Advertisement

Circulating microRNAs identify patients at increased risk of in-stent restenosis after peripheral angioplasty with stent implantation

      Highlights

      • Circulating miR-195 predicts adverse ischemic events in peripheral artery disease.
      • Circulating miR-195 predicts the need for target vessel revascularization.
      • MiR-195 could improve risk stratification of patients undergoing peripheral endovascular revascularization.
      • MiR-195 is proposed as potentially valuable and easily accessible biomarker.

      Abstract

      Background and aims

      Target lesion restenosis is the most frequent complication after angioplasty and stenting for peripheral artery disease (PAD). MicroRNAs (miRs) regulate crucial pathophysiological processes leading to in-stent restenosis and thrombosis. The aim of this study was to investigate the predictive value of 11 miRs for the composite endpoint of target lesion restenosis and atherothrombotic events (primary endpoint), and target vessel revascularization (TVR, secondary endpoint) in 62 consecutive PAD patients after infrainguinal angioplasty with stent implantation.

      Methods

      Circulating miRs were assessed using quantitative real-time polymerase chain reactions.

      Results

      Within the 2 years of follow-up, the primary endpoint occurred in 26 patients (41.9%), and 21 patients (33.9%) underwent TVR. miR-92a and miR-195 were identified as independent predictors of the primary endpoint after adjustment for age, sex and clinical risk factors with respective HR per 1 increase of standard deviation (1-SD) of 0.55 (95% CI: 0.34–0.88, p = 0.013) and HR per 1-SD of 0.40 (95% CI: 0.23–0.68, p = 0.001). MiR-195 independently predicted TVR with HR per 1-SD of 0.40 (95% CI: 0.22–0.75, p = 0.005). Adding miR-195 to clinical risk factors improved Harrell's C-index to 0.75 (95% CI: 0.66–0.85, p = 0.03) and was superior to a model with miR-92a (C-index: 0.70, 95% CI: 0.60–0.80, p for comparison =0 .012). Assessment of both miR-92a and miR-195 had no incremental value when compared to miR-195 alone (C-index: 0.79, 95% CI: 0.69–0.88, p = 0.313).

      Conclusions

      Circulating miR-195 predicts adverse ischemic events and TVR after infrainguinal angioplasty with stent implantation. MiR-195 could improve risk stratification after peripheral endovascular revascularizations.

      Graphical abstract

      Keywords

      Abbreviations:

