Advertisement

Genetic polymorphisms offer insight into the causal role of microRNA in coronary artery disease

      Highlights

      • It is crucial to identify new markers for diagnosis, treatment and prognosis of CAD.
      • Several obstacles must be overcome before miRNAs can enter clinical practice.
      • The study of genetic variants in miRNA regulatory networks is a viable alternative.
      • The review provides insight into the impact of SNPs in miRNA pathways on CAD.

      Abstract

      There is growing interest in the potential of circulating microRNAs (miRNAs), a class of small and noncoding RNA molecules, as diagnostic and/or prognostic biomarkers in coronary artery disease (CAD). Despite this promising role, there are still widespread inconsistencies among studies, and important obstacles must be overcome before miRNAs can enter clinical practice.
      The study of single nucleotide polymorphisms (SNPs) in the miRNA regulatory network could help shed light on the causality of associations as well as validate the value of cardiovascular miRNAs. SNPs in miRNA biogenesis or miRNA targetome genes may affect miRNA expression and circulating levels or the fidelity of the miRNA-mRNA interaction, influencing susceptibility to atherosclerotic vascular disease.
      This review aims to provide a general overview of the available studies that have investigated the association of miRNA gene polymorphisms with the susceptibility to CAD development and progression, and to highlight potential future research perspectives.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benjamin E.J.
        • Blaha M.J.
        • Chiuve S.E.
        • Cushman M.
        • Das S.R.
        • Deo R.
        • et al.
        Heart disease and stroke Statistics-2017 update: a report from the American heart association.
        Circulation. 2017; 135e146
        • Townsend N.
        • Wilson L.
        • Bhatnagar P.
        • Wickramasinghe K.
        • Rayner M.
        • Nichols M.
        Cardiovascular disease in Europe: epidemiological update 2016.
        Eur. Heart J. 2016; 37: 3232-3245
        • Esteller M.
        Non-coding RNAs in human disease.
        Nat. Rev. Genet. 2011; 12: 861-874
        • Guo H.
        • Ingolia N.T.
        • Weissman J.S.
        • Bartel D.P.
        Mammalian microRNAs predominantly act to decrease target mRNA levels.
        Nature. 2010; 466: 835-840
        • Lee I.
        • Ajay S.S.
        • Yook J.I.
        • Kim H.S.
        • Hong S.H.
        • Kim N.H.
        • et al.
        New class of microRNA targets containing simultaneous 5'-utr and 3'-utr interaction sites.
        Genome Res. 2009; 19: 1175-1183
        • Cavarretta E.
        • Frati G.
        MicroRNAs in coronary heart disease: ready to enter the clinical arena?.
        Biomed. Res. Int. 2016; 2016: 2150763
        • Economou E.K.
        • Oikonomou E.
        • Siasos G.
        • Papageorgiou N.
        • Tsalamandris S.
        • Mourouzis K.
        • et al.
        The role of microRNAs in coronary artery disease: from pathophysiology to diagnosis and treatment.
        Atherosclerosis. 2015; 241: 624-633
        • Madrigal-Matute J.
        • Rotllan N.
        • Aranda J.F.
        • Fernández-Hernando C.
        MicroRNAs and atherosclerosis.
        Curr. Atherosclerosis Rep. 2013; 15: 322
        • Caroli A.
        • Cardillo M.T.
        • Galea R.
        • Biasucci L.M.
        Potential therapeutic role of microRNAs in ischemic heart disease.
        J. Cardiol. 2013; 61: 315-320
        • Feinberg M.W.
        • Moore K.J.
        MicroRNA regulation of atherosclerosis.
        Circ. Res. 2016; 118: 703-720
        • Gao Y.
        • Peng J.
        • Ren Z.
        • He N.Y.
        • Li Q.
        • Zhao X.S.
        • et al.
        Functional regulatory roles of microRNAs in atherosclerosis.
