Advertisement

Role of endothelial primary cilia as fluid mechanosensors on vascular health

  • Vincent Z. Luu
    Affiliations
    Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada

    Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Biswajit Chowdhury
    Affiliations
    Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
    Search for articles by this author
  • Mohammed Al-Omran
    Affiliations
    Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada

    Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada

    Department of Surgery, University of Toronto, Toronto, Ontario, Canada

    Department of Surgery, King Saud University, Riyadh, Saudi Arabia
    Search for articles by this author
  • David A. Hess
    Affiliations
    Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada

    Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, London, Ontario, Canada

    Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
    Search for articles by this author
  • Subodh Verma
    Correspondence
    Corresponding author. Division of Cardiac Surgery, St. Michael's Hospital, 8th Floor Bond Wing, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.
    Affiliations
    Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada

    Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada

    Department of Surgery, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author

      Highlights

      • Endothelial primary cilia are mechanosensors involved in blood flow regulation.
      • Defective ciliary proteins are implicated in vascular dysfunction development.
      • Atherosclerotic plaques preferentially develop in endothelial cilia enriched sites.
      • Evidence suggests that endothelial cilia are protective of atherosclerosis.

      Abstract

      Primary cilia are microtubule-based organelles that protrude from the cell surface of many mammalian cell types, including endothelial and epithelial cells, osteoblasts, and neurons. These antennal-like projections enable cells to detect extracellular stimuli and elicit responses via intracellular signaling mechanisms. Primary cilia on endothelial cells lining blood vessels function as calcium-dependent mechanosensors that sense blood flow. In doing so, they facilitate the regulation of hemodynamic parameters within the vascular system. Defects in endothelial primary cilia result in inappropriate blood flow-induced responses and contribute to the development of vascular dysfunctions, including atherosclerosis, hypertension, and aneurysms. This review examines the current understanding of vascular endothelial cilia structure and function and their role in the vascular system. Future directions for primary cilia research and treatments for ciliary-based pathologies are discussed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mohieldin A.M.
        • Zubayer H.S.M.
        • Al Omran A.J.
        • Saternos H.C.
        • Zarban A.A.
        • Nauli S.M.
        • AbouAlaiwi W.A.
        Vascular endothelial primary cilia: mechanosensation and hypertension.
        Curr. Hypertens. Rev. 2016; 12: 57-67https://doi.org/10.2174/1573402111666150630140615
        • Davenport J.R.
        • Yoder B.K.
        An incredible decade for the primary cilium: a look at a once-forgotten organelle.
        Am. J. Physiol. Physiol. 2005; 289: F1159-F1169https://doi.org/10.1152/ajprenal.00118.2005
        • Huangfu D.
        • Liu A.
        • Rakeman A.
        • Murcia N.
        • Niswander L.
        • Anderson K.
        Hedgehog signalling in the mouse requires intraflagellar transport proteins.
        Nature. 2003; 426: 83-87https://doi.org/10.1038/nature02080.1
        • Taulman P.D.
        • Haycraft C.J.
        • Balkovetz D.F.
        • Yoder B.K.
        Polaris, a protein involved in left-right axis patterning, localizes to basal bodies and cilia.
        Mol. Biol. Cell. 2001; 12: 589-599https://doi.org/10.1091/mbc.12.3.589
        • Haycraft C.J.
        • Zhang Q.
        • Song B.
        • Jackson W.S.
        • Detloff P.J.
        • Serra R.
        • Yoder B.K.
        Intraflagellar transport is essential for endochondral bone formation.
        Development. 2007; 134: 307-316https://doi.org/10.1242/dev.02732
        • Lee J.
        • Oh D.H.
        • Park K.C.
        • Choi J.E.
        • Kwon J.B.
        • Lee J.
        • Park K.
        • Sul H.J.
        Increased primary cilia in idiopathic pulmonary fibrosis.
        Mol. Cell. 2018; 41: 224-233https://doi.org/10.14348/molcells.2018.2307
        • Andrae J.
        • Gallini R.
        • Betsholtz C.
        Role of platelet-derived growth factors in physiology and medicine.