      miRs (microRNAs), PAD (peripheral artery disease), SMCs (smooth muscle cells), TIA (transient ischemic attack), TVR (target vessel revascularization)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hiatt W.R.
        • Goldstone J.
        • Smith Jr., S.C.
        • McDermott M.
        • Moneta G.
        • et al.
        Atherosclerotic peripheral vascular disease symposium II: nomenclature for vascular diseases.
        Circulation. 2008; 118: 2826-2829https://doi.org/10.1161/CIRCULATIONAHA.108.191171
        • Hiatt W.R.
        • Armstrong E.J.
        • Larson C.J.
        • Brass E.P.
        Pathogenesis of the limb manifestations and exercise limitations in peripheral artery disease.
        Circ. Res. 2015; 116: 1527-1539https://doi.org/10.1161/CIRCRESAHA.116.303566
        • Ross R.
        Atherosclerosis–an inflammatory disease.
        N. Engl. J. Med. 1999; 340: 115-126https://doi.org/10.1056/NEJM199901143400207
        • Criqui M.H.
        • McClelland R.L.
        • McDermott M.M.
        • Allison M.A.
        • Blumenthal R.S.
        • et al.
        The ankle-brachial index and incident cardiovascular events in the MESA (Multi-Ethnic Study of Atherosclerosis).
        J. Am. Coll. Cardiol. 2010; 56: 1506-1512https://doi.org/10.1016/j.jacc.2010.04.060
        • Criqui M.H.
        • Langer R.D.
        • Fronek A.
        • Feigelson H.S.
        • Klauber M.R.
        • et al.
        Mortality over a period of 10 years in patients with peripheral arterial disease.
        N. Engl. J. Med. 1992; 326: 381-386https://doi.org/10.1056/NEJM199202063260605
        • Lee A.J.
        • Price J.F.
        • Russell M.J.
        • Smith F.B.
        • van Wijk M.C.
        • et al.
        Improved prediction of fatal myocardial infarction using the ankle brachial index in addition to conventional risk factors: the Edinburgh Artery Study.
        Circulation. 2004; 110: 3075-3080https://doi.org/10.1161/01.CIR.0000143102.38256.DE
        • Diehm C.
        • Lange S.
        • Darius H.
        • Pittrow D.
        • von Stritzky B.
        • et al.
        Association of low ankle brachial index with high mortality in primary care.
        Eur. Heart J. 2006; 27: 1743-1749https://doi.org/10.1093/eurheartj/ehl092
        • Thukkani A.K.
        • Kinlay S.
        Endovascular intervention for peripheral artery disease.
        Circ. Res. 2015; 116: 1599-1613https://doi.org/10.1161/CIRCRESAHA.116.303503
        • Baek D.
        • Villen J.
        • Shin C.
        • Camargo F.D.
        • Gygi S.P.
        • et al.
        The impact of microRNAs on protein output.
        Nature. 2008; 455: 64-71https://doi.org/10.1038/nature07242
        • Chen L.J.
        • Lim S.H.
        • Yeh Y.T.
        • Lien S.C.
        • Chiu J.J.
        Roles of microRNAs in atherosclerosis and restenosis.
        J. Biomed. Sci. 2012; 19: 79https://doi.org/10.1186/1423-0127-19-79
        • Yamakuchi M.
        MicroRNAs in vascular Biology.
        Int J Vasc Med. 2012; 2012: 794898https://doi.org/10.1155/2012/794898
        • Gareri C.
        • De Rosa S.
        • Indolfi C.
        MicroRNAs for restenosis and thrombosis after vascular injury.
        Circ. Res. 2016; 118: 1170-1184https://doi.org/10.1161/CIRCRESAHA.115.308237
        • Polimeni A.
        • De Rosa S.
        • Indolfi C.
        Vascular miRNAs after balloon angioplasty.
        Trends Cardiovasc. Med. 2013; 23: 9-14https://doi.org/10.1016/j.tcm.2012.08.004
        • Wang G.K.
        • Zhu J.Q.
        • Zhang J.T.
        • Li Q.
        • Li Y.
        • et al.
        Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans.
        Eur. Heart J. 2010; 31: 659-666https://doi.org/10.1093/eurheartj/ehq013
        • D'Alessandra Y.
        • Devanna P.
        • Limana F.
        • Straino S.
        • Di Carlo A.
        • et al.
        Circulating microRNAs are new and sensitive biomarkers of myocardial infarction.
        Eur. Heart J. 2010; 31: 2765-2773https://doi.org/10.1093/eurheartj/ehq167
        • Fichtlscherer S.
        • De Rosa S.
        • Fox H.
        • Schwietz T.
        • Fischer A.
        • et al.
        Circulating microRNAs in patients with coronary artery disease.
        Circ. Res. 2010; 107: 677-684https://doi.org/10.1161/CIRCRESAHA.109.215566