        Clin. Chim. Acta. 2016; 460: 164-171
        • Condorelli G.
        • Latronico M.V.
        • Cavarretta E.
        microRNAs in cardiovascular diseases: current knowledge and the road ahead.
        J. Am. Coll. Cardiol. 2014; 63: 2177-2187
        • Saunders M.A.
        • Liang H.
        • Li W.H.
        Human polymorphism at microRNAs and microRNA target sites.
        Proc. Natl. Acad. Sci. USA. 2007; 104: 3300-3305
        • Calore M.
        • De Windt L.J.
        • Rampazzo A.
        Genetics meets epigenetics: genetic variants that modulate noncoding RNA in cardiovascular diseases.
        J. Mol. Cell. Cardiol. 2015; 89: 27-34
        • Liu X.
        • Liu X.
        • You L.
        • Zhou R.
        • Zhang J.
        Significant association between functional microRNA polymorphisms and coronary heart disease susceptibility: a comprehensive meta-analysis involving 16484 subjects.
        Oncotarget. 2017; 8: 5692-5702
        • Xie X.
        • Shi X.
        • Xun X.
        • Rao L.
        Association between microRNA polymorphisms and coronary heart disease: a meta-analysis.
        Herz. 2016; 42: 593-603
        • Bao M.H.
        • Xiao Y.
        • Zhang Q.S.
        • Luo H.Q.
        • Luo J.
        • Zhao J.
        • et al.
        Meta-analysis of mir-146a polymorphisms association with coronary artery diseases and ischemic stroke.
        Int. J. Mol. Sci. 2015; 16: 14305-14317
        • Wang Y.
        • Wang X.
        • Li Z.
        • Chen L.
        • Zhou L.
        • Li C.
        • et al.
        Two single nucleotide polymorphisms (rs2431697 and rs2910164) of miR-146a are associated with Risk of Coronary Artery Disease.
        Int. J. Environ. Res. Publ. Health. 2017; 14: 5
        • Oner T.
        • Arslan C.
        • Yenmis G.
        • Arapi B.
        • Tel C.
        • Aydemir B.
        • et al.
        Association of NFKB1A and microRNAs variations and the susceptibility to atherosclerosis.
        J. Genet. 2017; 96: 251-259
        • Hamann L.
        • Glaeser C.
        • Schulz S.
        • Gross M.
        • Franke A.
        • Nöthlings U.
        • et al.
        A micro RNA-146a polymorphism is associated with coronary restenosis.
        Int. J. Immunogenet. 2014; 41: 393-396
        • Shen J.
        • Zhang M.
        • Sun M.
        • Tang K.
        • Zhou B.
        The relationship of miR-146a gene polymorphism with carotid atherosclerosis in Chinese patients with type 2 diabetes mellitus.
        Thromb. Res. 2015; 136: 1149-1155
        • Fawzy M.S.
        • Toraih E.A.
        • Hamed E.O.
        • Hussein M.H.
        • Ismail H.M.
        Association of MIR-499a expression and seed region variant (rs3746444) with cardiovascular disease in Egyptian patients.
        Acta Cardiol. 2017; 1: 10
        • Chen W.
        • Shao D.
        • Gu H.
        • Gong J.
        • Zhang J.
        Hsa-mir-499 rs3746444 T/C polymorphism is associated with increased risk of coronary Artery Disease in a Chinese population.
        Acta Cardiol. Sin. 2017; 33: 34-40
        • Li Q.
        • Chen L.
        • Chen D.
        • Wu X.
        • Chen M.
        Influence of microRNA-related polymorphisms on clinical outcomes in coronary artery disease.
        Am. J. Transl. Res. 2015; 7: 393-400
        • Wang X.
        • He S.K.
        • Guo W.H.
        • Wu H.L.
        • Chen Y.H.
        • Wang X.L.
        • et al.
        MiR-196a2 rs11614913 polymorphism could not influence coronary artery disease risk in Asians.
