Advertisement

The association between plasma endotoxin, endotoxin pathway proteins and outcome after ischemic stroke

      Highlights

      • In animals, systemic endotoxin injection before cerebral ischemia worsens outcome.
      • In stroke patients, higher plasma LBP and sCD14 levels are associated with mortality.
      • Elevated levels of LPS, LBP and sCD14 are associated with post-stroke delirium.

      Abstract

      Background and aims

      In animals, peripheral lipopolysaccharide (LPS) injection before cerebral ischemia exacerbates neurological deficit, impairs survival and augments sickness behaviour. The goal of our study was to determine a relationship between plasma LPS, LPS pathway proteins (LPS binding protein (LBP) and sCD14) and outcome in stroke patients.

      Methods

      We included 335 patients with ischemic stroke. Plasma LPS activity and levels of LBP and sCD14 were measured within 24 h after stroke onset. The endpoints of this study were (1) 3-month poor functional outcome defined as a modified Rankin Scale score >2; (2) 3-month and 12-month case fatality; (3) delirium during the first 7 days after admission.

      Results

      Plasma LPS activity did not correlate with either functional outcome or mortality. The higher levels of LBP and sCD14 predicted 3-month and 12-month case fatality. The adjusted hazard ratio for 12-month case fatality was 1.84 (95% CI: 1.32–2.58, p < 0.01) for LBP and 1.62 (95% CI: 1.15–2.29, p < 0.01) for sCD14. On multivariate analysis, higher LPS activity (OR: 1.63, 95% CI: 1.15–2.31, p = 0.01) and higher LBP (OR: 1.44, 95% CI: 1.04–2.00, p = 0.03) and sCD14 levels (OR: 1.54, 95% CI: 1.12–2.13, p = 0.01) were associated with increased risk of delirium.

