Advertisement

PCSK9 inhibition alters the lipidome of plasma and lipoprotein fractions

  • Mika Hilvo
    Affiliations
    Zora Biosciences Oy, Biologinkuja 1, 02150, Espoo, Finland
    Search for articles by this author
  • Helena Simolin
    Affiliations
    Zora Biosciences Oy, Biologinkuja 1, 02150, Espoo, Finland
    Search for articles by this author
  • Jari Metso
    Affiliations
    Minerva Foundation Institute for Medical Research, Biomedicum, FI-00290, Helsinki, Finland

    National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum, FI-00290, Helsinki, Finland
    Search for articles by this author
  • Maija Ruuth
    Affiliations
    Wihuri Research Institute, Haartmaninkatu 8, FI-00290, Helsinki, Finland

    University of Helsinki, Research Programs Unit, FI-00014, Helsinki, Finland
    Search for articles by this author
  • Katariina Öörni
    Affiliations
    Wihuri Research Institute, Haartmaninkatu 8, FI-00290, Helsinki, Finland
    Search for articles by this author
  • Matti Jauhiainen
    Affiliations
    Minerva Foundation Institute for Medical Research, Biomedicum, FI-00290, Helsinki, Finland

    National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum, FI-00290, Helsinki, Finland
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Reijo Laaksonen
    Correspondence
    Corresponding author. Zora Biosciences Oy, Biologinkuja 1, 02150, Espoo, Finland.
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Zora Biosciences Oy, Biologinkuja 1, 02150, Espoo, Finland

    Finnish Cardiovascular Research Center, University of Tampere and Finnish Clinical Biobank Tampere, Tampere University Hospital, Tampere, Finland
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Amos Baruch
    Correspondence
    Corresponding author. Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Genentech, Development Sciences, 1 DNA Way MS 46-1A, South San Francisco, CA, 94080, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.

      Highlights

      • This study is the first one to characterize the detailed effect of PCSK9 inhibitors on lipid species.
      • PCSK9 inhibition significantly affects the lipid composition of both plasma and lipoprotein particles.
      • Especially the vast changes in sphingolipid metabolism may partly explain the clinical benefits of anti-PCSK9 therapies.

      Abstract

      Background and aims

      While inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) is known to result in dramatic lowering of LDL-cholesterol (LDL-C), it is poorly understood how it affects other lipid species and their metabolism. The aim of this study was to characterize the alterations in the lipidome of plasma and lipoprotein particles after administration of PCSK9 inhibiting antibody to patients with established coronary heart disease.

      Methods

      Plasma samples were obtained from patients undergoing a randomized placebo-controlled phase II trial (EQUATOR) for the safe and effective use of RG7652, a fully human monoclonal antibody inhibiting PCSK9 function. Lipoprotein fractions were isolated by sequential density ultracentrifugation, and both plasma and major lipoprotein classes (VLDL-IDL, LDL, HDL) were subjected to mass spectrometric lipidomic profiling.

      Results

      PCSK9 inhibition significantly decreased plasma levels of several lipid classes, including sphingolipids (dihydroceramides, glucosylceramides, sphingomyelins, ceramides), cholesteryl esters and free cholesterol. Previously established ceramide ratios predicting cardiovascular mortality, or inflammation related eicosanoid lipids, were not altered. RG7652 treatment also affected the overall and relative distribution of lipids in lipoprotein classes. An overall decrease of total lipid species was observed in LDL and VLDL + IDL particles, while HDL-associated phospholipids increased. Following the treatment, LDL displayed reduced lipid cargo, whereas relative lipid proportions of the VLDL + IDL particles were mostly unchanged, and there were relatively more lipids carried in the HDL particles.

      Conclusions

      Administration of PCSK9 antibody significantly alters the lipid composition of plasma and lipoprotein particles. These changes further shed light on the link between anti-PCSK9 therapies and cardiovascular risk.

      Keywords

      Abbreviations:

      CAD (coronary artery disease), CE (cholesteryl ester), Cer (ceramide), DAG (diacylglycerol), Gb3 (globotriasoylceramide), Glc/GalCer (glucosyl/galactosylceramide), GOF (gain-of-function), LacCer (lactosylceramide), LDL-C (LDL-cholesterol), LPC (lysophosphatidylcholine), LOF (loss-of-function), HDL-C (HDL-cholesterol), PC (phosphatidylcholine), PE (phosphatidylethanolamine), PI (phosphatidylinositol), SM (sphingomyelin), TAG (triacylglycerol), TC (total cholesterol), TG (triglyceride)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hansson G.K.
        Inflammation, atherosclerosis, and coronary artery disease.
        N. Engl. J. Med. 2005; 352: 1685-1695https://doi.org/10.1056/NEJMra043430
        • Golomb B.A.
        • Evans M.A.
        Statin adverse effects: a review of the literature and evidence for a mitochondrial mechanism.
        Am. J. Cardiovasc. Drugs. 2008; 8: 373-418https://doi.org/10.2165/0129784-200808060-00004
        • Thompson P.D.
        • Panza G.
        • Zaleski A.
        • Taylor B.
        Statin-associated side effects.
        J. Am. Coll. Cardiol. 2016; 67: 2395-2410https://doi.org/10.1016/j.jacc.2016.02.071
        • Abifadel M.
        • Varret M.
        • Rabès J.-P.
        • Allard D.
        • Ouguerram K.
        • Devillers M.
        • Cruaud C.
        • Benjannet S.
        • Wickham L.
        • Erlich D.
        • Derré A.
        • Villéger L.
        • Farnier M.
        • Beucler I.
        • Bruckert E.
        • Chambaz J.
        • Chanu B.
        • Lecerf J.-M.
        • Luc G.
        • Moulin P.
        • Weissenbach J.
        • Prat A.
        • Krempf M.
        • Junien C.
        • Seidah N.G.
        • Boileau C.
        Mutations in PCSK9 cause autosomal dominant hypercholesterolemia.
        Nat. Genet. 2003; 34: 154-156https://doi.org/10.1038/ng1161
        • Cohen J.C.
        • Boerwinkle E.
        • Mosley T.H.
        • Hobbs H.H.
        Sequence variations in PCSK9, low LDL, and protection against coronary heart disease.
        N. Engl. J. Med. 2006; 354: 1264-1272https://doi.org/10.1056/NEJMoa054013
        • Peterson A.S.
        • Fong L.G.
        • Young S.G.
        PCSK9 function and physiology.
        J. Lipid Res. 2008; 49: 1595-1599https://doi.org/10.1194/jlr.E800008-JLR200
        • Norata G.D.
        • Tibolla G.
        • Catapano A.L.
        Targeting PCSK9 for hypercholesterolemia.
        Annu. Rev. Pharmacol. Toxicol. 2014; 54: 273-293https://doi.org/10.1146/annurev-pharmtox-011613-140025
        • Sabatine M.S.
        • Giugliano R.P.
        • Keech A.C.
        • Honarpour N.
        • Wiviott S.D.
        • Murphy S.A.
        • Kuder J.F.
        • Wang H.
        • Liu T.
        • Wasserman S.M.
        • Sever P.S.
        • Pedersen T.R.
        Evolocumab and clinical outcomes in patients with cardiovascular disease.
        N. Engl. J. Med. 2017; (NEJMoa1615664)https://doi.org/10.1056/NEJMoa1615664
        • Jänis M.T.
        • Tarasov K.
        • Ta H.X.
        • Suoniemi M.
        • Ekroos K.
        • Hurme R.
        • Lehtimäki T.
        • Päivä H.
        • Kleber M.E.
        • März W.
        • Prat A.
        • Seidah N.G.
        • Laaksonen R.
        Beyond LDL-C lowering: distinct molecular sphingolipids are good indicators of proprotein convertase subtilisin/kexin type 9 (PCSK9) deficiency.
        Atherosclerosis. 2013; 228: 380-385https://doi.org/10.1016/j.atherosclerosis.2013.03.029
        • Tarasov K.
        • Ekroos K.
        • Suoniemi M.
        • Kauhanen D.
        • Sylvänne T.
        • Hurme R.
        • Gouni-Berthold I.
        • Berthold H.K.
        • Kleber M.E.
        • Laaksonen R.
        • März W.
        Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency.
        J. Clin. Endocrinol. Metab. 2014; 99: E45-E52https://doi.org/10.1210/jc.2013-2559
        • Baruch A.
        • Mosesova S.
        • Davis J.D.
        • Budha N.
        • Vilimovskij A.
        • Kahn R.
        • Peng K.
        • Cowan K.J.
        • Harris L.P.
        • Gelzleichter T.
        • Lehrer J.
        • Davis J.C.
        • Tingley W.G.
        Effects of RG7652, a monoclonal antibody against PCSK9, on LDL-C, LDL-C subfractions, and inflammatory biomarkers in patients at high risk of or with established coronary heart disease (from the phase 2 EQUATOR study).