        Genes Dev. 2008; 22: 1276-1312https://doi.org/10.1101/gad.1653708
        • Blitzer A.L.
        • Panagis L.
        • Gusella G.L.
        • Danias J.
        • Mlodzik M.
        • Iomini C.
        Primary cilia dynamics instruct tissue patterning and repair of corneal endothelium.
        Proc. Natl. Acad. Sci. Unit. States Am. 2011; 108: 2819-2824https://doi.org/10.1073/pnas.1016702108
        • Wheatley D.
        Expression of primary cilia in mammalian cells.
        Cell Biol. Int. 1996; 20: 73-81https://doi.org/10.1006/cbir.1996.0011
        • Wheatley D.N.
        Primary cilia in normal and pathological tissues.
        Pathobiology. 1995; 63: 222-238https://doi.org/10.1159/000163955
        • Badano J.L.
        • Mitsuma N.
        • Beales P.L.
        • Katsanis N.
        The ciliopathies: an emerging class of human genetic disorders.
        Annu. Rev. Genom. Hum. Genet. 2006; 7: 125-148https://doi.org/10.1146/annurev.genom.7.080505.115610
        • AbouAlaiwi W.A.
        • Takahashi M.
        • Mell B.R.
        • Jones T.J.
        • Ratnam S.
        • Kolb R.J.
        • Nauli S.M.
        Ciliary Polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades.
        Circ. Res. 2009; 104 (960–869)https://doi.org/10.3174/ajnr.A1256
        • Pazour G.J.
        • Dickert B.L.
        • Vucica Y.
        • Seeley E.S.
        • Rosenbaum J.L.
        • Witman G.B.
        • Cole D.G.
        Chlamydomonas IFT 88 and its mouse homologue, polycystic kidney disease gene Tg 737, are required for assembly of cilia and flagella.
        J. Cell Biol. 2000; 151: 709-718https://doi.org/10.1083/jcb.151.3.709
        • Wheatley D.N.
        Landmarks in the first hundred years of primary (9 + 0) cilium research.
        Cell Biol. Int. 2005; 29: 333-339https://doi.org/10.1016/j.cellbi.2005.03.001
        • Alaiwi W.A.A.
        • Lo S.T.
        • Nauli S.M.
        Primary cilia: highly sophisticated biological sensors.
        Sensors. 2009; 9: 7003-7020https://doi.org/10.3390/s90907003
        • Praetorius H.A.
        • Spring K.R.
        A physiological view of the primary cilium.
        Annu. Rev. Physiol. 2005; 67: 515-529https://doi.org/10.1146/annurev.physiol.67.040403.101353
        • Schwartz E.A.
        • Leonard M.L.
        • Bizios R.
        • Bowser S.S.
        Analysis bending and modeling of the primary response to fluid shear cilium.
        Am. J. Physiol. Physiol. 2012; 272: 132-138https://doi.org/10.1152/ajprenal.1997.272.1.F132
        • Poole C.A.
        • Jensen C.G.
        • Snyder J.A.
        • Gray C.G.
        • Hermanutz V.L.
        • Wheatley D.N.
        Confocal analysis of primary cilia structure and colocalization with the Golgi aparatus in chondrocytes and aortic smooth muscle cells.
        Cell Biol. Int. 1997; 21: 483-494https://doi.org/10.1006/cbir.1997.0177
        • Jensen C.G.
        • Poole C.A.
        • McGlashan S.R.
        • Marko M.
        • Issa Z.I.
        • Vujcich K.V.
        • Bowser S.S.
        Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ.
        Cell Biol. Int. 2004; 28: 101-110https://doi.org/10.1016/j.cellbi.2003.11.007
        • Whitfield J.F.
        Primary cilium - is it an osteocyte's strain-sensing flowmeter?.
        J. Cell. Biochem. 2003; 89: 233-237https://doi.org/10.1002/jcb.10509
        • Apfeld J.
        • Kenyon C.
        Regulation of lifespan by sensory perception in Caenorhabditis elegans.
        Nature. 1999; 402: 804-809https://doi.org/10.1038/45544
        • Händela M.
        • Schulza S.
        • Stanariusb A.
        • Schreffa M.