        • Tijsen A.J.
        • Creemers E.E.
        • Moerland P.D.
        • de Windt L.J.
        • van der Wal A.C.
        • et al.
        MiR423-5p as a circulating biomarker for heart failure.
        Circ. Res. 2010; 106: 1035-1039https://doi.org/10.1161/CIRCRESAHA.110.218297
        • Zampetaki A.
        • Kiechl S.
        • Drozdov I.
        • Willeit P.
        • Mayr U.
        • et al.
        Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes.
        Circ. Res. 2010; 107: 810-817https://doi.org/10.1161/CIRCRESAHA.110.226357
        • Tijsen A.J.
        • Pinto Y.M.
        • Creemers E.E.
        Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases.
        Am. J. Physiol. Heart Circ. Physiol. 2012; 303: H1085-H1095https://doi.org/10.1152/ajpheart.00191.2012
        • Karakas M.
        • Schulte C.
        • Appelbaum S.
        • Ojeda F.
        • Lackner K.J.
        • et al.
        Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study.
        Eur. Heart J. 2017; 38: 516-523https://doi.org/10.1093/eurheartj/ehw250
        • De Rosa R.
        • De Rosa S.
        • Leistner D.
        • Boeckel J.N.
        • Keller T.
        • et al.
        Transcoronary concentration gradient of microRNA-133a and outcome in patients with coronary artery disease.
        Am. J. Cardiol. 2017; 120: 15-24https://doi.org/10.1016/j.amjcard.2017.03.264
        • Vegter E.L.
        • Ovchinnikova E.S.
        • van Veldhuisen D.J.
        • Jaarsma T.
        • Berezikov E.
        • et al.
        Low circulating microRNA levels in heart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations.
        Clin. Res. Cardiol. 2017; 106: 598-609https://doi.org/10.1007/s00392-017-1096-z
        • Satrauskiene A.
        • Navickas R.
        • Laucevicius A.
        • Huber H.J.
        Identifying differential miR and gene consensus patterns in peripheral blood of patients with cardiovascular diseases from literature data.
        BMC Cardiovasc. Disord. 2017; 17: 173https://doi.org/10.1186/s12872-017-0609-z
        • Stather P.W.
        • Sylvius N.
        • Wild J.B.
        • Choke E.
        • Sayers R.D.
        • et al.
        Differential microRNA expression profiles in peripheral arterial disease.
        Circ Cardiovasc Genet. 2013; 6: 490-497https://doi.org/10.1161/CIRCGENETICS.111.000053
        • Willeit P.
        • Zampetaki A.
        • Dudek K.
        • Kaudewitz D.
        • King A.
        • et al.
        Circulating microRNAs as novel biomarkers for platelet activation.
        Circ. Res. 2013; 112: 595-600https://doi.org/10.1161/CIRCRESAHA.111.300539
        • Iaconetti C.
        • Gareri C.
        • Polimeni A.
        • Indolfi C.
        Non-coding RNAs: the "dark matter" of cardiovascular pathophysiology.
        Int. J. Mol. Sci. 2013; 14: 19987-20018https://doi.org/10.3390/ijms141019987
        • Luo T.
        • Cui S.
        • Bian C.
        • Yu X.
        Crosstalk between TGF-beta/Smad3 and BMP/BMPR2 signaling pathways via miR-17-92 cluster in carotid artery restenosis.
        Mol. Cell. Biochem. 2014; 389: 169-176https://doi.org/10.1007/s11010-013-1938-6
        • Wang F.
        • Zhao X.Q.
        • Liu J.N.
        • Wang Z.H.
        • Wang X.L.
        • et al.
        Antagonist of microRNA-21 improves balloon injury-induced rat iliac artery remodeling by regulating proliferation and apoptosis of adventitial fibroblasts and myofibroblasts.
        J. Cell. Biochem. 2012; 113: 2989-3001https://doi.org/10.1002/jcb.24176
        • Wang D.
        • Deuse T.
        • Stubbendorff M.
        • Chernogubova E.
        • Erben R.G.
        • et al.
        Local MicroRNA modulation using a novel anti-miR-21-eluting stent effectively prevents experimental in-stent restenosis.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35: 1945-1953https://doi.org/10.1161/ATVBAHA.115.305597
        • Iaconetti C.
        • Polimeni A.
        • Sorrentino S.
        • Sabatino J.
        • Pironti G.
        • et al.
        Inhibition of miR-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury.
        Basic Res. Cardiol. 2012; 107: 296https://doi.org/10.1007/s00395-012-0296-y
        • Bonauer A.
        • Carmona G.
        • Iwasaki M.
        • Mione M.
