Advertisement

Vascular peroxide 1 promotes ox-LDL-induced programmed necrosis in endothelial cells through a mechanism involving β-catenin signaling

      Highlights

      • Programmed necrosis occurred in ox-LDL-treated HUVECs.
      • VPO1 exerts a key role in promotion of endothelial programmed necrosis.
      • VPO1 promotes endothelial programmed necrosis through activation of β-catenin.

      Abstract

      Background and aims

      Vascular peroxidase 1 (VPO1) plays a key role in mediation of cardiovascular oxidative injury. This study aims to determine whether VPO1 can promote programmed necrosis of endothelial cells and the underlying mechanisms.

      Methods and results

      Human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL, 100 μg/mL) for 48 h to induce cell injury, which showed an elevation in cell necrosis (reflected by the increased propidium iodide (PI) positive-staining cells, LDH release and decreased cell viability), concomitant with an increase in programmed necrosis-relevant proteins including receptor-interacting protein kinase 1/3 (RIPK1/3), p-RIPK3 and mixed lineage kinase domain like (MLKL); these phenomena were attenuated by necrostatin-1(Nec-1) and RIPK3 siRNA. Meanwhile, VPO1 was up-regulated in ox-LDL-treated endothelial cells accompanied by a decrease in GSK-3β activity and p-β-catenin levels, and an elevation of β-catenin levels; these phenomena were reversed in the presence of VPO1 siRNA or hypochlorous acid (HOCl) inhibitor; replacement of ox-LDL with HOCl could also induce endothelial programmed necrosis and activate the β-catenin signaling; β-catenin inhibitor could also suppress ox-LDL-induced RIPK-dependent necrosis. In hyperlipidemic patients, the plasma level of VPO1 was obviously increased concomitant with an elevation in plasma levels of RIPK1, RIPK3 and MLKL, and they were positively correlated.