        Biomed. Res. 2017; 28: 5580-5582
        • Chen C.
        • Yang S.
        • Chaugai S.
        • Wang Y.
        • Wang D.
        Meta-analysis of Hsa-mir-499 polymorphism (rs3746444) for cancer risk: evidence from 31 case-control studies.
        BMC Med. Genet. 2014; 15: 126
        • Chen C.
        • Hong H.
        • Chen L.
        • Shi X.
        • Chen Y.
        • Weng Q.
        Association of microRNA polymorphisms with the risk of myocardial infarction in a Chinese population.
        Tohoku J. Exp. Med. 2014; 233: 89-94
        • Wu C.
        • Gong Y.
        • Sun A.
        • Zhang Y.
        • Zhan C.
        • Zhang W.
        • et al.
        The human MTHFR rs4846049 polymorphism increases coronary heart disease risk through modifying miRNA binding.
        Nutr. Metabol. Cardiovasc. Dis. 2013; 23: 693-698
        • Miller C.L.
        • Haas U.
        • Diaz R.
        • Leeper N.J.
        • Kundu R.K.
        • Patlolla B.
        • et al.
        Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA mediated regulation.
        PLoS Genet. 2014; 10e1004263
        • Bastami M.
        • Ghaderian S.M.
        • Omrani M.D.
        • Mirfakhraie R.
        • Vakili H.
        • Parsa S.A.
        • et al.
        MiRNA-related polymorphisms in miR-146a and TCF21 are associated with increased susceptibility to coronary artery disease in an Iranian population.
        Genet. Test. Mol. Biomarkers. 2016; 20: 241-248
        • Wang L.
        • Zhi H.
        • Li Y.
        • Ma G.
        • Ye X.
        • Yu X.
        • et al.
        Polymorphism in miRNA-1 target site and circulating miRNA-1 phenotype are associated with the decreased risk and prognosis of coronary artery disease.
        Int. J. Clin. Exp. Pathol. 2014; 7: 5093-5102
        • Li L.
        • He M.
        • Zhou L.
        • Miao X.
        • Wu F.
        • Huang S.
        • et al.
        A solute carrier family 22 member 3 variant rs3088442 G→A associated with coronary heart disease inhibits lipopolysaccharide-induced inflammatory response.
        J. Biol. Chem. 2015; 290: 5328-5340
        • Morini E.
        • Rizzacasa B.
        • Pucci S.
        • Polidoro C.
        • Ferri F.
        • Caporossi D.
        • et al.
        rs1050286 polymorphism alters LOX-1 expression through modifying miR-24 binding.
        J. Cell Mol. Med. 2016; 20: 181-187
        • Liu M.E.
        • Liao Y.C.
        • Lin R.T.
        • Wang Y.S.
        • Hsi E.
        • Lin H.F.
        • et al.
        A functional polymorphism of PON1 interferes with microRNA binding to increase the risk of ischemic stroke and carotid atherosclerosis.
        Atherosclerosis. 2013; 228: 161-167
        • Zhang Y.
        • Wang S.
        • Li Y.
        • Zhang C.
        • Xue J.
        • Wu X.
        • et al.
        Relationship of microRNA 616 gene polymorphism with prognosis of patients with premature coronary artery disease.
        Int. J. Clin. Pharmacol. Ther. 2016; 54: 899-903
        • Hua L.
        • Xia H.
        • Zhou P.
        • Li D.
        • Li L.
        Combination of microRNA expression profiling with genome-wide SNP genotyping to construct a coronary artery disease-related miRNA-miRNA synergistic network.
        Biosci. Technol. 2014; 8: 297-307
        • Cui G.
        • Li Z.
        • Li R.
        • Huang J.
        • Wang H.
        • Zhang L.
        • et al.
        A functional variant in APOA5/A4/C3/A1 gene cluster contributes to elevated triglycerides and severity of CAD by interfering with microRNA 3201 binding efficiency.
