        • Tada H.
        • Teramoto R.
        • Konno T.
        • Hodatsu A.
        • Won H.H.
        • et al.
        Whole exome sequencing combined with integrated variant annotation prediction identifies a causative myosin essential light chain variant in hypertrophic cardiomyopathy.
        J. Cardiol. 2016; 67: 133-139
        • Hayashi K.
        • Konno T.
        • Tada H.
        • Tani S.
        • Liu L.
        • Fujino N.
        • et al.
        Functional characterization of rare variants implicated in susceptibility to lone atrial fibrillation.
        Circulation Arrhythmia Electrophysiol. 2015; 8: 1095-1104
        • Kircher M.
        • Witten D.M.
        • Jain P.
        • O'Roak B.J.
        • Cooper G.M.
        • Shendure J.
        A general framework for estimating the relative pathogenicity of human genetic variants.
        Nat. Genet. 2014; 46: 310-315
        • Global Lipids Genetics C.
        • Willer C.J.
        • Schmidt E.M.
        • Sengupta S.
        • Peloso G.M.
        • Gustafsson S.
        • et al.
        Discovery and refinement of loci associated with lipid levels.
        Nat. Genet. 2013; 45: 1274-1283
        • Tada H.
        • Kawashiri M.A.
        • Ikewaki K.
        • Terao Y.
        • Noguchi T.
        • Nakanishi C.
        • et al.
        Altered metabolism of low-density lipoprotein and very-low-density lipoprotein remnant in autosomal recessive hypercholesterolemia: results from stable isotope kinetic study in vivo.
        Circ. Cardiovasc Genet. 2012; 5: 35-41
        • Tada H.
        • Kawashiri M.A.
        • Nakahashi T.
        • Yagi K.
        • Chujo D.
        • Ohbatake A.
        • et al.
        Clinical characteristics of Japanese patients with severe hypertriglyceridemia.
        J. Clin. Lipidol. 2015; 9: 519-524
        • Ikeda Y.
        • Takagi A.
        • Ohkaru Y.
        • Nogi K.
        • Iwanaga T.
        • Kurooka S.
        • et al.
        A sandwich-enzyme immunoassay for the quantification of lipoprotein lipase and hepatic triglyceride lipase in human postheparin plasma using monoclonal antibodies to the corresponding enzymes.
        J. Lipid Res. 1990; 31: 1911-1924
        • Fredrickson D.S.
        • Lees R.S.
        A system for phenotyping hyperlipoproteinemia.
        Circulation. 1965; 31: 321-327
        • Tada H.
        • Kawashiri M.A.
        • Nohara A.
        • Saito R.
        • Tanaka Y.
        • Nomura A.
        • et al.
        Whole exome sequencing combined with integrated variant annotation prediction identifies asymptomatic Tangier disease with compound heterozygous mutations in ABCA1 gene.
        Atherosclerosis. 2015; 240: 324-329
        • Seino Y.
        • Nanjo K.
        • Tajima N.
        • Kadowaki T.
        • Kashiwagi A.
        • Araki E.
        • et al.
        Report of the committee on the classification and diagnostic criteria of diabetes mellitus.
        J. Diabetes Investig. 2010; 1: 212-228
        • Abecasis G.R.
        • Altshuler D.
        • Auton A.
        • Brooks L.D.
        • Durbin R.M.
        • Gibbs R.A.
        • et al.
        A map of human genome variation from population-scale sequencing.
        Nature. 2010; 467: 1061-1073
        • Takagi A.
        • Ikeda Y.
        • Tsutsumi Z.
        • Shoji T.
        • Yamamoto A.
        Molecular studies on primary lipoprotein lipase (LPL) deficiency. One base deletion (G916) in exon 5 of LPL gene causes no detectable LPL protein due to the absence of LPL mRNA transcript.
        J. Clin. Invest. 1992; 89: 581-591
        • Richards S.
        • Aziz N.
        • Bale S.
        • Bick D.
        • Das S.
        • Gastier-Foster J.
        • et al.
        Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the american College of medical genetics and Genomics and the association for molecular pathology.
        Genet. Med. 2015; 17: 405-424
        • Ma Y.
        • Liu M.S.
        • Chitayat D.
        • Bruin T.
        • Beisiegel U.
        • Benlian P.
        • et al.
        Recurrent missense mutations at the first and second base of codon Arg243 in human lipoprotein lipase in patients of different ancestries.
        Hum. Mutat. 1994; 3: 52-58
        • Kobayashi J.
        • Sasaki N.
        • Tashiro J.
        • Inadera H.
        • Saito Y.
        • Yoshida S.
        A missense mutation (Ala334-->Thr) in exon 7 of the lipoprotein lipase gene in a case with type I hyperlipidemia.
        Biochem. Biophys. Res. Commun. 1993; 191: 1046-1054
      1. Human Gene Mutation Database (HGMD),

      2. NHLBI Exome Sequencing Project (ESP). Exome Variant Server,

      3. The Exome Aggregation Consortium (ExAC),

        • MacRae C.A.
        • Peterson R.T.
        Zebrafish as tools for drug discovery.
        Nat. Rev. Drug Discov. 2015; 14: 721-731
        • Liu C.
        • Gaudet D.
        • Miller Y.I.
        Deficient cholesterol esterification in plasma of apoc2 knockout zebrafish and familial chylomicronemia patients.
        PLoS One. 2017; 12: e0169939
        • Ebara T.
        • Okubo M.
        • Horinishi A.
        • Adachi M.
        • Murase T.
        • Hirano T.
        No evidence of accelerated atherosclerosis in a 66-yr-old chylomicronemia patient homozygous for the nonsense mutation (Tyr61->stop) in the lipoprotein lipase gene.
        Atherosclerosis. 2001; 159: 375-379
        • Ebara T.
        • Endo Y.
        • Yoshiike S.
        • Tsuji M.
        • Taguchi S.
        • Murase T.
        • Okubo M.A.
        60-y-old chylomicronemia patient homozygous for missense mutation (G188E) in the lipoprotein lipase gene showed no accelerated atherosclerosis.
        Clin. Chim. Acta. 2007; 386: 100-104
        • Gaudet D.
        • Brisson D.
        • Tremblay K.
        • Alexander V.J.
        • Singleton W.
        • Hughes S.G.
        • et al.
        Targeting APOC3 in the familial chylomicronemia syndrome.
        N. Engl. J. Med. 2014 Dec 4; 371: 2200-2206

      Linked Article

      • Gene targeting for chylomicronemia syndrome: The brave new world
        AtherosclerosisVol. 269
        • Preview
          Familial chylomicronemia syndrome (FCS) is caused by homozygous or compound heterozygous mutations in the lipoprotein lipase gene (LPL) or its cofactors. Historically, the syndrome has been considered non-atherogenic for the low levels of low-density lipoprotein cholesterol (LDL-C), even though premature atherosclerosis has been hypothesized in FCS subjects as a consequence of a defective lipolysis [1].
        • Full-Text
        • PDF