      Conclusions

      In ischemic stroke patients, higher levels of plasma sCD14 and LBP are associated with increased risk of death, whereas, elevated LPS activity and higher levels of LBP and CD14 are associated with post-stroke delirium.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lu Y.C.
        • Yeh W.C.
        • Ohashi P.S.
        LPS/TLR4 signal transduction pathway.
        Cytokine. 2008; 42: 145-151https://doi.org/10.1016/j.cyto.2008.01.006
        • Stoll L.L.
        • Denning G.M.
        • Weintraub N.L.
        Potential role of endotoxin as a proinflammatory mediator of atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2004; 24: 2227-2236https://doi.org/10.1161/01.ATV.0000147534.69062.dc
        • Kitchens R.L.
        • Thompson P.A.
        Modulatory effects of sCD14 and LBP on LPS-host cell interactions.
        J. Endotoxin Res. 2005; 11: 225-229https://doi.org/10.1179/096805105X46565
        • McColl B.W.
        • Rothwell N.J.
        • Allan S.M.
        Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms.
        J. Neurosci. 2007; 27: 4403-4412https://doi.org/10.1523/JNEUROSCI.5376-06.2007
        • Dénes A.
        • Ferenczi S.
        • Kovács K.J.
        Systemic inflammatory challenges compromise survival after experimental stroke via augmenting brain inflammation, blood-brain barrier damage and brain oedema independently of infarct size.
        J. Neuroinflammation. 2011; 8: 164https://doi.org/10.1186/1742-2094-8-164
        • Doll D.N.
        • Hu H.
        • Sun J.
        • Lewis S.E.
        • Simpkins J.W.
        • et al.
        Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier.
        Stroke. 2015; 46: 1681-1689https://doi.org/10.1161/STROKEAHA.115.009099
        • Doll D.N.
        • Engler-Chiurazzi E.B.
        • Lewis S.E.
        • Hu H.
        • Kerr A.E.
        • et al.
        Lipopolysaccharide exacerbates infarct size and results in worsened post-stroke behavioral outcomes.
        Behav. Brain Funct. 2015; 11: 32https://doi.org/10.1186/s12993-015-0077-5
        • Dziedzic T.
        Systemic inflammation as a therapeutic target in acute ischemic stroke.
        Expert Rev. Neurother. 2015; 15: 523-531https://doi.org/10.1586/14737175.2015.1035712
        • Klimiec E.
        • Pera J.
        • Chrzanowska-Wasko J.
        • Golenia A.
        • Slowik A.
        • et al.
        Plasma endotoxin activity rises during ischemic stroke and is associated with worse short-term outcome.
        J. Neuroimmunol. 2016; 297: 76-80https://doi.org/10.1016/j.jneuroim.2016.05.006
        • Han J.H.
        • Wilson A.
        • Vasilevskis E.E.
        • Shintani A.
        • Schnelle J.F.
        • et al.
        Diagnosing delirium in older emergency department patients: validity and reliability of the delirium triage screen and the brief confusion assessment method.
        Ann. Emerg. Med. 2013; 62: 457-465https://doi.org/10.1016/j.annemergmed.2013.05.003
        • Ely E.W.
        • Inouye S.K.
        • Bernard G.R.
        • Gordon S.
        • Francis J.
        • et al.
        Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU).
        JAMA. 2001; 286: 2703-2710https://doi.org/10.1001/jama.286.21.2703
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        fifth ed. APA, Arlington, VA2013
        • Jorm A.F.
        • Korten A.E.
        Assessment of cognitive decline in the elderly by informant interview.
        Br. J. Psychiatr. 1988; 152: 209-213https://doi.org/10.1192/bjp.152.2.209
        • Moulin S.
        • Labreuche J.
        • Bombois S.
        • Rossi C.
        • Boulouis G.
        • et al.
        Dementia risk after spontaneous intracerebral haemorrhage: a prospective cohort study.
        Lancet Neurol. 2016; 15: 820-829https://doi.org/10.1016/S1474-4422(16)00130-7
        • Horan T.C.
        • Andrus M.
        • Dudeck M.A.
        CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting.
        Am. J. Infect. Control. 2008; 36: 309-332https://doi.org/10.1016/j.ajic.2008.03.002
        • Herring W.B.
        • Herion J.C.
        • Walker R.I.
        • Palmer J.G.
        Distribution and clearance of circulating endotoxin.
        J. Clin. Invest. 1963; 42: 79-87https://doi.org/10.1172/JCI104698
        • Danner R.L.
        • Elin R.J.
        • Hosseini J.M.
        • Wesley R.A.
        • Reilly J.M.
        • et al.
        Endotoxemia in human septic shock.
        Chest. 1991; 99: 169-175https://doi.org/10.1378/chest.99.1.169
        • Munford R.S.
        Endotoxemia-menace, marker, or mistake?.
        J. Leukoc. Biol. 2016; 100: 687-698https://doi.org/10.1189/jlb.3RU0316-151R
        • Gnauck A.
        • Lentle R.G.
        • Kruger M.C.
        Chasing a ghost?–Issues with the determination of circulating levels of endotoxin in human blood.
        Crit. Rev. Clin. Lab Sci. 2016; 53: 197-215https://doi.org/10.3109/10408363.2015.1123215
        • Palmer C.D.
        • Romero-Tejeda M.
        • Sirignano M.
        • Sharma S.
        • Allen T.M.
        • et al.
        Naturally occurring subclinical endotoxemia in humans alters adaptive and innate immune functions through reduced MAPK and increased STAT1 Phosphorylation.
        J. Immunol. 2016; 196: 668-677https://doi.org/10.4049/jimmunol.1501888
        • Park B.S.
        • Lee J.O.
        Recognition of lipopolysaccharide pattern by TLR4 complexes.
        Exp. Mol. Med. 2013; 45e66https://doi.org/10.1038/emm.2013.97
        • Wright S.D.
        • Ramos R.A.
        • Tobias P.S.
        • Ulevitch R.J.
        • Mathison J.C.
        CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein.
        Science. 1990; 249: 1431-1433https://doi.org/10.1126/science.1698311
        • Bazil V.
        • Strominger J.L.
        Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes.
        J. Immunol. 1991; 147: 1567-1574
        • Durieux J.J.
        • Vita N.
        • Popescu N.
