Advertisement

CKD, arterial calcification, atherosclerosis and bone health: Inter-relationships and controversies

      Highlights

      • Mineral bone disease is a common complication of chronic kidney disease (CKD).
      • Hypocalcemia, hyperphosphatemia, secondary hyperparathyroidism (SHPT) occur.
      • Complication of CKD is atherosclerosis and vascular calcification.
      • Vascular calcification is predicator of cardiovascular mortality among CKD patients.
      • Current treatment strategies consist of controlling mineral disturbances.

      Abstract

      Mineral bone disease (MBD) is a common complication of chronic kidney disease (CKD) characterized by disruption of normal mineral homeostasis within the body. One or more of the following may occur: hypocalcemia, hyperphosphatemia, secondary hyperparathyroidism (SHPT), decreased vitamin D and vascular calcification (VC). The greater the decrease in renal function, the worse the progression of CKD-MBD. These abnormalities may lead to bone loss, osteoporosis and fractures. CKD-MBD is a major contributor to the high morbidity and mortality among patients with CKD. Another well-known complication of CKD is cardiovascular disease (CVD) caused by increased atherosclerosis and VC. CVD is the leading cause of morbidity and mortality in CKD patients. VC is linked to reduced arterial compliance that may lead to widened pulse pressure and impaired cardiovascular function. VC is a strong predicator of cardiovascular mortality among patients with CKD. Elevated phosphorus levels and increased calcium-phosphorus product promote VC. Controlling mineral disturbances such as hyperphosphatemia and SHPT is still considered among the current strategies for treatment of VC in CKD through restriction of calcium based phosphate binders in hyperphosphatemic patients across all severities of CKD along with dietary phosphate restriction and use of calciminetics. Additionally, Vitamin D insufficiency is common in CKD and dialysis patients. The causes are multifactorial and a serious consequence is SHPT. Vitamin D compounds remain the first-line therapy for prevention and treatment of SHPT in CKD. Vitamin D may also have atheroprotective effects on the arterial wall, but clinical studies do not show clear evidence of reduced cardiovascular mortality with vitamin D administration. This review discusses the issues surrounding CKD-MBD, cardiovascular disease and approaches to treatment.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Coresh J.
        Update on the burden of CKD.
        J. Am. Soc. Nephrol. 2017; 28: 1020-1022
        • Collaborators GMaCoD
        Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.
        Lancet. 2015; 385: 117-171
        • Hsu R.K.
        • Powe N.R.
        Recent trends in the prevalence of chronic kidney disease: not the same old song.
        Curr. Opin. Nephrol. Hypertens. 2017; 26: 187-196
        • Dharmarajan S.H.
        • Bragg-Gresham J.L.
        • Morgenstern H.
        • et al.
        State-level awareness of chronic kidney disease in the U.S.
        Am. J. Prev. Med. 2017; 53: 300-307
        • Murphy D.
        • McCulloch C.E.
        • Lin F.
        • et al.
        Trends in prevalence of chronic kidney disease in the United States.
        Ann. Intern. Med. 2016; 165: 473-481
        • Go A.S.
        • Chertow G.M.
        • Fan D.
        • McCulloch C.E.
        • Hsu C.Y.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N. Engl. J. Med. 2004; 351: 1296-1305
        • Moe S.
        • Drüeke T.
        • Cunningham J.
        • et al.
        Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO).
        Kidney Int. 2006; 69: 1945-1953
        • Graciolli F.G.
        • Neves K.R.
        • Barreto F.
        • et al.
        The complexity of chronic kidney disease-mineral and bone disorder across stages of chronic kidney disease.
        Kidney Int. 2017; 91: 1436-1446
        • Isakova T.
        • Wahl P.
        • Vargas G.S.
        • et al.
        Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease.
        Kidney Int. 2011; 79: 1370-1378
        • Perwad F.
        • Zhang M.Y.
        • Tenenhouse H.S.
        • Portale A.A.
        Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1 alpha-hydroxylase expression in vitro.
        Am. J. Physiol. Ren. Physiol. 2007; 293: F1577-F1583
        • Larsson T.
        • Nisbeth U.
        • Ljunggren O.
        • Jüppner H.
        • Jonsson K.B.
        Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers.