        • Koyanagi M.
        • et al.
        MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice.
        Science. 2009; 324: 1710-1713https://doi.org/10.1126/science.1174381
        • Loyer X.
        • Potteaux S.
        • Vion A.C.
        • Guerin C.L.
        • Boulkroun S.
        • et al.
        Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice.
        Circ. Res. 2014; 114: 434-443https://doi.org/10.1161/CIRCRESAHA.114.302213
        • Daniel J.M.
        • Penzkofer D.
        • Teske R.
        • Dutzmann J.
        • Koch A.
        • et al.
        Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury.
        Cardiovasc. Res. 2014; 103: 564-572https://doi.org/10.1093/cvr/cvu162
        • Wang S.
        • Aurora A.B.
        • Johnson B.A.
        • Qi X.
        • McAnally J.
        • et al.
        The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis.
        Dev. Cell. 2008; 15: 261-271https://doi.org/10.1016/j.devcel.2008.07.002
        • Harris T.A.
        • Yamakuchi M.
        • Ferlito M.
        • Mendell J.T.
        • Lowenstein C.J.
        MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 1516-1521https://doi.org/10.1073/pnas.0707493105
        • Wang J.N.
        • Yan Y.Y.
        • Guo Z.Y.
        • Jiang Y.J.
        • Liu L.L.
        • et al.
        Negative association of circulating MicroRNA-126 with high-sensitive C-reactive protein and vascular cell adhesion Molecule-1 in patients with coronary artery disease following percutaneous coronary intervention.
        Chin Med J (Engl). 2016; 129: 2786-2791https://doi.org/10.4103/0366-6999.194645
        • Cordes K.R.
        • Sheehy N.T.
        • White M.P.
        • Berry E.C.
        • Morton S.U.
        • et al.
        miR-145 and miR-143 regulate smooth muscle cell fate and plasticity.
        Nature. 2009; 460: 705-710https://doi.org/10.1038/nature08195
        • Elia L.
        • Quintavalle M.
        • Zhang J.
        • Contu R.
        • Cossu L.
        • et al.
        The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease.
        Cell Death Differ. 2009; 16: 1590-1598https://doi.org/10.1038/cdd.2009.153
        • Wang Y.S.
        • Wang H.Y.
        • Liao Y.C.
        • Tsai P.C.
        • Chen K.C.
        • et al.
        MicroRNA-195 regulates vascular smooth muscle cell phenotype and prevents neointimal formation.
        Cardiovasc. Res. 2012; 95: 517-526https://doi.org/10.1093/cvr/cvs223
        • Liu Q.
        • Fu H.
        • Sun F.
        • Zhang H.
        • Tie Y.
        • et al.
        miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes.
        Nucleic Acids Res. 2008; 36: 5391-5404https://doi.org/10.1093/nar/gkn522
        • Zhu N.
        • Zhang D.
        • Chen S.
        • Liu X.
        • Lin L.
        • et al.
        Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration.
        Atherosclerosis. 2011; 215: 286-293https://doi.org/10.1016/j.atherosclerosis.2010.12.024
        • Suarez Y.
        • Fernandez-Hernando C.
        • Pober J.S.
        • Sessa W.C.
        Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells.
        Circ. Res. 2007; 100: 1164-1173https://doi.org/10.1161/01.RES.0000265065.26744.17
        • Davis B.N.
        • Hilyard A.C.
        • Nguyen P.H.
        • Lagna G.
        • Hata A.
        Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype.
        J. Biol. Chem. 2009; 284: 3728-3738https://doi.org/10.1074/jbc.M808788200
        • Tabet F.
        • Vickers K.C.
        • Cuesta Torres L.F.
        • Wiese C.B.
        • Shoucri B.M.
        • et al.
        HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells.
        Nat. Commun. 2014; 5: 3292https://doi.org/10.1038/ncomms4292
        • Merlet E.
        • Atassi F.
        • Motiani R.K.
        • Mougenot N.
        • Jacquet A.
        • et al.
        miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat.
        Cardiovasc. Res. 2013; 98: 458-468https://doi.org/10.1093/cvr/cvt045
        • Forte A.
        • Rinaldi B.
        • Berrino L.
        • Rossi F.
        • Galderisi U.
        • et al.
        Novel potential targets for prevention of arterial restenosis: insights from the pre-clinical research.
        Clin. Sci. (Lond.). 2014; 127: 615-634https://doi.org/10.1042/CS20140131