        • Erdtmann-Vourliotisa M.
        • Schmidta H.
        • Wolfb G.
        • Höllta V.
        Selective targeting of somatostatin receptor 3 to neuronal cilia.
        Neuroscience. 1999; 89: 909-926https://doi.org/10.1016/S0306-4522(98)00354-6
        • Brailov I.
        • Bancila M.
        • Brisorgueil M.J.
        • Miquel M.C.
        • Hamon M.
        • Vergé D.
        Localization of 5-HT6 receptors at the plasma membrane of neuronal cilia in the rat brain.
        Brain Res. 2000; 872: 271-275https://doi.org/10.1016/S0006-8993(00)02519-1
        • Wang C.
        • Tsai H.
        • Syu J.
        • Chen T.
        Primary cilium-regulated EG-VEGF signaling facilitates trophoblast invasion.
        J. Cell. Physiol. 2017; 232: 1467-1477https://doi.org/10.1002/jcp.25649
        • Praetorius H.A.
        • Spring K.R.
        Bending the MDCK cell primary cilium increases intracellular calcium.
        J. Membr. Biol. 2001; 184: 71-79https://doi.org/10.1007/s00232-001-0075-4
        • Yoder B.K.
        Role of primary cilia in the pathogenesis of polycystic kidney disease.
        J. Am. Soc. Nephrol. 2007; 18: 1381-1388https://doi.org/10.1681/ASN.2006111215
        • Sherpa R.T.
        • Atkinson K.F.
        • Ferreira V.P.
        • Nauli S.M.
        Rapamycin increases length and mechanosensory function of primary cilia in renal epithelial and vascular endothelial cells.
        Int. Educ. Res. J. 2016; 2: 91-97
        • Veland I.R.
        • Awan A.
        • Pedersen L.B.
        • Yoder B.K.
        • Christensen S.T.
        Primary cilia and signaling pathways in mammalian development, health and disease.
        Nephron. Physiol. 2009; 111: 39-53https://doi.org/10.1159/000208212
        • Morgan D.
        • Eley L.
        • Sayer J.
        • Strachan T.
        • Yates L.M.
        • Craighead A.S.
        • Goodship J.A.
        Expression analyses and interaction with the anaphase promoting complex protein Apc2 suggest a role for inversin in primary cilia and involvement in the cell cycle.
        Hum. Mol. Genet. 2002; 11: 3345-3350https://doi.org/10.1093/hmg/11.26.3345
        • Egorova A.D.
        • Khedoe P.P.S.J.
        • Goumans M.J.T.H.
        • Yoder B.K.
        • Nauli S.M.
        • Ten Dijke P.
        • Poelmann R.E.
        • Hierck B.P.
        Lack of primary cilia primes shear-induced endothelial-to-mesenchymal transition.
        Circ. Res. 2011; 108: 1093-1101https://doi.org/10.1161/CIRCRESAHA.110.231860
        • Patschan D.
        • Schwarze K.
        • Henze E.
        • Patschan S.
        • Muller G.A.
        Endothelial-to-Mesenchymal Transition and endothelial cilia in EPC-mediated postischemic kidney protection.
        Am. J. Physiol. Ren. Physiol. 2016; (ajprenal 00306 2015)https://doi.org/10.1152/ajprenal.00306.2015
        • Egorova A.D.
        • van der Heiden K.
        • Poelmann R.E.
        • Hierck B.P.
        Primary cilia as biomechanical sensors in regulating endothelial function.
        Differentiation. 2012; 83: S56-S61https://doi.org/10.1016/j.diff.2011.11.007
        • Dinsmore C.
        • Reiter J.F.
        Endothelial primary cilia inhibit atherosclerosis.
        EMBO Rep. 2016; 17: 156-166https://doi.org/10.15252/embr.201541019
        • Chen X.
        • Gays D.
        • Milia C.
        • Santoro M.M.
        • Chen X.
        • Gays D.
        • Milia C.
        • Santoro M.M.
        Cilia control vascular mural cell recruitment in vertebrates.
        Cell Rep. 2017; 18: 1033-1047https://doi.org/10.1016/j.celrep.2016.12.044
        • Ando J.
