New medications targeting triglyceride-rich lipoproteins: Can inhibition of ANGPTL3 or apoC-III reduce the residual cardiovascular risk?


      • New personalized drug modalities are needed to reduce the residual CVD risk.
      • Major therapies aimed at reducing TRLs involve targeting ANGPTL3 or apoC-III.
      • Targeting ANGPTL3 reduces all serum lipoproteins; Phase III trials are expected with enthusiasm.
      • Targeting apoC-III reduces TG and elevates HDL; Phase III trials on hyper-TG subjects are ongoing.
      • The present TRL therapies hold a lot of promise, however, genome editing may revolutionize the field.


      Remarkably good results have been achieved in the treatment of atherosclerotic cardiovascular diseases (CVD) by using statin, ezetimibe, antihypertensive, antithrombotic, and PCSK9 inhibitor therapies and their proper combinations. However, despite this success, the remaining CVD risk is still high. To target this residual risk and to treat patients who are statin-intolerant or have an exceptionally high CVD risk for instance due to familial hypercholesterolemia (FH), new therapies are intensively sought. One pathway of drug development is targeting the circulating triglyceride-rich lipoproteins (TRL) and their lipolytic remnants, which, according to the current view, confer a major CVD risk. Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are at present the central molecular targets for therapies designed to reduce TRL, and there are new drugs emerging that suppress their expression or inhibit the function of these two key proteins. The medications targeting these components are biological, either human monoclonal antibodies or antisense oligonucleotides. In this article, we briefly review the mechanisms of action of ANGPTL3 and apoC-III, the reasons why they have been considered promising targets of novel therapies for CVD, as well as the current status and the most important results of their clinical trials.



      ANGPTL3 (angiopoietin-like protein 3), apoB (apolipoprotein B), apoC-III (apolipoprotein C-III), ASO (antisense oligonucleotide), C (cholesterol), CAD (coronary artery disease), CVD (cardiovascular disease), FH (familial hypercholesterolemia), HDL (high-density lipoprotein), LDL (low-density lipoprotein), LOF (loss-of-function), Lp(a) (lipoprotein (a)), LPL (lipoprotein lipase), MI (myocardial infarction), PCSK9 (proprotein convertase subtilisin/kexin type 9), TG (triglyceride), TRL (triglyceride-rich lipoprotein), VLDL (very-low-density lipoprotein)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Libby P.
        • Ridker P.M.
        • Hansson G.K.
        Progress and challenges in translating the biology of atherosclerosis.
        Nature. 2011; 473: 317-325
        • Toth P.P.
        Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease.
        Vasc. Health Risk Manag. 2016; 12: 171-183
        • Reiner Z.
        Management of patients with familial hypercholesterolaemia.
        Nat. Rev. Cardiol. 2015; 12: 565-575
        • Alaupovic P.
        • Mack W.J.
        • Knight-Gibson C.
        • Hodis H.N.
        The role of triglyceride-rich lipoprotein families in the progression of atherosclerotic lesions as determined by sequential coronary angiography from a controlled clinical trial.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 715-722
        • Nordestgaard B.G.
        • Zilversmit D.B.
        Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits.
        J. Lipid Res. 1988; 29: 1491-1500
        • Rapp J.H.
        • Lespine A.
        • Hamilton R.L.
        • et al.
        Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque.
        Arterioscler. Thromb. 1994; 14: 1767-1774
        • Goldstein J.L.
        • Ho Y.K.
        • Brown M.S.
        • Innerarity T.L.
        • Mahley R.W.
        Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine beta-very low density lipoproteins.
        J. Biol. Chem. 1980; 255: 1839-1848
        • Sniderman A.D.
        • Williams K.
        • Contois J.H.
        • et al.
        A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk.
        Circ. Cardiovasc. Qual. Outcomes. 2011; 4: 337-345
        • Parhofer K.G.
        New approaches to address dyslipidemia.
        Curr. Opin. Lipidol. 2017; 28: 452-457
        • Heron M.
        • Anderson R.N.
        Changes in the leading cause of death: recent patterns in heart disease and cancer mortality.
        NCHS Data Brief. 2016; : 1-8
        • Johansen C.T.
        • Kathiresan S.
        • Hegele R.A.
        Genetic determinants of plasma triglycerides.