      Conclusions

      VPO1 plays an important role in promotion of endothelial programmed necrosis under hyperlipidemic conditions through activation of β-catenin signaling. It may serve as a novel therapeutic target for prevention of endothelial dysfunction in hyperlipidemia.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tabas I.
        • Garcia-Cardena G.
        • Owens G.K.
        Recent insights into the cellular biology of atherosclerosis.
        J. Cell Biol. 2015; 209: 13-22
        • Davignon J.
        • Ganz P.
        Role of endothelial dysfunction in atherosclerosis.
        Circulation. 2004; 109: III27-III32
        • Chen W.J.
        • Hu X.F.
        • Yan M.
        • Zhang W.Y.
        • Mao X.B.
        • Shu Y.W.
        Human umbilical vein endothelial cells promote the inhibitory activation of CD4(+)CD25(+)Foxp3(+) regulatory T cells via PD-L1.
        Atherosclerosis. 2016; 244: 108-112
        • Zheng J.
        • Liu B.
        • Lun Q.
        • Gu X.
        • Pan B.
        • Zhao Y.
        • Xiao W.
        • Li J.
        • Tu P.
        Longxuetongluo capsule inhibits atherosclerosis progression in high-fat diet-induced ApoE-/- mice by improving endothelial dysfunction.
        Atherosclerosis. 2016; 255: 156-163
        • Hong D.
        • Bai Y.P.
        • Gao H.C.
        • Wang X.
        • Li L.F.
        • Zhang G.G.
        • Hu C.P.
        Ox-LDL induces endothelial cell apoptosis via the LOX-1-dependent endoplasmic reticulum stress pathway.
        Atherosclerosis. 2014; 235: 310-317
        • Shan K.
        • Jiang Q.
        • Wang X.Q.
        • Wang Y.N.
        • Yang H.
        • Yao M.D.
        • Liu C.
        • Li X.M.
        • Yao J.
        • Liu B.
        • Zhang Y.Y.
        • Yan Y.J.,B.
        Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction.
        Cell Death Dis. 2016; 7 (e2248)
        • Zhang J.J.
        • Liu W.Q.
        • Peng J.J.
        • Ma Q.L.
        • Peng J.
        • Luo X.J.
        miR-21-5p/203a-3p promote ox-LDL-induced endothelial cell senescence through down-regulation of mitochondrial fission protein Drp1.
        Mech. Ageing Dev. 2017; 164: 8-19
        • Zhang Y.
        • Liu X.
        • Bai X.
        • Lin Y.
        • Li Z.
        • Fu J.
        • Li M.
        • Zhao T.
        • Yang H.
        • Xu R.
        • Li J.
        • Ju J.
        • Cai B.
        • Xu C.
        • Yang B.
        Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis.
        J. Pineal Res. 2018; 64https://doi.org/10.1111/jpi.12449
        • Ashkenazi A.
        • Salvesen G.
        Regulated cell death: signaling and mechanisms.
        Annu. Rev. Cell Dev. Biol. 2014; 30: 337-356
        • Silke J.
        • Rickard J.A.
        • Gerlic M.
        The diverse role of RIP kinases in necroptosis and inflammation.
        Nat. Immunol. 2015; 16: 689-697
        • Vanden Berghe T.
        • Linkermann A.
        • Jouan-Lanhouet S.
        • Walczak H.
        • Vandenabeele P.
        Regulated necrosis: the expanding network of non-apoptotic cell death pathways.
        Nat. Rev. Mol. Cell Biol. 2014; 15: 135-147
        • Conrad M.
        • Angeli J.P.
        • Vandenabeele P.
        • Stockwell B.R.
        Regulated necrosis: disease relevance and therapeutic opportunities.
        Nat. Rev. Drug Discov. 2016; 15: 348-366
        • Wallach D.
        • Kang T.B.
        • Dillon C.P.
        • Green D.R.
        Programmed necrosis in inflammation: toward identification of the effector molecules.
        Science. 2016; 352 (aaf2154)
        • Newton K.
        • Manning G.
        Necroptosis and inflammation.
        Annu. Rev. Biochem. 2016; 85: 743-763
        • Zhou W.
        • Yuan J.
        Necroptosis in health and diseases.
        Semin. Cell Dev. Biol. 2014; 35: 14-23
        • Jouan-Lanhouet S.
        • Riquet F.
        • Duprez L.
        • Vanden Berghe T.
        • Takahashi N.
        • Vandenabeele P.
        Necroptosis, in vivo detection in experimental disease models.
        Semin. Cell Dev. Biol. 2014; 35: 2-13
        • Zhang Z.X.
        • Gan I.
        • Pavlosky A.
        • Huang X.
        • Fuhrmann B.
        • Jevnikar A.M.
        Intracellular pH regulates TRAIL-induced apoptosis and necroptosis in endothelial cells.
        J Immunol Res. 2017; 2017: 1503960
        • Zhao W.
        • Feng H.
        • Sun W.
        • Liu K.
        • Lu J.J.
        • Chen X.
        Tert-butyl hydroperoxide (t-BHP) induced apoptosis and necroptosis in endothelial cells: roles of NOX4 and mitochondrion.
        Redox Biol. 2017; 11: 524-534
        • Lin J.
        • Li H.
        • Yang M.
        • Ren J.
        • Huang Z.
        • Han F.
        • Huang J.
        • Ma J.
        • Zhang D.
        • Zhang Z.
        • Wu J.
        • Huang D.
        • Qiao M.
        • Jin G.
        • Wu Q.
        • Huang Y.
        • Du J.
        • Han J.
        A role of RIP3-mediated macrophage necrosis in atherosclerosis development.
        Cell Rep. 2013; 3: 200-210
        • Chtourou Y.