        • Devaux Y.
        • Dankiewicz J.
        • Salgado-Somoza A.
        • Stammet P.
        • Collignon O.
        • et al.
        Association of circulating MicroRNA-124-3p levels with outcomes after out-of-hospital cardiac arrest: a substudy of a randomized clinical trial.
        JAMA Cardiol. 2016; 1: 305-313https://doi.org/10.1001/jamacardio.2016.0480
        • Mitchell P.S.
        • Parkin R.K.
        • Kroh E.M.
        • Fritz B.R.
        • Wyman S.K.
        • et al.
        Circulating microRNAs as stable blood-based markers for cancer detection.
        Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 10513-10518https://doi.org/10.1073/pnas.0804549105
        • Budczies J.
        • Klauschen F.
        • Sinn B.V.
        • Gyorffy B.
        • Schmitt W.D.
        • et al.
        Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization.
        PLoS One. 2012; 7e51862https://doi.org/10.1371/journal.pone.0051862
        • Criqui M.H.
        • Aboyans V.
        Epidemiology of peripheral artery disease.
        Circ. Res. 2015; 116: 1509-1526https://doi.org/10.1161/CIRCRESAHA.116.303849
        • European Stroke O.
        • Tendera M.
        • Aboyans V.
        • Bartelink M.L.
        • Baumgartner I.
        • et al.
        ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC).
        Eur. Heart J. 2011; 32: 2851-2906https://doi.org/10.1093/eurheartj/ehr211
        • Gerhard-Herman M.D.
        • Gornik H.L.
        • Barrett C.
        • Barshes N.R.
        • Corriere M.A.
        • et al.
        2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of cardiology/American heart association task force on clinical practice guidelines.
        J. Am. Coll. Cardiol. 2017; 69: 1465-1508https://doi.org/10.1016/j.jacc.2016.11.008
        • Farb A.
        • Weber D.K.
        • Kolodgie F.D.
        • Burke A.P.
        • Virmani R.
        Morphological predictors of restenosis after coronary stenting in humans.
        Circulation. 2002; 105: 2974-2980
        • Otsuka F.
        • Finn A.V.
        • Yazdani S.K.
        • Nakano M.
        • Kolodgie F.D.
        • et al.
        The importance of the endothelium in atherothrombosis and coronary stenting.
        Nat. Rev. Cardiol. 2012; 9: 439-453https://doi.org/10.1038/nrcardio.2012.64
        • He M.
        • Zhang W.
        • Dong Y.
        • Wang L.
        • Fang T.
        • et al.
        Pro-inflammation NF-kappaB signaling triggers a positive feedback via enhancing cholesterol accumulation in liver cancer cells.
        J. Exp. Clin. Canc. Res. 2017; 36: 15https://doi.org/10.1186/s13046-017-0490-8
        • Ding J.
        • Huang S.
        • Wang Y.
        • Tian Q.
        • Zha R.
        • et al.
        Genome-wide screening reveals that miR-195 targets the TNF-alpha/NF-kappaB pathway by down-regulating IkappaB kinase alpha and TAB3 in hepatocellular carcinoma.
        Hepatology. 2013; 58: 654-666https://doi.org/10.1002/hep.26378
        • Kaudewitz D.
        • Skroblin P.
        • Bender L.H.
        • Barwari T.
        • Willeit P.
        • et al.
        Association of MicroRNAs and YRNAs with platelet function.
        Circ. Res. 2016; 118: 420-432https://doi.org/10.1161/CIRCRESAHA.114.305663
        • Carino A.
        • De Rosa S.
        • Sorrentino S.
        • Polimeni A.
        • Sabatino J.
        • et al.
        Modulation of circulating MicroRNAs levels during the switch from clopidogrel to ticagrelor.
        BioMed Res. Int. 2016; 2016: 3968206https://doi.org/10.1155/2016/3968206
        • Cheng Y.
        • Liu X.
        • Yang J.
        • Lin Y.
        • Xu D.Z.
        • et al.
        MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation.
        Circ. Res. 2009; 105: 158-166https://doi.org/10.1161/CIRCRESAHA.109.197517
        • He M.
        • Gong Y.
        • Shi J.
        • Pan Z.
        • Zou H.
        • et al.
        Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis.
        PLoS One. 2014; 9e112043https://doi.org/10.1371/journal.pone.0112043
        • Zampetaki A.
        • Mayr M.
        Analytical challenges and technical limitations in assessing circulating miRNAs.
        Thromb. Haemostasis. 2012; 108: 592-598https://doi.org/10.1160/TH12-02-0097