        Kidney Int. 2003; 64: 2272-2279
        • Kuro-o M.
        Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism.
        Curr. Opin. Nephrol. Hypertens. 2006; 15: 437-441
        • Andress D.L.
        Vitamin D in chronic kidney disease: a systemic role for selective vitamin D receptor activation.
        Kidney Int. 2006; 69: 33-43
        • Saliba W.
        • El-Haddad B.
        Secondary hyperparathyroidism: pathophysiology and treatment.
        J. Am. Board Fam. Med. 2009; 22: 574-581
        • Joy M.S.
        • Karagiannis P.C.
        • Peyerl F.W.
        Outcomes of secondary hyperparathyroidism in chronic kidney disease and the direct costs of treatment.
        J. Manag. Care Pharm. 2007; 13: 397-411
        • Kates D.M.
        • Sherrard D.J.
        • Andress D.L.
        Evidence that serum phosphate is independently associated with serum PTH in patients with chronic renal failure.
        Am. J. Kidney Dis. 1997; 30: 809-813
        • Almaden Y.
        • Canalejo A.
        • Hernandez A.
        • et al.
        Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro.
        J. Bone Miner. Res. 1996; 11: 970-976
        • Slatopolsky E.
        • Finch J.
        • Denda M.
        • et al.
        Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro.
        J. Clin. Invest. 1996; 97: 2534-2540
        • Evenepoel P.
        • Bover J.
        • Ureña Torres P.
        Parathyroid hormone metabolism and signaling in health and chronic kidney disease.
        Kidney Int. 2016; 90: 1184-1190
        • Elder G.
        Pathophysiology and recent advances in the management of renal osteodystrophy.
        J. Bone Miner. Res. 2002; 17: 2094-2105
        • Brandenburg V.M.
        • Floege J.
        Adynamic bone disease-bone and beyond.
        NDT Plus. 2008; 1: 135-147
        • Andress D.L.
        Adynamic bone in patients with chronic kidney disease.
        Kidney Int. 2008; 73: 1345-1354
        • Sprague S.M.
        • Bellorin-Font E.
        • Jorgetti V.
        • et al.
        Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis.
        Am. J. Kidney Dis. 2016; 67: 559-566
        • Naylor K.L.
        • McArthur E.
        • Leslie W.D.
        • et al.
        The three-year incidence of fracture in chronic kidney disease.
        Kidney Int. 2014; 86: 810-818
        • Kim S.M.
        • Long J.
        • Montez-Rath M.
        • Leonard M.
        • Chertow G.M.
        Hip fracture in patients with non-dialysis-requiring chronic kidney disease.
        J. Bone Miner. Res. 2016; 31: 1803-1809
        • Fusaro M.
        • Gallieni M.
        • Jamal S.A.
        Fractures in chronic kidney disease: neglected, common, and associated with sickness and death.
        Kidney Int. 2014; 85: 20-22
        • Tentori F.
        • McCullough K.
        • Kilpatrick R.D.
        • et al.
        High rates of death and hospitalization follow bone fracture among hemodialysis patients.
        Kidney Int. 2014; 85: 166-173
        • Alem A.M.
        • Sherrard D.J.
        • Gillen D.L.
        • et al.
        Increased risk of hip fracture among patients with end-stage renal disease.
        Kidney Int. 2000; 58: 396-399
      1. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int. Suppl.7(1):1-59.

        • Razzaque M.S.
        Osteo-renal regulation of systemic phosphate metabolism.
        IUBMB Life. 2011; 63: 240-247
        • Evenepoel P.
        • Rodriguez M.
        • Ketteler M.
        Laboratory abnormalities in CKD-MBD: markers, predictors, or mediators of disease?.
        Semin. Nephrol. 2014; 34: 151-163
        • O'Neill W.C.
        Targeting serum calcium in chronic kidney disease and end-stage renal disease: is normal too high?.
        Kidney Int. 2016; 89: 40-45
        • Levin A.
        • Bakris G.L.
        • Molitch M.
        • et al.
        Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease.
        Kidney Int. 2007; 71: 31-38
        • Taliercio J.J.
        • Schold J.D.
        • Simon J.F.
        • et al.
        Prognostic importance of serum alkaline phosphatase in CKD stages 3-4 in a clinical population.