        J. Am. Coll. Cardiol. 2014; 64: 267-277
        • Mitchell P.S.
        • Parkin R.K.
        • Kroh E.M.
        • Fritz B.R.
        • Wyman S.K.
        • Pogosova-Agadjanyan E.L.
        • et al.
        Circulating microRNAs as stable blood-based markers for cancer detection.
        Proc. Natl. Acad. Sci. USA. 2008; 105: 10513-10518
        • Romaine S.P.
        • Tomaszewski M.
        • Condorelli G.
        • Samani N.J.
        MicroRNAs in cardiovascular disease: an introduction for clinicians.
        Heart. 2015; 11: 921-928
        • Ai J.
        • Zhang R.
        • Li Y.
        • Pu J.
        • Lu Y.
        • Jiao J.
        • et al.
        Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction.
        Biochem. Biophys. Res. Commun. 2010; 391: 73-77
        • D'Alessandra Y.
        • Devanna P.
        • Limana F.
        • Straino S.
        • Di Carlo A.
        • Brambilla P.G.
        • et al.
        Circulating microRNAs are new and sensitive biomarkers of myocardial infarction.
        Eur. Heart J. 2010; 31: 2765-2773
        • Corsten M.F.
        • Dennert R.
        • Jochems S.
        • Kuznetsova T.
        • Devaux Y.
        • Hofstra L.
        • et al.
        Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease.
        Circ. Cardiovasc. Genet. 2010; 3: 499-506
        • Adachi T.
        • Nakanishi M.
        • Otsuka Y.
        • Nishimura K.
        • Hirokawa G.
        • Goto Y.
        • et al.
        Plasma microRNA 499 as a biomarker of acute myocardial infarction.
        Clin. Chem. 2010; 56: 1183-1185
        • Wang G.K.
        • Zhu J.Q.
        • Zhang J.T.
        • Li Q.
        • Li Y.
        • He J.
        • et al.
        Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans.
        Eur. Heart J. 2010; 31: 659-666
        • Navickas R.
        • Gal D.
        • Laucevicius A.
        • Taparauskaite A.
        • Zdanyte M.
        • Holvoet P.
        Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review.
        Cardiovasc. Res. 2016; 111: 322-337
        • Gao W.
        • He H.W.
        • Wang Z.M.
        • Zhao H.
        • Lian X.Q.
        • Wang Y.S.
        • et al.
        Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease.
        Lipids Health Dis. 2012; 11: 55
        • Jansen F.
        • Yang X.
        • Proebsting S.
        • Hoelscher M.
        • Przybilla D.
        • Baumann K.
        • et al.
        MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease.
        J. Am. Heart Assoc. 2014; 3e001249
        • Karakas M.
        • Schulte C.
        • Appelbaum S.
        • Ojeda F.
        • Lackner K.J.
        • Munzel T.
        • et al.
        Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease—results from the large AtheroGene study.
        Eur. Heart J. 2016; 38: 516-523
        • Faccini J.
        • Ruidavets J.B.
        • Cordelier P.
        • Martins F.
        • Maoret J.J.
        • Bongard V.
        • et al.
        Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease.
        Sci. Rep. 2017; 742916
        • Ryan B.M.
        • Robles A.I.
        • Harris C.C.
        Genetic variation in microRNA networks: the implications for cancer research.
        Nat. Rev. Cancer. 2010; 10: 389-402
        • Mishra P.J.
        • Bertino J.R.
        MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine.
        Pharmacogenomics. 2009; 10: 399-416
        • Bartel D.P.
        MicroRNAs: genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • Saini H.K.
        • Enright A.J.
        • Griffiths-Jones S.
        Annotation of mammalian primary microRNAs.
        BMC Genom. 2008; 9: 564
        • Cammaerts S.
        • Strazisar M.
        • De Rijk P.
        • Del Favero J.