        Am. J. Cardiol. 2017; https://doi.org/10.1016/j.amjcard.2017.02.020
        • Havel R.J.
        • Eder H.A.
        • Bragdon J.H.
        The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum.
        J. Clin. Invest. 1955; 34: 1345-1353https://doi.org/10.1172/JCI103182
        • Ekroos K.
        Unraveling Glycerophospholipidomes by Lipidomics.
        Humana Press, Totowa, NJ2008https://doi.org/10.1007/978-1-59745-463-6_17
        • Folch J.
        • Lees M.
        • Sloane Stanley G.H.
        A simple method for the isolation and purification of total lipides from animal tissues.
        J. Biol. Chem. 1957; 226: 497-509
        • Ståhlman M.
        • Ejsing C.S.
        • Tarasov K.
        • Perman J.
        • Borén J.
        • Ekroos K.
        High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry.
        J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2009; 877: 2664-2672https://doi.org/10.1016/j.jchromb.2009.02.037
        • Ekroos K.
        • Chernushevich I.V.
        • Simons K.
        • Shevchenko A.
        Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer.
        Anal. Chem. 2002; 74: 941-949
        • Ekroos K.
        • Ejsing C.S.
        • Bahr U.
        • Karas M.
        • Simons K.
        • Shevchenko A.
        Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation.
        J. Lipid Res. 2003; 44: 2181-2192https://doi.org/10.1194/jlr.D300020-JLR200
        • Laaksonen R.
        • Ekroos K.
        • Sysi-Aho M.
        • Hilvo M.
        • Vihervaara T.
        • Kauhanen D.
        • Suoniemi M.
        • Hurme R.
        • März W.
        • Scharnagl H.
        • Stojakovic T.
        • Vlachopoulou E.
        • Lokki M.L.
        • Nieminen M.S.
        • Klingenberg R.
        • Matter C.M.
        • Hornemann T.
        • Jüni P.
        • Rodondi N.
        • Räber L.
        • Windecker S.
        • Gencer B.
        • Pedersen E.R.
        • Tell G.S.
        • Nygård O.
        • Mach F.
        • Sinisalo J.
        • Lüscher T.F.
        Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol.
        Eur. Heart J. 2016; 37: 1967-1976https://doi.org/10.1093/eurheartj/ehw148
        • Meikle P.J.
        • Wong G.
        • Tsorotes D.
        • Barlow C.K.
        • Weir J.M.
        • Christopher M.J.
        • MacIntosh G.L.
        • Goudey B.
        • Stern L.
        • Kowalczyk A.
        • Haviv I.
        • White A.J.
        • Dart A.M.
        • Duffy S.J.
        • Jennings G.L.
        • Kingwell B.A.
        • Weir M.
        Plasma lipidomic analysis of stable and unstable coronary artery disease.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 2723-2732https://doi.org/10.1161/ATVBAHA.111.234096
        • Havulinna A.S.
        • Sysi-Aho M.
        • Hilvo M.
        • Kauhanen D.
        • Hurme R.
        • Ekroos K.
        • Salomaa V.
        • Laaksonen R.
        Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort.
        Arterioscler. Thromb. Vasc. Biol. 2016; 36: 2424-2430https://doi.org/10.1161/ATVBAHA.116.307497
        • Koren M.J.
        • Kereiakes D.
        • Pourfarzib R.
        • Winegar D.
        • Banerjee P.
        • Hamon S.
        • Hanotin C.
        • McKenney J.M.
        Effect of PCSK9 inhibition by alirocumab on lipoprotein particle concentrations determined by nuclear magnetic resonance spectroscopy.
        J. Am. Heart Assoc. 2015; 4https://doi.org/10.1161/JAHA.115.002224
        • Sahebkar A.
        • Di Giosia P.
        • Stamerra C.A.
        • Grassi D.
        • Pedone C.
        • Ferretti G.
        • Bacchetti T.
        • Ferri C.
        • Giorgini P.
        Effect of monoclonal antibodies to PCSK9 on high-sensitivity C-reactive protein levels: a meta-analysis of 16 randomized controlled treatment arms.
        Br. J. Clin. Pharmacol. 2016; 81: 1175-1190https://doi.org/10.1111/bcp.12905
        • Dennis E.A.
        • Norris P.C.
        Eicosanoid storm in infection and inflammation.
        Nat. Rev. Immunol. 2015; 15: 511-523https://doi.org/10.1038/nri3859
        • Ng T.W.K.
        • Ooi E.M.M.
        • Watts G.F.
        • Chan D.C.
        • Weir J.M.
        • Meikle P.J.
        • Barrett P.H.R.
        Dose-dependent effects of rosuvastatin on the plasma sphingolipidome and phospholipidome in the metabolic syndrome.
        J. Clin. Endocrinol. Metab. 2014; 99: E2335-E2340https://doi.org/10.1210/jc.2014-1665