        J. Lipid Res. 2011; 52: 189-206
        • Klop B.
        • Elte J.W.
        • Cabezas M.C.
        Dyslipidemia in obesity: mechanisms and potential targets.
        Nutrients. 2013; 5: 1218-1240
        • Kersten S.
        Angiopoietin-like 3 in lipoprotein metabolism.
        Nat. Rev. Endocrinol. 2017; 13: 731-739
        • Taskinen M.R.
        • Boren J.
        Why is apolipoprotein CIII emerging as a novel therapeutic target to reduce the burden of cardiovascular disease?.
        Curr. Atherosclerosis Rep. 2016; 18 (59)
        • Barter P.J.
        • Rye K.A.
        Cholesteryl ester transfer protein inhibition is not yet dead–pro.
        Arterioscler. Thromb. Vasc. Biol. 2016; 36: 439-441
        • Kelly E.
        • Hemphill L.
        Lipoprotein(a): a lipoprotein whose time has come.
        Curr. Treat. Options Cardiovasc. Med. 2017; 19 (48)
        • Mattijssen F.
        • Kersten S.
        Regulation of triglyceride metabolism by Angiopoietin-like proteins.
        Biochim. Biophys. Acta. 2012; 1821: 782-789
        • Haller J.F.
        • Mintah I.J.
        • Shihanian L.M.
        • et al.
        ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance.
        J. Lipid Res. 2017; 58: 1166-1173
        • Quagliarini F.
        • Wang Y.
        • Kozlitina J.
        • et al.
        Atypical angiopoietin-like protein that regulates ANGPTL3.
        Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 19751-19756
        • Shimamura M.
        • Matsuda M.
        • Yasumo H.
        • et al.
        Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 366-372
        • Inukai K.
        • Nakashima Y.
        • Watanabe M.
        • et al.
        ANGPTL3 is increased in both insulin-deficient and -resistant diabetic states.
        Biochem. Biophys. Res. Commun. 2004; 317: 1075-1079
        • Nidhina Haridas P.A.
        • Soronen J.
        • Sadevirta S.
        • et al.
        Regulation of angiopoietin-like proteins (ANGPTLs) 3 and 8 by insulin.
        J. Clin. Endocrinol. Metab. 2015; 100: E1299-E1307
        • Musunuru K.
        • Pirruccello J.P.
        • Do R.
        • et al.
        Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia.
        N. Engl. J. Med. 2010; 363: 2220-2227
        • Fazio S.
        • Sidoli A.
        • Vivenzio A.
        • et al.
        A form of familial hypobetalipoproteinaemia not due to a mutation in the apolipoprotein B gene.
        J. Intern. Med. 1991; 229: 41-47
        • Pisciotta L.
        • Favari E.
        • Magnolo L.
        • et al.
        Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3.
        Circ. Cardiovasc. Genet. 2012; 5: 42-50
        • Martin-Campos J.M.
        • Roig R.
        • Mayoral C.
        • et al.
        Identification of a novel mutation in the ANGPTL3 gene in two families diagnosed of familial hypobetalipoproteinemia without APOB mutation.
        Clin. Chim. Acta. 2012; 413: 552-555
        • Noto D.
        • Cefalu A.B.
        • Valenti V.
        • et al.
        Prevalence of ANGPTL3 and APOB gene mutations in subjects with combined hypolipidemia.
        Arterioscler. Thromb. Vasc. Biol. 2012; 32: 805-809
        • Minicocci I.
        • Tikka A.
        • Poggiogalle E.
        • et al.
        Effects of angiopoietin-like protein 3 deficiency on postprandial lipid and lipoprotein metabolism.
        J. Lipid Res. 2016; 57: 1097-1107
        • Robciuc M.R.
        • Maranghi M.
        • Lahikainen A.
        • et al.
        Angptl3 deficiency is associated with increased insulin sensitivity, lipoprotein lipase activity, and decreased serum free fatty acids.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1706-1713
        • Xu Y.X.
        • Redon V.
        • Yu H.
        • et al.
        Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol.
        Atherosclerosis. 2018; 268: 196-206
        • Tikka A.
        • Soronen J.
        • Laurila P.P.
        • et al.
        Silencing of ANGPTL 3 (angiopoietin-like protein 3) in human hepatocytes results in decreased expression of gluconeogenic genes and reduced triacylglycerol-rich VLDL secretion upon insulin stimulation.