        Genetic variants in microRNA genes: impact on microRNA expression, function, and disease.
        Front. Genet. 2015; 6: 186
        • Duan R.
        • Pak C.
        • Jin P.
        Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA.
        Hum. Mol. Genet. 2007; 16: 1124-1131
        • Iwai N.
        • Naraba H.
        Polymorphisms in human pre-miRNAs.
        Biochem. Biophys. Res. Commun. 2005; 331: 1439-1444
        • Gong J.
        • Tong Y.
        • Zhang H.M.
        • Wang K.
        • Hu T.
        • Shan G.
        • et al.
        Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis.
        Hum. Mutat. 2012; 33: 254-263
        • Moszyńska A.
        • Gebert M.
        • Collawn J.F.
        • Bartoszewski R.
        SNPs in microRNA target sites and their potential role in human disease.
        Open Biol. 2017; 7170019
        • Bruno A.E.
        • Li L.
        • Kalabus J.L.
        • Pan Y.
        • Yu A.
        • Hu Z.
        miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3′ UTRs of human genes.
        BMC Genom. 2012; 13: 44
        • Barenboim M.
        • Zoltick B.J.
        • Guo Y.
        • Weinberger D.R.
        MicroSNiPer: a web tool for prediction of SNP effects on putative microRNA targets.
        Hum. Mutat. 2010; 31: 1223-1232
        • Thomas L.F.
        • Saito T.
        • Sætrom P.l.
        Inferring causative variants in microRNA target sites.
        Nucleic Acids Res. 2011; 39e109
        • Liu C.
        • Zhang F.
        • Li T.
        • Lu M.
        • Wang L.
        • Yue W.
        • et al.
        MirSNP, a database of polymorphisms altering miRNA target sites, identifies miRNA-related SNPs in GWAS SNPs and eQTLs.
        BMC Genomics. 2012; 13: 661
        • Bhattacharya A.
        • Ziebarth J.D.
        • Cui Y.
        PolymiRTS Database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways.
        Nucleic Acids Res. 2014; 42: D86-D91
        • Cheng H.S.
        • Sivachandran N.
        • Lau A.
        • Boudreau E.
        • Zhao J.L.
        • Baltimore D.
        • et al.
        MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways.
        EMBO Mol. Med. 2013; 5: 949-966
        • Yang K.
        • He Y.S.
        • Wang X.Q.
        • Lu L.
        • Chen Q.J.
        • Liu J.
        • et al.
        MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4.
        FEBS Lett. 2011; 585: 854-860
        • Dong S.
        • Xiong W.
        • Yuan J.
        • Li J.
        • Liu J.
        • Xu X.
        MiRNA-146a regulates the maturation and differentiation of vascular smooth muscle cells by targeting NF-kappa B expression.
        Mol. Med. Rep. 2013; 8: 407-412
        • Kin K.
        • Miyagawa S.
        • Fukushima S.
        • Shirakawa Y.
        • Torikai K.
        • Shimamura K.
        • et al.
        Tissue- and plasma-specific microRNA signatures for atherosclerotic abdominal aortic aneurysm.
        J. Am. Heart Assoc. 2012; 1e000745
        • Raitoharju E.
        • Lyytikainen L.P.
        • Levula M.
        • Oksala N.
        • Mennander A.
        • Tarkka M.
        • et al.
        miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study.
        Atherosclerosis. 2011; 219: 211-217
        • Guo M.
        • Mao X.
        • Ji Q.
        • Lang M.
        • Li S.
        • Peng Y.
        • et al.
        miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome.
        Immunol. Cell Biol. 2010; 88: 555-564
        • Ramkaran P.
        • Khan S.
        • Phulukdaree A.
        • Moodley D.
        • Chuturgoon A.A.
        Mir-146a polymorphism influences levels of mir-146a, Irak-1, and Traf-6 in young patients with coronary artery disease.