        • Guette F.
        • Calzada-Wack J.
        • et al.
        The two soluble forms of the lipopolysaccharide receptor, CD14: characterization and release by normal human monocytes.
        Eur. J. Immunol. 1994; 24: 2006-2012https://doi.org/10.1002/eji.1830240911
        • Schumann R.R.
        • Zweigner J.
        A novel acute-phase marker: lipopolysaccharide binding protein (LBP).
        Clin. Chem. Lab. Med. 1999; 37: 271-274https://doi.org/10.1515/CCLM.1999.047
        • Bas S.
        • Gauthier B.R.
        • Spenato U.
        • Stingelin S.
        • Gabay C.
        CD14 is an acute-phase protein.
        J. Immunol. 2004; 172: 4470-4479https://doi.org/10.4049/jimmunol.172.7.4470
        • Raj D.S.
        • Carrero J.J.
        • Shah V.O.
        • Qureshi A.R.
        • Bárány P.
        • et al.
        Soluble CD14 levels, interleukin 6, and mortality among prevalent hemodialysis patients.
        Am. J. Kidney Dis. 2009; 54: 1072-1780https://doi.org/10.1053/j.ajkd.2009.06.022
        • Poesen R.
        • Ramezani A.
        • Claes K.
        • Augustijns P.
        • Kuypers D.
        • et al.
        Associations of soluble CD14 and endotoxin with mortality, cardiovascular disease, and progression of kidney disease among patients with CKD.
        Clin. J. Am. Soc. Nephrol. 2015; 10: 1525-1533https://doi.org/10.2215/CJN.03100315
        • Masson S.
        • Caironi P.
        • Spanuth E.
        • Thomae R.
        • Panigada M.
        • et al.
        ALBIOS Study Investigators. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial.
        Crit. Care. 2014; 18: R6https://doi.org/10.1186/cc13183
        • Sandler N.G.
        • Wand H.
        • Roque A.
        • Law M.
        • Nason M.C.
        • et al.
        INSIGHT SMART Study Group. Plasma levels of soluble CD14 independently predict mortality in HIV infection.
        J. Infect. Dis. 2011; 203: 780-790https://doi.org/10.1093/infdis/jiq118
        • Reiner A.P.
        • Lange E.M.
        • Jenny N.S.
        • Chaves P.H.
        • Ellis J.
        • et al.
        Soluble CD14: genomewide association analysis and relationship to cardiovascular risk and mortality in older adults.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 158-164https://doi.org/10.1161/ATVBAHA.112.300421
        • Agiasotelli D.
        • Alexopoulou A.
        • Vasilieva L.
        • Hadziyannis E.
        • Goukos D.
        • et al.
        High serum lipopolysaccharide binding protein is associated with increased mortality in patients with decompensated cirrhosis.
        Liver Int. 2017; 37: 576-582https://doi.org/10.1111/liv.13264
        • Lepper P.M.
        • Kleber M.E.
        • Grammer T.B.
        • Hoffmann K.
        • Dietz S.
        • et al.
        Lipopolysaccharide-binding protein (LBP) is associated with total and cardiovascular mortality in individuals with or without stable coronary artery disease–results from the Ludwigshafen Risk and Cardiovascular Health Study (LURIC).
        Atherosclerosis. 2011; 219: 291-297https://doi.org/10.1016/j.atherosclerosis.2011.06.001
        • Villar J.
        • Pérez-Méndez L.
        • Espinosa E.
        • Flores C.
        • Blanco J.
        • et al.
        GRECIA and GEN-SEP Groups. Serum lipopolysaccharide binding protein levels predict severity of lung injury and mortality in patients with severe sepsis.
        PLoS One. 2009; 4e6818https://doi.org/10.1371/journal.pone.0006818
        • Inouye S.K.
        • Westendorp R.G.
        • Saczynski J.S.
        Delirium in elderly people.
        Lancet. 2014; 383: 911-922https://doi.org/10.1016/S0140-6736(13)60688-1
        • Klimiec E.
        • Dziedzic T.
        • Kowalska K.
        • Slowik A.
        • Klimkowicz-Mrowiec A.
        Knowns and unknowns about delirium in stroke: a review.
        Cognit. Behav. Neurol. 2016; 29: 174-189https://doi.org/10.1097/WNN.0000000000000110
        • Cerejeira J.
        • Firmino H.
        • Vaz-Serra A.
        • Mukaetova-Ladinska E.B.
        The neuroinflammatory hypothesis of delirium.
        Acta Neuropathol. 2010; 119: 737-754https://doi.org/10.1007/s00401-010-0674-1
        • Cunningham C.
        • Maclullich A.M.
        At the extreme end of the psychoneuroimmunological spectrum: delirium as a maladaptive sickness behavior response.
        Brain Behav. Immun. 2013; 28: 1-13https://doi.org/10.1016/j.bbi.2012.07.012
        • Schreuder L.
        • Eggen B.J.
        • Biber K.
        • Schoemaker R.G.
        • Laman J.D.
        • et al.
        Pathophysiological and behavioral effects of systemic inflammation in aged and diseased rodents with relevance to delirium: a systematic review.
        Brain Behav. Immun. 2017; 62: 362-381https://doi.org/10.1016/j.bbi.2017.01.010
        • Schedlowski M.
        • Engler H.
        • Grigoleit J.S.
        Endotoxin-induced experimental systemic inflammation in humans: a model to disentangle immune-to-brain communication.
        Brain Behav. Immun. 2014; 35: 1-8https://doi.org/10.1016/j.bbi.2013.09.015
        • Murray K.N.
        • Buggey H.F.
        • Denes A.
        • Allan S.M.
        Systemic immune activation shapes stroke outcome.
        Mol. Cell. Neurosci. 2013; 53: 14-25https://doi.org/10.1016/j.mcn.2012.09.004
        • Brenchley J.M.
        • Price D.A.
        • Schacker T.W.
        • Asher T.E.
        • Silvestri G.
        • et al.
        Microbial translocation is a cause of systemic immune activation in chronic HIV infection.
        Nat. Med. 2006; 12: 1365-1371https://doi.org/10.1038/nm1511
        • Rice J.B.
        • Stoll L.L.
        • Li W.G.
        • Denning G.M.
        • Weydert J.
        • et al.
        Low-level endotoxin induces potent inflammatory activation of human blood vessels: inhibition by statins.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 1576-1582https://doi.org/10.1161/01.ATV.0000081741.38087.F9