        • Yamamoto K.
        Flow detection and calcium signalling in vascular endothelial cells.
        Cardiovasc. Res. 2013; 99: 260-268https://doi.org/10.1093/cvr/cvt084
        • Wanner A.
        • Salathe M.
        • Riordan T.G.O.
        Mucociliary clearance in the airways.
        Am. J. Respir. Crit. Care Med. 1996; 154: 1868-1902https://doi.org/10.1164/ajrccm.154.6.8970383
        • Nonaka S.
        • Tanaka Y.
        • Okada Y.
        • Takeda S.
        • Harada A.
        • Kanai Y.
        • Kido M.
        • Hirokawa N.
        Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein.
        Cell. 1998; 95: 829-837https://doi.org/10.1016/S0092-8674(00)81705-5
        • Szymanska K.
        • Johnson C.A.
        The transition zone: an essential functional compartment of cilia.
        Cilia. 2012; 1https://doi.org/10.1186/2046-2530-1-10
        • Singla V.
        • Reiter J.F.
        The primary cilium as the Cell's antenna: signaling at a sensory organelle.
        Science. 2006; 313: 629-633https://doi.org/10.1126/science.1124534
        • Hierck B.P.
        • Van Der Heiden K.
        • Alkemade F.E.
        • Van De Pas S.
        • Van Thienen J.V.
        • Groenendijk B.C.W.
        • Bax W.H.
        • Van Der Laarse A.
        • DeRuiter M.C.
        • Horrevoets A.J.G.
        • Poelmann R.E.
        Primary cilia sensitize endothelial cells for fluid shear stress.
        Dev. Dynam. 2008; 237: 725-735https://doi.org/10.1002/dvdy.21472
        • Chien A.
        • Shih S.M.
        • Bower R.
        • Tritschler D.
        • Porter M.E.
        • Yildiz A.
        Dynamics of the IFT machinery at the ciliary tip.
        Elife. 2017; 6: 1-25https://doi.org/10.7554/eLife.28606
        • Corbit K.C.
        • Aanstad P.
        • Singla V.
        • Norman A.R.
        • Stainier D.Y.R.
        • Reiter J.F.
        Vertebrate Smoothened functions at the primary cilium.
        Nature. 2005; 437: 1018-1021https://doi.org/10.1038/nature04117
        • Kozminski K.G.
        • Johnson K.A.
        • Forscher P.
        • Rosenbaum J.L.
        A motility in the eukaryotic flagellum unrelated to flagellar beating.
        Proc. Natl. Acad. Sci. Unit. States Am. 1993; 90: 5519-5523https://doi.org/10.1073/pnas.90.12.5519
        • Nauli S.M.
        • Haymour H.S.
        • AbouAlaiwi W.A.
        • Lo S.T.
        • Nauli A.M.
        Primary cilia are mechanosensory organelles in vestibular tissues.
        in: Mechanosensitivity and Mechanotransduction. 2010: 191-197https://doi.org/10.1007/978-90-481-9881-8_14
        • Cole D.G.
        • Diener D.R.
        • Himelblau A.L.
        • Beech P.L.
        • Fuster J.C.
        • Rosenbaum J.L.
        Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons.
        J. Cell Biol. 1998; 141: 993-1008https://doi.org/10.1083/jcb.141.4.993
        • Ravichandran K.
        • Edelstein C.L.
        Polycystic kidney disease: a case of suppressed autophagy?.
        Semin. Nephrol. 2014; 34: 27-33https://doi.org/10.1016/j.semnephrol.2013.11.005
        • Robert A.
        • Margall-Ducos G.
        • Guidotti J.-E.
        • Bregerie O.
        • Celati C.
        • Brechot C.
        • Desdouets C.
        The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells.
        J. Cell Sci. 2006; 120: 628-637https://doi.org/10.1242/jcs.03422
        • Qin H.
        • Wang Z.
        • Diener D.
        • Rosenbaum J.
        Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control.
        Curr. Biol. 2007; 17: 193-202https://doi.org/10.1016/j.cub.2006.12.040
        • Snow J.J.
        • Ou G.
        • Gunnarson A.L.