        Cell Biochem. Biophys. 2014; 68: 259-266
        • Xiong X.D.
        • Cho M.
        • Cai X.P.
        • Cheng J.
        • Jing X.
        • Cen J.M.
        • et al.
        A common variant in pre-miR-146 is associated with coronary artery disease risk and its mature miRNA expression.
        Mutat. Res. Fund. Mol. M. 2014; 761: 15-20
        • Wilson K.D.
        • Hu S.J.
        • Venkatasubrahmanyam S.
        • Fu J.D.
        • Sun N.
        • Abilez O.J.
        • et al.
        Dynamic MicroRNA expression programs during cardiac differentiation of human embryonic stem cells role for miR-499.
        Circ. Cardiovasc. Genet. 2010; 3: 426-435
        • Wang J.J.
        • Jia Z.Q.
        • Zhang C.G.
        • Sun M.
        • Wang W.P.
        • Chen P.
        • et al.
        miR-499 protects cardiomyocytes from H2O2-induced apoptosis via its effects on Pdcd4 and Pacs2.
        RNA Biol. 2014; 11: 339-350
        • Wang J.X.
        • Jiao J.Q.
        • Li Q.A.
        • Long B.
        • Wang K.
        • Liu J.P.
        • et al.
        miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1.
        Nat. Med. 2011; 17: 71-78
        • Hoffman A.E.
        • Zheng T.
        • Yi C.
        • Leaderer D.
        • et al.
        microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis.
        Cancer Res. 2009; 69: 5970-5977
        • Wang J.
        • Wang Q.
        • Liu H.
        • Shao N.
        • Tan B.
        • Zhang G.
        • et al.
        The association of miR-146a rs2910164 and miR-196a2 rs11614913 polymorphisms with cancer risk: a meta-analysis of 32 studies.
        Mutagenesis. 2012; 27: 779-788
        • Liu S.
        • An J.
        • Lin J.
        • Liu Y.
        • Bao L.
        • Zhang W.
        • et al.
        Single nucleotide polymorphisms of microRNA processing machinery genes and outcome of hepatocellular carcinoma.
        PLoS One. 2014; 9e92791
        • Zhao Y.
        • Du Y.
        • Zhao S.
        • Guo Z.
        Single-nucleotide polymorphisms of microRNA processing machinery genes and risk of colorectal cancer.
        OncoTargets Ther. 2015; 8: 421-425
        • Gao Y.
        • Diao L.
        • Li H.
        • Guo Z.
        Single nucleotide polymorphisms of microRNA processing genes and outcome of non-Hodgkin's lymphoma.
        OncoTargets Ther. 2015; 8: 1735-1741
        • Rotunno M.
        • Zhao Y.
        • Bergen A.W.
        • Koshiol J.
        • Burdette L.
        • Rubagotti M.
        • et al.
        Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival.
        Br. J. Canc. 2010; 103: 1870-1874
        • Horikawa Y.
        • Wood C.G.
        • Yang H.
        • Zhao H.
        • Ye Y.
        • Gu J.
        • et al.
        Single nucleotide polymorphisms of microRNA machinery genes modify the risk of renal cell carcinoma.
        Clin. Canc. Res. 2008; 14: 7956-7962
        • Deloukas P.
        • Kanoni S.
        • Willenborg C.
        • Farrall M.
        • Assimes T.L.
        • Thompson J.R.
        • et al.
        Large-scale association analysis identifies new risk loci for coronary artery disease.
        Nat. Genet. 2013; 45: 25-33
        • Nurnberg S.T.
        • Cheng K.
        • Raiesdana A.
        • Kundu R.
        • Miller C.L.
        • Kim J.B.
        • et al.
        Coronary artery disease associated transcription factor TCF21 regulates smooth muscle precursor cells that contribute to the fibrous cap.
        PLoS Genet. 2015; 11e1005155
        • Tregouet D.A.