        Am. J. Kidney Dis. 2013; 62: 703-710
        • Sardiwal S.
        • Magnusson P.
        • Goldsmith D.J.
        • Lamb E.J.
        Bone alkaline phosphatase in CKD-mineral bone disorder.
        Am. J. Kidney Dis. 2013; 62: 810-822
        • de Zeeuw D.
        • Hillege H.L.
        • de Jong P.E.
        The kidney, a cardiovascular risk marker, and a new target for therapy.
        Kidney Int. Suppl. 2005; : S25-S29
        • Shlipak M.G.
        • Fried L.F.
        • Cushman M.
        • et al.
        Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors.
        J. Am. Med. Assoc. 2005; 293: 1737-1745
        • Minutolo R.
        • Agarwal R.
        • Borrelli S.
        • et al.
        Prognostic role of ambulatory blood pressure measurement in patients with nondialysis chronic kidney disease.
        Arch. Intern. Med. 2011; 171: 1090-1098
        • Gansevoort R.T.
        • Correa-Rotter R.
        • Hemmelgarn B.R.
        • et al.
        Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention.
        Lancet. 2013; 382: 339-352
        • Gracia M.
        • Betriu À.
        • Martínez-Alonso M.
        • et al.
        Predictors of subclinical atheromatosis progression over 2 Years in patients with different stages of CKD.
        Clin. J. Am. Soc. Nephrol. 2016; 11: 287-296
        • Fox C.S.
        • Muntner P.
        • Chen A.Y.
        • et al.
        Use of evidence-based therapies in short-term outcomes of ST-segment elevation myocardial infarction and non-ST-segment elevation myocardial infarction in patients with chronic kidney disease: a report from the National Cardiovascular Data Acute Coronary Treatment and Intervention Outcomes Network registry.
        Circulation. 2010; 121: 357-365
        • Mehran R.
        • Nikolsky E.
        • Lansky A.J.
        • et al.
        Impact of chronic kidney disease on early (30-day) and late (1-year) outcomes of patients with acute coronary syndromes treated with alternative antithrombotic treatment strategies: an ACUITY (Acute Catheterization and Urgent Intervention Triage strategY) substudy.
        JACC Cardiovasc. Interv. 2009; 2: 748-757
        • Garnier A.S.
        • Briet M.
        Arterial stiffness and chronic kidney disease.
        Pulse (Basel). 2016; 3: 229-241
        • Nakamura S.
        • Ishibashi-Ueda H.
        • Niizuma S.
        • Yoshihara F.
        • Horio T.
        • Kawano Y.
        Coronary calcification in patients with chronic kidney disease and coronary artery disease.
        Clin. J. Am. Soc. Nephrol. 2009; 4: 1892-1900
        • Block G.A.
        • Spiegel D.M.
        • Ehrlich J.
        • et al.
        Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis.
        Kidney Int. 2005; 68: 1815-1824
        • Johnson R.C.
        • Leopold J.A.
        • Loscalzo J.
        Vascular calcification: pathobiological mechanisms and clinical implications.
        Circ. Res. 2006; 99: 1044-1059
        • Demer L.L.
        • Tintut Y.
        Vascular calcification: pathobiology of a multifaceted disease.
        Circulation. 2008; 117: 2938-2948
        • Goodman W.G.
        • London G.
        • Amann K.
        • et al.
        Vascular calcification in chronic kidney disease.
        Am. J. Kidney Dis. 2004; 43: 572-579
        • Abedin M.
        • Tintut Y.
        • Demer L.L.
        Vascular calcification: mechanisms and clinical ramifications.
        Arterioscler. Thromb. Vasc. Biol. 2004; 24: 1161-1170
        • Chen Z.
        • Qureshi A.R.
        • Ripsweden J.
        • et al.
        Vertebral bone density associates with coronary artery calcification and is an independent predictor of poor outcome in end-stage renal disease patients.
        Bone. 2016; 92: 50-57
        • Chen J.
        • Budoff M.J.
        • Reilly M.P.
        • et al.
        Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease.
        JAMA Cardiol. 2017; 2: 635-643
        • Block G.A.
        • Raggi P.
        • Bellasi A.
        • Kooienga L.
        • Spiegel D.M.
        Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients.
        Kidney Int. 2007; 71: 438-441
        • Chertow G.M.