        • Walker M.R.S.
        • Zhou H.M.
        • Brust-Mascher I.
        • Scholey J.M.
        Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons.
        Nat. Cell Biol. 2004; 6: 1109-1113https://doi.org/10.1038/ncb1186
        • Scholey J.M.
        Kinesin-II, a membrane traffic motor in axons, axonemes, and spindles.
        J. Cell Biol. 1996; 133: 1-4https://doi.org/10.1083/jcb.133.1.1
        • Schafer J.C.
        • Haycraft C.J.
        • Thomas J.H.
        • Yoder B.K.
        • Swoboda P.
        XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans.
        Mol. Biol. Cell. 2003; 14: 2372-2384https://doi.org/10.1091/mbc.E02-10-0677
        • Nauli S.M.
        • Kawanabe Y.
        Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through Polycystin-1.
        Circ. Res. 2008; 117: 1161-1171https://doi.org/10.1161/CIRCULATIONAHA.107.710111
        • Kim K.
        • Drummond I.
        • Ibraghimov-Beskrovnaya O.
        • Klinger K.
        • Arnaout M.A.
        Polycystin 1 is required for the structural integrity of blood vessels.
        Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 1731-1736https://doi.org/10.1073/pnas.040550097
        • Burtey S.
        • Riera M.
        • Ribe É.
        • Pennenkamp P.
        • Rance R.
        • Luciani J.
        • Dworniczak B.
        • Mattei M.G.
        • Fontés M.
        Centrosome overduplication and mitotic instability in PKD2 transgenic lines.
        Cell Biol. Int. 2008; 32: 1193-1198https://doi.org/10.1016/j.cellbi.2008.07.021
        • Yamaguchi T.
        • Wallace D.P.
        • Magenheimer B.S.
        • Hempson S.J.
        • Grantham J.J.
        • Calvet J.P.
        Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype.
        J. Biol. Chem. 2004; 279: 40419-40430https://doi.org/10.1074/jbc.M405079200
        • Yamamoto K.
        • Sokabe T.
        • Ohura N.
        • Nakatsuka H.
        • Kamiya A.
        • Ando J.
        Endogenously released ATP mediates shear stress-induced Ca 2 + influx into pulmonary artery endothelial cells.
        Am. J. Physiol. Heart Circ. Physiol. 2003; 285: H793-H803https://doi.org/10.1152/ajpheart.01155.2002
        • Hateboer N.
        • Veldhuisen B.
        • Peters D.
        • Breuning M.H.
        • San-Millán J.L.
        • Bogdanova N.
        • Coto E.
        • Dijk M.A.V.
        • Afzal A.R.
        • Jeffery S.
        • Saggar-Malik A.K.
        • Torra R.
        • Dimitrakov D.
        • Martinez I.
        • De Castro S.S.
        • Krawczak M.
        • Ravine D.
        Location of mutations within the PKD2 gene influences clinical outcome.
        Kidney Int. 2000; 57: 1444-1451https://doi.org/10.1046/j.1523-1755.2000.00989.x
        • Beyer A.M.
        • Guo D.-F.
        • Sheffield V.C.
        • Rahmouni K.
        Contrasting vascular effects caused by loss of Bardet-Biedl syndrome genes.
        Am. J. Physiol. Heart Circ. Physiol. 2010; 299: H1902-H1907https://doi.org/10.1152/ajpheart.00336.2010
        • Yen H.J.
        • Tayeh M.K.
        • Mullins R.F.
        • Stone E.M.
        • Sheffield V.C.
        • Slusarski D.C.
        Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function.
        Hum. Mol. Genet. 2006; 15: 667-677https://doi.org/10.1093/hmg/ddi468
        • Kim J.C.
        • Badano J.L.
        • Sibold S.
        • Esmail M.A.
        • Hill J.
        • Hoskins B.E.
        • Leitch C.C.
        • Venner K.
        • Ansley S.J.
        • Ross A.J.
        • Leroux M.R.
        • Katsanis N.
        • Beales P.L.
        The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression.
        Nat. Genet. 2004; 36: 462-470https://doi.org/10.1038/ng1352
        • Nachury M.V.