        Biosci. Rep. 2014; 34 (e00160)
        • Stitziel N.O.
        • Khera A.V.
        • Wang X.
        • et al.
        ANGPTL3 deficiency and protection against coronary artery disease.
        J. Am. Coll. Cardiol. 2017; 69: 2054-2063
        • Dewey F.E.
        • Gusarova V.
        • Dunbar R.L.
        • et al.
        Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease.
        N. Engl. J. Med. 2017; 377: 211-221
        • Graham M.J.
        • Lee R.G.
        • Brandt T.A.
        • et al.
        Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides.
        N. Engl. J. Med. 2017; 377: 222-232
        • Gaudet D.
        • Gipe D.A.
        • Pordy R.
        • et al.
        ANGPTL3 inhibition in homozygous familial hypercholesterolemia.
        N. Engl. J. Med. 2017; 377: 296-297
        • Kohan A.B.
        Apolipoprotein C-III: a potent modulator of hypertriglyceridemia and cardiovascular disease.
        Curr. Opin. Endocrinol. Diabetes Obes. 2015; 22: 119-125
        • Ooi E.M.
        • Barrett P.H.
        • Chan D.C.
        • Watts G.F.
        Apolipoprotein C-III: understanding an emerging cardiovascular risk factor.
        Clin. Sci. (Lond.). 2008; 114: 611-624
        • Yao Z.
        Human apolipoprotein C-III - a new intrahepatic protein factor promoting assembly and secretion of very low density lipoproteins.
        Cardiovasc. Haematol. Disord. - Drug Targets. 2012; 12: 133-140
        • Qin W.
        • Sundaram M.
        • Wang Y.
        • et al.
        Missense mutation in APOC3 within the C-terminal lipid binding domain of human ApoC-III results in impaired assembly and secretion of triacylglycerol-rich very low density lipoproteins: evidence that ApoC-III plays a major role in the formation of lipid precursors within the microsomal lumen.
        J. Biol. Chem. 2011; 286: 27769-27780
        • Sundaram M.
        • Zhong S.
        • Bou Khalil M.
        • et al.
        Functional analysis of the missense APOC3 mutation Ala23Thr associated with human hypotriglyceridemia.
        J. Lipid Res. 2010; 51: 1524-1534
        • Mendoza S.
        • Trenchevska O.
        • King S.M.
        • et al.
        Changes in low-density lipoprotein size phenotypes associate with changes in apolipoprotein C-III glycoforms after dietary interventions.
        J. Clin. Lipidol. 2017; 11 (e222): 224-233
        • Carnuta M.G.
        • Stancu C.S.
        • Toma L.
        • et al.
        Dysfunctional high-density lipoproteins have distinct composition, diminished anti-inflammatory potential and discriminate acute coronary syndrome from stable coronary artery disease patients.
        Sci. Rep. 2017; 7: 7295
        • Kawakami A.
        • Aikawa M.
        • Libby P.
        • et al.
        Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells.
        Circulation. 2006; 113: 691-700
        • Kawakami A.
        • Aikawa M.
        • Nitta N.
        • et al.
        Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 219-225
        • Dallinga-Thie G.M.
        • Kroon J.
        • Boren J.
        • Chapman M.J.
        Triglyceride-rich lipoproteins and remnants: targets for therapy?.
        Curr. Cardiol. Rep. 2016; 18 (67)
        • Norata G.D.
        • Tsimikas S.
        • Pirillo A.
        • Catapano A.L.
        Apolipoprotein C-III: from pathophysiology to pharmacology.
        Trends Pharmacol. Sci. 2015; 36: 675-687
        • Gaudet D.
        • Brisson D.
        • Tremblay K.
        • et al.
        Targeting APOC3 in the familial chylomicronemia syndrome.
        N. Engl. J. Med. 2014; 371: 2200-2206
        • Gordts P.L.S.M.
        • Nock R.
        • Son N.-H.
        • et al.
        ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors.
        J. Clin. Invest. 2016; 126: 2855-2866
        • Lee S.J.
        • Campos H.
        • Moye L.A.
        • Sacks F.M.
        LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 853-858
        • Luc G.
        • Fievet C.
        • Arveiler D.
        • et al.