        • Konig I.R.
        • Erdmann J.
        • Munteanu A.
        • Braund P.S.
        • Hall A.S.
        • et al.
        Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease.
        Nat. Genet. 2009; 41: 283-285
        • Xu S.
        • Ogura S.
        • Chen J.
        • Little P.J.
        • Moss J.
        • Liu P.
        LOX-1 in atherosclerosis: biological functions and pharmacological modifiers.
        Cell. Mol. Life Sci. 2013; 70: 2859-2872
        • Zhou C.
        • Cao J.
        • Shang L.
        • Tong C.
        • Hu H.
        • Wang H.
        • et al.
        Reduced paraoxonase 1 activity as a marker for severe coronary artery disease.
        Dis. Markers. 2013; 35: 97-103
        • Ghanbari M.
        • Franco O.H.
        • de Looper H.W.
        • Hofman A.
        • Erkeland S.J.
        • Dehghan A.
        Genetic variations in MicroRNA-binding sites affect MicroRNA-mediated regulation of several genes associated with cardio-metabolic phenotypes.
        Circ. Cardiovasc. Genet. 2015; 8: 473-486
        • Caussy C.
        • Charrière S.
        • Marçais C.
        • Di Filippo M.
        • Sassolas A.
        • Delay M.
        • et al.
        An APOA5 3' UTR variant associated with plasma triglycerides triggers APOA5 downregulation by creating a functional miR-485-5p binding site.
        Am. J. Hum. Genet. 2014; 94: 129-134
        • Kusunok M.
        • Tsutsumi K.
        • Sato D.
        • Nakamura A.
        • Habu S.
        • Mori Y.
        • et al.
        Activation of lipoprotein lipase increases serum high density lipoprotein 2 cholesterol and enlarges high density lipoprotein 2 particles in rats.
        Eur. J. Pharmacol. 2011; 668: 337-339
        • Wang Y.
        • Puthanveetil P.
        • Wang F.
        • Kim M.S.
        • Abrahani A.
        • Rodrigues B.
        Severity of diabetes governs vascular lipoprotein lipase by affecting enzyme dimerization and disassembly.
        Diabetes. 2011; 60: 2041-2050
        • Voss C.V.
        • Davies B.S.
        • Tat S.
        • Gin P.
        • Fong L.G.
        • Pelletier C.
        • et al.
        Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1.
        Proc. Natl. Acad. Sci. USA. 2011; 108: 7980-7984
        • Caussy C.
        • Charrière S.
        • Meirhaeghe A.
        • Dallongeville J.
        • Lefai E.
        • Rome S.
        • et al.
        Multiple microRNA regulation of lipoprotein lipase gene abolished by 3'UTR polymorphisms in a triglyceride-lowering haplotype harboring p.Ser474Ter.
        Atherosclerosis. 2016; 246: 280-286
        • He J.
        • Su D.
        • Lv S.
        • Diao Z.
        • Xie J.
        • Luo Y.
        Effects of sediment chemical properties on phosphorus release rates in the sediment-water interface of the steppe wetlands.
        Int. J. Environ. Res. Publ. Health. 2017; 14
        • Agirbasli M.
        • Sumerkan M.C.
        • Eren F.
        • Agirbasli D.
        The S447X variant of lipoprotein lipase gene is inversely associated with severity of coronary artery disease.
        Heart Ves. 2011; 26: 457-463
        • Haas U.
        • Sczakiel G.
        • Laufer S.D.
        MicroRNA-mediated regulation of gene expression is affected by disease-associated SNPs within the 3′-UTR via altered RNA structure.
        RNA Biol. 2012; 9: 924-937
        • Liu C.
        • Rennie W.A.
        • Carmack C.S.
        • Kanoria S.
        • Cheng J.
        • Lu J.
        • et al.
        Effects of genetic variations on microRNA: target interactions.
        Nucleic Acids Res. 2014; 42: 9543-9552