        • Loktev A.V.
        • Zhang Q.
        • Westlake C.J.
        • Peränen J.
        • Merdes A.
        • Slusarski D.C.
        • Scheller R.H.
        • Bazan J.F.
        • Sheffield V.C.
        • Jackson P.K.
        A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis.
        Cell. 2007; 129: 1201-1213https://doi.org/10.1016/j.cell.2007.03.053
        • Rahmouni K.
        • Fath M.A.
        • Seo S.
        • Thedens D.R.
        • Berry C.J.
        • Weiss R.
        • Nishimura D.Y.
        • Sheffield V.C.
        Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome.
        J. Clin. Invest. 2008; 118: 1458-1467https://doi.org/10.1172/JCI32357
        • Van der Heiden K.
        • Hierck B.P.
        • Krams R.
        • de Crom R.
        • Cheng C.
        • Baiker M.
        • Pourquie M.J.B.M.
        • Alkemade F.E.
        • DeRuiter M.C.
        • Gittenberger-de Groot A.C.
        • Poelmann R.E.
        Endothelial primary cilia in areas of disturbed flow are at the base of atherosclerosis.
        Atherosclerosis. 2008; 196: 542-550https://doi.org/10.1016/j.atherosclerosis.2007.05.030
        • Vion A.C.
        • Alt S.
        • Bergmann A.K.
        • Szymborska A.
        • Zheng T.
        • Perovic T.
        Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression.
        J. Cell Biol. pii. 2018; (jcb.201706151)https://doi.org/10.1083/jcb.201706151
        • Iomini C.
        • Tejada K.
        • Mo W.
        • Vaananen H.
        • Piperno G.
        Primary cilia of human endothelial cells disassemble under laminar shear stress.
        J. Cell Biol. 2004; 164: 811-817https://doi.org/10.1083/jcb.200312133
        • Luo N.
        • Conwell M.D.
        • Chen X.
        • Kettenhofen C.I.
        • Westlake C.J.
        • Cantor L.B.
        • Wells C.D.
        • Weinreb R.N.
        • Corson T.W.
        • Spandau D.F.
        • Joos K.M.
        • Iomini C.
        • Obukhov A.G.
        • Sun Y.
        Primary cilia signaling mediates intraocular pressure sensation.
        Proc. Natl. Acad. Sci. Unit. States Am. 2014; 111: 12871-12876https://doi.org/10.1073/pnas.1323292111
        • Poelmann R.E.
        • Van Der Heiden K.
        • Gittenberger-De Groot A.
        • Hierck B.P.
        Deciphering the endothelial shear stress sensor.
        Circulation. 2008; 117: 1124-1126https://doi.org/10.1161/CIRCULATIONAHA.107.753889
        • Zeng C.
        • Armando I.
        • Luo Y.
        • Eisner G.M.
        • Felder R.A.
        • Jose P.A.
        Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice.
        Am. J. Physiol. Heart Circ. Physiol. 2008; 294: H551-H569https://doi.org/10.1152/ajpheart.01036.2007
        • Abdul-Majeed S.
        • Nauli S.M.
        Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles.
        Hypertension. 2011; 58: 325-331https://doi.org/10.1161/HYPERTENSIONAHA.111.172080
        • Kathem S.H.
        • Mohieldin A.M.
        • Abdul-Majeed S.
        • Ismail S.H.
        • Altaei Q.H.
        • Alshimmari I.K.
        • Alsaidi M.M.
        • Khammas H.
        • Nauli A.M.
        • Joe B.
        • Nauli S.M.
        Ciliotherapy: a novel intervention in polycystic kidney disease.
        J. Geriatr. Cardiol. 2014; 11: 63-73https://doi.org/10.3969/j.issn.1671-5411.2014.01.001
        • Johns D.W.
        • Ayers C.R.
        • Carey R.M.
        The dopamine agonist bromocriptine induces hypotension by venous and arteriolar dilation.
        J. Cardiovasc. Pharmacol. 1984; 6: 582-587https://doi.org/10.1097/00005344-198407000-00005
        • Ohlstein E.H.
        • Zabko-Potapovich B.
        • Berkowitz B.A.