        • Burke S.K.
        • Raggi P.
        • Group TtGW.
        Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients.
        Kidney Int. 2002; 62: 245-252
        • Inaba M.
        • Okuno S.
        • Imanishi Y.
        • et al.
        Role of fibroblast growth factor-23 in peripheral vascular calcification in non-diabetic and diabetic hemodialysis patients.
        Osteoporos. Int. 2006; 17: 1506-1513
        • Srivaths P.R.
        • Goldstein S.L.
        • Silverstein D.M.
        • Krishnamurthy R.
        • Brewer E.D.
        Elevated FGF 23 and phosphorus are associated with coronary calcification in hemodialysis patients.
        Pediatr. Nephrol. 2011; 26: 945-951
        • Srivaths P.R.
        • Goldstein S.L.
        • Krishnamurthy R.
        • Silverstein D.M.
        High serum phosphorus and FGF 23 levels are associated with progression of coronary calcifications.
        Pediatr. Nephrol. 2014; 29: 103-109
        • Gross P.
        • Six I.
        • Kamel S.
        • Massy Z.A.
        Vascular toxicity of phosphate in chronic kidney disease: beyond vascular calcification.
        Circ. J. 2014; 78: 2339-2346
        • Vervloet M.G.
        • Sezer S.
        • Massy Z.A.
        • et al.
        The role of phosphate in kidney disease.
        Nat. Rev. Nephrol. 2017; 13: 27-38
        • Vervloet M.G.
        • Massy Z.A.
        • Brandenburg V.M.
        • et al.
        Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders.
        Lancet Diabetes Endocrinol. 2014; 2: 427-436
        • Cai M.M.
        • Smith E.R.
        • Holt S.G.
        The role of fetuin-A in mineral trafficking and deposition.
        BoneKEy Rep. 2015; 4: 672
        • Morena M.
        • Jaussent I.
        • Dupuy A.M.
        • et al.
        Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications.
        Nephrol. Dial. Transplant. 2015; 30: 1345-1356
        • Luo G.
        • Ducy P.
        • McKee M.D.
        • et al.
        Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein.
        Nature. 1997; 386: 78-81
        • Schurgers L.J.
        • Uitto J.
        • Reutelingsperger C.P.
        Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization.
        Trends Mol. Med. 2013; 19: 217-226
        • Jono S.
        • McKee M.D.
        • Murry C.E.
        • et al.
        Phosphate regulation of vascular smooth muscle cell calcification.
        Circ. Res. 2000; 87: E10-E17
        • Ducy P.
        • Zhang R.
        • Geoffroy V.
        • Ridall A.L.
        • Karsenty G.
        Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.
        Cell. 1997; 89: 747-754
        • Goodman W.G.
        • Goldin J.
        • Kuizon B.D.
        • et al.
        Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis.
        N. Engl. J. Med. 2000; 342: 1478-1483
        • Karwowski W.
        • Naumnik B.
        • Szczepański M.
        • Myśliwiec M.
        The mechanism of vascular calcification - a systematic review.
        Med. Sci. Mon. 2012; 18: RA1-11
        • Attman P.O.
        • Samuelsson O.
        Dyslipidemia of kidney disease.
        Curr. Opin. Lipidol. 2009; 20: 293-299
        • McCullough P.A.
        • Agrawal V.
        • Danielewicz E.
        • Abela G.S.
        Accelerated atherosclerotic calcification and Monckeberg's sclerosis: a continuum of advanced vascular pathology in chronic kidney disease.
        Clin. J. Am. Soc. Nephrol. 2008; 3: 1585-1598
        • Watanabe R.
        • Lemos M.M.
        • Carvalho A.B.
        • et al.
        The association between coronary artery calcification progression and loss of bone density in non-dialyzed CKD patients.
        Clin. Nephrol. 2012; 78: 425-431
        • Russo D.
        • Miranda I.
        • Ruocco C.
        • et al.
        The progression of coronary artery calcification in predialysis patients on calcium carbonate or sevelamer.
        Kidney Int. 2007; 72: 1255-1261
        • Block G.A.
        • Wheeler D.C.
        • Persky M.S.
        • et al.
        Effects of phosphate binders in moderate CKD.
        J. Am. Soc. Nephrol. 2012; 23: 1407-1415
        • Vervloet M.