        Apolipoproteins C-III and E in apoB- and non-apoB-containing lipoproteins in two populations at contrasting risk for myocardial infarction: the ECTIM study. Etude Cas Temoins sur 'Infarctus du Myocarde.
        J. Lipid Res. 1996; 37: 508-517
        • Sacks F.M.
        • Alaupovic P.
        • Moye L.A.
        • et al.
        VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial.
        Circulation. 2000; 102: 1886-1892
        • Scheffer P.G.
        • Teerlink T.
        • Dekker J.M.
        • et al.
        Increased plasma apolipoprotein C-III concentration independently predicts cardiovascular mortality: the Hoorn sstudy.
        Clin. Chem. 2008; 54: 1325-1330
        • Qamar A.
        • Khetarpal S.A.
        • Khera A.V.
        • et al.
        Plasma apolipoprotein C-III levels, triglycerides, and coronary artery calcification in type 2 diabetics.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35: 1880-1888
        • Lai C.Q.
        • Parnell L.D.
        • Ordovas J.M.
        The APOA1/C3/A4/A5 gene cluster, lipid metabolism and cardiovascular disease risk.
        Curr. Opin. Lipidol. 2005; 16: 153-166
        • Jorgensen A.B.
        • Frikke-Schmidt R.
        • Nordestgaard B.G.
        • Tybjaerg-Hansen A.
        Loss-of-function mutations in APOC3 and risk of ischemic vascular disease.
        N. Engl. J. Med. 2014; 371: 32-41
        • Pollin T.I.
        • Damcott C.M.
        • Shen H.
        • et al.
        A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection.
        Science. 2008; 322: 1702-1705
        • Tg, Hdl Working Group of the Exome Sequencing Project NHL
        • Blood I.
        • Crosby J.
        • Peloso G.M.
        • et al.
        Loss-of-function mutations in APOC3, triglycerides, and coronary disease.
        N. Engl. J. Med. 2014; 371: 22-31
        • Wyler von Ballmoos M.C.
        • Haring B.
        • Sacks F.M.
        The risk of cardiovascular events with increased apolipoprotein CIII: a systematic review and meta-analysis.
        J. Clin. Lipidol. 2015; 9: 498-510
        • Saleheen D.
        • Natarajan P.
        • Armean I.M.
        • et al.
        Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity.
        Nature. 2017; 544: 235-239
        • Dallinga-Thie G.M.
        • Berk II, P.
        • Bootsma A.H.
        • Jansen H.
        Diabetes Atorvastatin lipid intervention study G. Atorvastatin decreases apolipoprotein C-III in apolipoprotein B-containing lipoprotein and HDL in type 2 diabetes: a potential mechanism to lower plasma triglycerides.
        Diabetes Care. 2004; 27: 1358-1364
        • Karalis I.K.
        • Bergheanu S.C.
        • Wolterbeek R.
        • et al.
        Effect of increasing doses of Rosuvastatin and Atorvastatin on apolipoproteins, enzymes and lipid transfer proteins involved in lipoprotein metabolism and inflammatory parameters.
        Curr. Med. Res. Opin. 2010; 26: 2301-2313
        • Staels B.
        • Dallongeville J.
        • Auwerx J.
        • et al.
        Mechanism of action of fibrates on lipid and lipoprotein metabolism.
        Circulation. 1998; 98: 2088-2093
        • Graham M.J.
        • Lee R.G.
        • Bell 3rd, T.A.
        • et al.
        Antisense oligonucleotide inhibition of apolipoprotein C-III reduces plasma triglycerides in rodents, nonhuman primates, and humans.
        Circ. Res. 2013; 112: 1479-1490
        • Gaudet D.
        • Alexander V.J.
        • Baker B.F.
        • et al.
        Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia.
        N. Engl. J. Med. 2015; 373: 438-447
        • Schmitz J.
        • Gouni-Berthold I.
        Apoc-III antisense oligonucleotides: a new option for the treatment of hypertriglyceridemia.
        Curr. Med. Chem. 2017, Jun 8; ([Epub ahead of print])
        • Motta B.M.
        • Pramstaller P.P.
        • Hicks A.A.
        • Rossini A.
        The impact of CRISPR/Cas9 technology on cardiac research: from disease modelling to therapeutic approaches.
        Stem Cell. Int. 2017; (8960236)