        Studies on vascular dopamine receptors with the dopamine receptor agonist.
        J. Pharmacol. Exp. Therapeut. 1984; 229: 433-439
        • Muizert Y.
        • Florijn K.W.
        • Chang P.C.
        • Barendregt J.N.
        Borderline hypertensive autosomal dominant polycystic kidney disease patients have enhanced production of renal dopamine: normalization of renal haemodynamics by DOPA infusion.
        Nephrol. Dial. Transplant. 1995; 10: 1332-1341https://doi.org/10.1093/oxfordjournals.ndt.a091324
        • Tkachenko E.
        • Gutierrez E.
        • Saikin S.K.
        • Fogelstrand P.
        • Kim C.
        • Groisman A.
        • Ginsberg M.H.
        The nucleus of endothelial cell as a sensor of blood flow direction.
        Biol. Open. 2013; 2: 1007-1012https://doi.org/10.1242/bio.20134622
        • Rabelink T.J.
        • Luscher T.F.
        Endothelial nitric oxide synthase: host defense enzyme of the endothelium?.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 267-271https://doi.org/10.1161/01.ATV.0000196554.85799.77
        • Kawashima S.
        • Yokoyama M.
        Dysfunction of endothelial nitric oxide synthase and atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2004; 24: 998-1005https://doi.org/10.1161/01.ATV.0000125114.88079.96
        • Cunningham K.S.
        • Gotlieb A.I.
        The role of shear stress in the pathogenesis of atherosclerosis.
        Lab. Invest. 2005; 85: 9-23https://doi.org/10.1038/labinvest.3700215
        • Dudzinski D.M.
        • Michel T.
        Life history of eNOS: partners and pathways.
        Cardiovasc. Res. 2007; 75: 247-260https://doi.org/10.1016/j.cardiores.2007.03.023
        • Dummer A.
        • Rol N.
        • Szulcek R.
        • Kurakula K.
        Endothelial dysfunction in Pulmonary Arterial Hypertension : loss of cilia length regulation upon cytokine stimulation.
        Pulm. Circ. 2018; 8 (2045894018764629)https://doi.org/10.1177/2045894018764629
        • Chapman A.B.
        • Stepniakowski K.
        • Rahbari-Oskoui F.
        Hypertension in autosomal dominant polycystic kidney disease.
        Adv. Chron. Kidney Dis. 2010; 17: 153-163https://doi.org/10.1053/j.ackd.2010.01.001
        • Dolan J.M.
        • Meng H.
        • Singh S.
        • Paluch R.
        • Kolega J.
        High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment.
        Ann. Biomed. Eng. 2011; 39: 1620-1631https://doi.org/10.1007/s10439-011-0267-8
        • Ecder T.
        • Schrier R.W.
        Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease.
        Nat. Rev. Nephrol. 2009; 5: 221-228https://doi.org/10.1038/nrneph.2009.13
        • AbouAlaiwi W.A.
        • Ratnam S.
        • Booth R.L.
        • Shah J.V.
        • Nauli S.M.
        Endothelial cells from humans and mice with polycystic kidney disease are characterized by polyploidy and chromosome segregation defects through survivin down-regulation.
        Hum. Mol. Genet. 2011; 20: 354-367https://doi.org/10.1093/hmg/ddq470
        • Mcpherson E.A.
        • Luo Z.
        • Brown R.A.
        • Lebard L.S.
        • Corless C.C.
        • Speth R.C.
        • Bagby S.P.
        Chymase-like angiotensin II-generating activity in end-stage human autosomal dominant polycystic kidney disease.
        J. Am. Soc. Nephrol. 2004; 15: 493-500https://doi.org/10.1097/01.ASN.0000109782.28991.26
        • Wang D.
        • Strandgaard S.
        • Borresen M.L.
        • Luo Z.
        • Connors S.G.
        • Yan Q.
        • Wilcox C.S.
        Asymmetric Dimethylarginine and lipid peroxidation products in early autosomal dominant polycystic kidney disease.
        Am. J. Kidney Dis. 2008; 51: 184-191https://doi.org/10.1053/j.ajkd.2007.09.020
        • Florijin K.W.