        • Cozzolino M.
        Vascular calcification in chronic kidney disease: different bricks in the wall?.
        Kidney Int. 2017; 91: 808-817
        • McCullough P.A.
        • Chinnaiyan K.M.
        Annual progression of coronary calcification in trials of preventive therapies: a systematic review.
        Arch. Intern. Med. 2009; 169: 2064-2070
        • Raggi P.
        • Chertow G.M.
        • Torres P.U.
        • et al.
        The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis.
        Nephrol. Dial. Transplant. 2011; 26: 1327-1339
        • Chertow G.M.
        • Block G.A.
        • Correa-Rotter R.
        • et al.
        Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis.
        N. Engl. J. Med. 2012; 367: 2482-2494
        • Bover J.
        • Ureña P.
        • Ruiz-García C.
        • et al.
        Clinical and practical use of calcimimetics in dialysis patients with secondary hyperparathyroidism.
        Clin. J. Am. Soc. Nephrol. 2016; 11: 161-174
        • Wheeler D.C.
        • London G.M.
        • Parfrey P.S.
        • et al.
        Effects of cinacalcet on atherosclerotic and nonatherosclerotic cardiovascular events in patients receiving hemodialysis: the EValuation of Cinacalcet HCl Therapy to Lower CardioVascular Events (EVOLVE) trial.
        J. Am. Heart Assoc. 2014; 3e001363
        • Wanner C.
        • Krane V.
        • März W.
        • et al.
        Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis.
        N. Engl. J. Med. 2005; 353: 238-248
        • Fellström B.C.
        • Jardine A.G.
        • Schmieder R.E.
        • et al.
        Rosuvastatin and cardiovascular events in patients undergoing hemodialysis.
        N. Engl. J. Med. 2009; 360: 1395-1407
        • Agatston A.S.
        • Janowitz W.R.
        • Hildner F.J.
        • Zusmer N.R.
        • Viamonte M.
        • Detrano R.
        Quantification of coronary artery calcium using ultrafast computed tomography.
        J. Am. Coll. Cardiol. 1990; 15: 827-832
        • Shantouf R.S.
        • Budoff M.J.
        • Ahmadi N.
        • et al.
        Total and individual coronary artery calcium scores as independent predictors of mortality in hemodialysis patients.
        Am. J. Nephrol. 2010; 31: 419-425
        • Greenland P.
        • Bonow R.O.
        • Brundage B.H.
        • et al.
        ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the american college of cardiology foundation clinical expert consensus task force (ACCF/AHA writing committee to update the 2000 expert consensus document on electron beam computed tomography) developed in collaboration with the society of atherosclerosis imaging and prevention and the society of cardiovascular computed tomography.
        J. Am. Coll. Cardiol. 2007; 49: 378-402
        • Sarwar A.
        • Shaw L.J.
        • Shapiro M.D.
        • et al.
        Diagnostic and prognostic value of absence of coronary artery calcification.
        JACC Cardiovasc. Imag. 2009; 2: 675-688
        • Min J.K.
        • Lin F.Y.
        • Gidseg D.S.
        • et al.
        Determinants of coronary calcium conversion among patients with a normal coronary calcium scan: what is the "warranty period" for remaining normal?.
        J. Am. Coll. Cardiol. 2010; 55: 1110-1117
        • Kronmal R.A.
        • McClelland R.L.
        • Detrano R.
        • et al.
        Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA).
        Circulation. 2007; 115: 2722-2730
        • Taylor A.J.
        • Bindeman J.
        • Le T.P.
        • et al.
        Progression of calcified coronary atherosclerosis: relationship to coronary risk factors and carotid intima-media thickness.
        Atherosclerosis. 2008; 197: 339-345
        • Burke A.P.
        • Taylor A.
        • Farb A.
        • Malcom G.T.
        • Virmani R.
        Coronary calcification: insights from sudden coronary death victims.
        Z. Kardiol. 2000; 89: 49-53
        • Nasir K.
        • McClelland R.L.
        • Blumenthal R.S.
        • et al.
        Coronary artery calcium in relation to initiation and continuation of cardiovascular preventive medications: the Multi-Ethnic Study of Atherosclerosis (MESA).