        • Slima A.B.
        • Makni M.
        • Gdoura R.
        • Fetoui H.
        Naringenin protects cardiac hypercholesterolemia-induced oxidative stress and subsequent necroptosis in rats.
        Pharmacol. Rep. 2015; 67: 1090-1097
        • Bao L.
        • Li Y.
        • Deng S.X.
        • Landry D.
        • Tabas I.
        Sitosterol-containing lipoproteins trigger free sterol-induced caspase-independent death in ACAT-competent macrophages.
        J. Biol. Chem. 2006; 281: 33635-33649
        • Liu W.Q.
        • Zhang Y.Z.
        • Wu Y.
        • Zhang J.J.
        • Li T.B.
        • Jiang T.
        • Xiong X.M.
        • Luo X.J.
        • Ma Q.L.
        • Peng J.
        Myeloperoxidase-derived hypochlorous acid promotes ox-LDL-induced senescence of endothelial cells through a mechanism involving beta-catenin signaling in hyperlipidemia.
        Biochem. Biophys. Res. Commun. 2015; 467: 859-865
        • Matsuzawa Y.
        • Guddeti R.R.
        • Kwon T.G.
        • Lerman L.O.
        • Lerman A.
        Treating coronary disease and the impact of endothelial dysfunction.
        Prog. Cardiovasc. Dis. 2015; 57: 431-442
        • Pandey D.
        • Bhunia A.
        • Oh Y.J.
        • Chang F.
        • Bergman Y.
        • Kim J.H.
        • Serbo J.
        • Boronina T.N.
        • Cole R.N.
        • Van Eyk J.
        • Remaley A.T.
        • Berkowitz D.E.
        • Romer L.H.
        OxLDL triggers retrograde translocation of arginase2 in aortic endothelial cells via ROCK and mitochondrial processing peptidase.
        Circ. Res. 2014; 115: 450-459
        • Pothineni N.V.K.
        • Karathanasis S.K.
        • Ding Z.
        • Arulandu A.
        • Varughese K.I.
        • Mehta J.L.
        LOX-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation.
        J. Am. Coll. Cardiol. 2017; 69: 2759-2768
        • Zhang Y.
        • Qin W.
        • Zhang L.
        • Wu X.
        • Du N.
        • Hu Y.
        • Li X.
        • Shen N.
        • Xiao D.
        • Zhang H.
        • Li Z.
        • Zhang Y.
        • Yang H.
        • Gao F.
        • Du Z.
        • Xu C.
        • Yang B.
        MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis.
        Sci. Rep. 2015; 5: 9401
        • Galadari S.
        • Rahman A.
        • Pallichankandy S.
        • Thayyullathil F.
        Reactive oxygen species and cancer paradox: to promote or to suppress?.
        Free Radic. Biol. Med. 2017; 104: 144-164
        • Zhang Y.S.
        • He L.
        • Liu B.
        • Li N.S.
        • Luo X.J.
        • Hu C.P.
        • Ma Q.L.
        • Zhang G.G.
        • Li Y.J.
        • Peng J.
        A novel pathway of NADPH oxidase/vascular peroxidase 1 in mediating oxidative injury following ischemia-reperfusion.
        Basic Res. Cardiol. 2012; 107: 266
        • Yang L.
        • Bai Y.
        • Li N.
        • Hu C.
        • Peng J.
        • Cheng G.
        • Zhang G.
        • Shi R.
        Vascular VPO1 expression is related to the endothelial dysfunction in spontaneously hypertensive rats.
        Biochem. Biophys. Res. Commun. 2013; 439: 511-516
        • Liu B.
        • Luo X.J.
        • Yang Z.B.
        • Zhang J.J.
        • Li T.B.
        • Zhang X.J.
        • Ma Q.L.
        • Zhang G.G.
        • Hu C.P.
        • Peng J.
        Inhibition of NOX/VPO1 pathway and inflammatory reaction by trimethoxystilbene in prevention of cardiovascular remodeling in hypoxia-induced pulmonary hypertensive rats.
        J. Cardiovasc. Pharmacol. 2014; 63: 567-576
        • Bai Y.P.
        • Hu C.P.
        • Yuan Q.
        • Peng J.
        • Shi R.Z.
        • Yang T.L.
        • Cao Z.H.
        • Li Y.J.
        • Cheng G.
        • Zhang G.G.
        Role of VPO1, a newly identified heme-containing peroxidase, in ox-LDL induced endothelial cell apoptosis.
        Free Radic. Biol. Med. 2011; 51: 1492-1500
        • Ming M.
        • Wang S.
        • Wu W.
        • Senyuk V.
        • Le Beau M.M.
        • Nucifora G.
        • Qian Z.
        Activation of Wnt/beta-catenin protein signaling induces mitochondria-mediated apoptosis in hematopoietic progenitor cells.
        J. Biol. Chem. 2012; 287: 22683-22690
        • Kim J.H.
        • Lee S.J.
        • Kim K.W.
        • Yu Y.S.
        • Kim J.H.
        Oxidized low density lipoprotein-induced senescence of retinal pigment epithelial cells is followed by outer blood-retinal barrier dysfunction.
        Int. J. Biochem. Cell Biol. 2012; 44: 808-814
        • Demir V.
        • Doğru M.T.
        • Ede H.
        • Yilmaz S.
        • Alp C.
        • Celik Y.
        • Yildirim N.
        The effects of treatment with atorvastatin versus rosuvastatin on endothelial dysfunction in patients with hyperlipidaemia.
        Cardiovasc J Afr. 2018; 8: 1-5
        • Koh K.K.
        • Quon M.J.
        • Han S.H.
        • Lee Y.
        • Kim S.J.
        • Park J.B.
        • Shin E.K.
        Differential metabolic effects of pravastatin and simvastatin in hypercholesterolemic patients.
        Atherosclerosis. 2009; 204: 483-490