        • Chang P.C.
        • van Der Woude F.J.
        • van Bockel J.H.
        • van Saase J.L.C.M.
        Long-term cardiovascular morbidity and mortality in autosomal dominant polycystic kidney disease patients after renal transplantation.
        Transplantation. 1994; 57: 73-81https://doi.org/10.1097/00007890-199401000-00014
        • Collin S.P.
        • Collin H.B.
        Primary cilia in vertebrate corneal endothelial cells.
        Cell Biol. Int. 2004; 28: 125-130https://doi.org/10.1016/j.cellbi.2003.11.011
        • Zhang X.
        • Jefferson A.B.
        • Auethavekiat V.
        • Majerus P.W.
        The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase.
        Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 4853-4856https://doi.org/10.1073/pnas.92.11.4853
        • Luo N.
        • Kumar A.
        • Conwell M.
        • Weinreb R.N.
        • Anderson R.
        • Sun Y.
        Compensatory role of inositol 5-phosphatase INPP5B to OCRL in primary cilia formation in oculocerebrorenal syndrome of Lowe.
        PLoS One. 2013; 8https://doi.org/10.1371/journal.pone.0066727
        • Schrier R.W.
        • Abebe K.Z.
        • Perrone R.D.
        • Torres V.E.
        • Braun W.E.
        • Steinman T.I.
        • Winklhofer F.T.
        • Brosnahan G.
        • Czarnecki P.G.
        • Hogan M.C.
        • Miskulin D.C.
        • Rahbari-Oskoui F.F.
        • Grantham J.J.
        • Harris P.C.
        • Flessner M.F.
        • Bae K.T.
        • Moore C.G.
        • Chapman A.B.
        Blood pressure in early autosomal dominant polycystic kidney disease.
        N. Engl. J. Med. 2014; 371: 2255-2266https://doi.org/10.1056/NEJMoa1402685
        • Patch C.
        • Charlton J.
        • Roderick P.J.
        • Gulliford M.C.
        Use of antihypertensive medications and mortality of patients with autosomal dominant polycystic kidney disease: a population-based study.
        Am. J. Kidney Dis. 2011; 57: 856-862https://doi.org/10.1053/j.ajkd.2011.01.023
        • Ecder T.
        • Chapman A.B.
        • Brosnahan G.M.
        • Edelstein C.L.
        • Johnson A.M.
        • Schrier R.W.
        Effect of antihypertensive therapy on renal function and urinary albumin excretion in hypertensive patients with autosomal dominant polycystic kidney disease.
        Am. J. Kidney Dis. 2000; 35: 427-432https://doi.org/10.1016/S0272-6386(00)70195-8
        • Gopalakrishnan K.
        • Kumarasamy S.
        • Abdul-Majeed S.
        • Kalinoski A.L.
        • Morgan E.E.
        • Gohara A.F.
        • Nauli S.M.
        • Filipiak W.E.
        • Saunders T.L.
        • Joe B.
        Targeted disruption of Adamts16 gene in a rat genetic model of hypertension.
        Proc. Natl. Acad. Sci. Unit. States Am. 2012; 109: 20555-20559https://doi.org/10.1073/pnas.1211290109
        • Prasad R.M.
        • Jin X.
        • Aboualaiwi W.A.
        • Nauli S.M.
        Real-time vascular mechanosensation through ex vivo artery perfusion.
        Biol. Proced. Online. 2014; 16: 1-7https://doi.org/10.1186/1480-9222-16-6
        • Geerts W.J.C.
        • Vocking K.
        • Schoonen N.
        • Haarbosch L.
        • van Donselaar E.G.
        • Regan-Klapisz E.
        • Post J.A.
        Cobblestone HUVECs: a human model system for studying primary ciliogenesis.
        J. Struct. Biol. 2011; 176: 350-359https://doi.org/10.1016/j.jsb.2011.09.013
        • Camaré C.
        • Pucelle M.
        • Nègre-salvayre A.
        • Salvayre R.
        Angiogenesis in the atherosclerotic plaque.
        Redox Biol. 2017; 12: 18-34https://doi.org/10.1016/j.redox.2017.01.007