        Circ. Cardiovasc. Qual. Outcomes. 2010; 3: 228-235
        • Goff D.C.
        • Lloyd-Jones D.M.
        • Bennett G.
        • et al.
        2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the american college of cardiology/american heart association task force on practice guidelines.
        J. Am. Coll. Cardiol. 2014; 63: 2935-2959
        • Bover J.
        • Evenepoel P.
        • Ureña-Torres P.
        • et al.
        Pro: cardiovascular calcifications are clinically relevant.
        Nephrol. Dial. Transplant. 2015; 30: 345-351
        • K/DOQI Workgroup
        K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients.
        Am. J. Kidney Dis. 2005; 45: S1-S153
        • United States Renal Data System
        Chapter 8: Cardiovascular Disease in Patients with ESRD. 2017 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States.
        National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD2017
        • Qunibi W.
        • Moustafa M.
        • Muenz L.R.
        • et al.
        A 1-year randomized trial of calcium acetate versus sevelamer on progression of coronary artery calcification in hemodialysis patients with comparable lipid control: the Calcium Acetate Renagel Evaluation-2 (CARE-2) study.
        Am. J. Kidney Dis. 2008; 51: 952-965
        • Floege J.
        Calcium-containing phosphate binders in dialysis patients with cardiovascular calcifications: should we CARE-2 avoid them?.
        Nephrol. Dial. Transplant. 2008; 23: 3050-3052
        • Kestenbaum B.
        • Sampson J.N.
        • Rudser K.D.
        • et al.
        Serum phosphate levels and mortality risk among people with chronic kidney disease.
        J. Am. Soc. Nephrol. 2005; 16: 520-528
        • Tomiyama C.
        • Higa A.
        • Dalboni M.A.
        • et al.
        The impact of traditional and non-traditional risk factors on coronary calcification in pre-dialysis patients.
        Nephrol. Dial. Transplant. 2006; 21: 2464-2471
        • Di Iorio B.
        • Bellasi A.
        • Russo D.
        • Investigators I.S.
        Mortality in kidney disease patients treated with phosphate binders: a randomized study.
        Clin. J. Am. Soc. Nephrol. 2012; 7: 487-493
        • Tuttle K.R.
        • Short R.A.
        Longitudinal relationships among coronary artery calcification, serum phosphorus, and kidney function.
        Clin. J. Am. Soc. Nephrol. 2009; 4: 1968-1973
        • Wang C.
        • Liu X.
        • Zhou Y.
        • et al.
        New conclusions regarding comparison of sevelamer and calcium-based phosphate binders in coronary-artery calcification for dialysis patients: a meta-analysis of randomized controlled trials.
        PLoS One. 2015; 10e0133938
        • Shantouf R.
        • Ahmadi N.
        • Flores F.
        • et al.
        Impact of phosphate binder type on coronary artery calcification in hemodialysis patients.
        Clin. Nephrol. 2010; 74: 12-18
        • Di Iorio B.
        • Molony D.
        • Bell C.
        • et al.
        Sevelamer versus calcium carbonate in incident hemodialysis patients: results of an open-label 24-month randomized clinical trial.
        Am. J. Kidney Dis. 2013; 62: 771-778
        • Zoccali C.
        • London G.
        Con: vascular calcification is a surrogate marker, but not the cause of ongoing vascular disease, and it is not a treatment target in chronic kidney disease.
        Nephrol. Dial. Transplant. 2015; 30: 352-357
        • Peter W.L.S.
        • Wazny L.D.
        • Weinhandl E.
        • Cardone K.E.
        • Hudson J.Q.
        A review of phosphate binders in chronic kidney disease: incremental progress or just higher costs?.
        Drugs. 2017; 77: 1155-1186
        • Block G.A.
        • Hulbert-Shearon T.E.
        • Levin N.W.
        • Port F.K.
        Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study.
        Am. J. Kidney Dis. 1998; 31: 607-617
        • Locatelli F.
        • Del Vecchio L.
        • Violo L.
        • Pontoriero G.
        Phosphate binders for the treatment of hyperphosphatemia in chronic kidney disease patients on dialysis: a comparison of safety profiles.
        Expet Opin. Drug Saf. 2014; 13: 551-561
        • Sekercioglu N.
        • Thabane L.
        • Díaz Martínez J.P.
        • et al.
        Comparative effectiveness of phosphate binders in patients with chronic kidney disease: a systematic review and network meta-analysis.
        PLoS One. 2016; 11e0156891
        • Jamal S.A.
        • Vandermeer B.
        • Raggi P.
        • et al.
        Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis.
        Lancet. 2013; 382: 1268-1277
        • Palmer S.C.
        • Gardner S.
        • Tonelli M.
        • et al.
        Phosphate-binding agents in adults with CKD: a network meta-analysis of randomized trials.
        Am. J. Kidney Dis. 2016; 68: 691-702
        • Yang H.
        • Curinga G.
        • Giachelli C.M.
        Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro.
        Kidney Int. 2004; 66: 2293-2299
        • Lawson D.E.
        • Fraser D.R.
        • Kodicek E.
        • Morris H.R.
        • Williams D.H.
        Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism.
        Nature. 1971; 230: 228-230
        • Restrepo Valencia C.A.
        • Aguirre Arango J.V.
        Vitamin D (25(OH)D) in patients with chronic kidney disease stages 2-5.
        Colomb. Med. (Cali). 2016; 47: 160-166
        • Quarles L.D.
        Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism.
        Nat. Rev. Endocrinol. 2012; 8: 276-286
        • Xiang W.
        • Kong J.
        • Chen S.
        • et al.
        Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems.
        Am. J. Physiol. Endocrinol. Metab. 2005; 288: E125-E132
        • Chen S.
        • Law C.S.
        • Grigsby C.L.
        • et al.
        Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy.
        Circulation. 2011; 124: 1838-1847
        • Leifheit-Nestler M.
        • Grabner A.
        • Hermann L.
        • et al.
        Vitamin D treatment attenuates cardiac FGF23/FGFR4 signaling and hypertrophy in uremic rats.
        Nephrol. Dial. Transplant. 2017; 32: 1493-1503
        • Panizo S.
        • Carrillo-López N.
        • Naves-Díaz M.
        • et al.
        Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis.
        Nephrol. Dial. Transplant. 2017; 32: 1831-1840
        • Naini A.E.
        • Vahdat S.
        • Hedaiati Z.P.
        • Shahzeidi S.
        • Pezeshki A.H.
        • Nasri H.
        The effect of vitamin D administration on serum leptin and adiponectin levels in end-stage renal disease patients on hemodialysis with vitamin D deficiency: a placebo-controlled double-blind clinical trial.
        J. Res. Med. Sci. 2016; 21: 1
        • Zheng Z.
        • Shi H.
        • Jia J.
        • Li D.
        • Lin S.
        Vitamin D supplementation and mortality risk in chronic kidney disease: a meta-analysis of 20 observational studies.
        BMC Nephrol. 2013; 14: 199
        • Kumar V.
        • Yadav A.K.
        • Lal A.
        • et al.
        A randomized trial of vitamin D supplementation on vascular function in CKD.
        J. Am. Soc. Nephrol. 2017; 10: 3100-3108
        • Kunitomo M.
        • Kinoshita K.
        • Bandô Y.
        Experimental atherosclerosis in rats fed a vitamin D, cholesterol-rich diet.
        J. Pharmacobio-Dyn. 1981; 4: 718-723
        • Mathew S.
        • Lund R.J.
        • Chaudhary L.R.
        • Geurs T.
        • Hruska K.A.
        Vitamin D receptor activators can protect against vascular calcification.
        J. Am. Soc. Nephrol. 2008; 19: 1509-1519
        • Wang A.Y.
        • Fang F.
        • Chan J.
        • et al.
        Effect of paricalcitol on left ventricular mass and function in CKD--the OPERA trial.
        J. Am. Soc. Nephrol. 2014; 25: 175-186
        • Thadhani R.
        • Appelbaum E.
        • Pritchett Y.
        • et al.
        Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial.
        J. Am. Med. Assoc. 2012; 307: 674-684
        • Ng Y.M.
        • Lim S.K.
        • Kang P.S.
        • Kadir K.A.
        • Tai M.S.
        Association between serum 25-hydroxyvitamin D levels and carotid atherosclerosis in chronic kidney disease patients.
        BMC Nephrol. 2016; 17: 151
        • Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group
        Kidney Int. Suppl. 2013; 3: 1-150