Hypercholesterolemia impairs megakaryopoiesis and platelet production in scavenger receptor BI knockout mice


      • Megakaryocytes accumulate unesterified cholesterol in SR-BI knockout mice.
      • Hypercholesterolemia impairs megakaryopoiesis and platelet production.
      • Bone marrow specific SR-BI deficiency does not alter megakaryocyte function.


      Background and aims

      Thrombocytopenia in scavenger receptor BI (SR-BI) knockout mice is suggested to result from augmented platelet clearance induced by elevated intracellular unesterified cholesterol (UC) levels. We hypothesize that SR-BI deficiency may also influence platelet production at the level of its precursor cell in the bone marrow, the megakaryocyte.


      In this study, we compared megakaryopoiesis and platelet production in SR-BI knockout and wild-type mice.


      In line with our hypothesis, megakaryocytes from SR-BI knockout mice exhibited UC accumulation while no accumulation of UC was detectable in wild-type megakaryocytes. Bone marrow expression of transcription factors involved in megakaryocyte maturation was induced, but megakaryocyte counts were unchanged in bone marrow of SR-BI knockout mice. Interestingly, we did find a striking 62% decrease (p < 0.01) in proplatelet production by SR-BI knockout megakaryocytes. SR-BI knockout mice displayed an impaired increase in circulating platelet concentrations and bone marrow megakaryocyte numbers upon thrombopoietin challenge. Importantly, megakaryocytes from normolipidemic bone marrow-specific SR-BI knockout mice exhibited a normal ability to produce proplatelets. Moreover, bone marrow-specific deletion of SR-BI did not impair the thrombopoietin response or induce thrombocytopenia, confirming that absence of megakaryocyte SR-BI does not underlie the thrombocytopenic phenotype in total body SR-BI knockout mice.


      In conclusion, the elevation of plasma unesterified cholesterol levels impairs megakaryopoiesis and platelet production in SR-BI knockout mice. Our findings suggest that, in addition to an increased platelet clearance, a decrease in platelet production may also, in part, explain the thrombocytopenic phenotype associated with SR-BI deficiency in mice.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Davì G.
        • Patrono C.
        Mechanisms of disease: platelet activation and atherothrombosis.
        N. Engl. J. Med. 2007; 357: 2482-2494
        • Martin J.F.
        • Plumb J.
        • Kilbey R.S.
        • Kishk Y.T.
        Changes in volume and density of platelets in myocardial infarction.
        Br. Med. J. 1983; 287: 456-459
        • Cameron H a
        • Phillips R.
        • Ibbotson R.M.
        • Carson P.H.
        Platelet size in myocardial infarction.
        Br. Med. J. 1983; 287: 449-451
        • Pizzulli L.
        • Yang a.
        • Martin J.F.
        • Lüderitz B.
        Changes in platelet size and count in unstable angina compared to stable angina or non-cardiac chest pain.
        Eur. Heart J. 1998; 19: 80-84
        • Endler G.
        • Klimesch A.
        • Sunder-Plassmann H.
        • et al.
        Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease.
        Br. J. Haematol. 2002; 117: 399-404
        • Martin J.
        • Bath P.
        • Burr M.L.
        Influence of platelet size on outcome after myocardial infarction.
        Lancet. 1991; 338 (doi:0140-6736(91)92719-I [pii]): 1409-1411
        • Nakeff A.
        • Maat B.
        Separation of megakaryocytes from mouse bone marrow by velocity sedimentation.
        Blood. 1974; 43: 591-595
        • Hitchcock I.S.
        • Kaushansky K.
        Thrombopoietin from beginning to end.
        Br. J. Haematol. 2014; 165: 259-268
        • Machlus K.R.
        • Italiano J.E.
        The incredible journey: from megakaryocyte development to platelet formation.
        J. Cell Biol. 2013; 201: 785-796
        • Richardson J.L.
        • Shivdasani R.A.
        • Boers C.
        • Hartwig J.H.
        • Italiano J.E.J.
        Mechanisms of organelle transport and capture along proplatelets during platelet production.
        Blood. 2005; 106: 4066-4075
        • Harker L.A.
        • Finch C.A.
        Thrombokinetics in man.
        J. Clin. Invest. 1969; 48: 963-974
        • Aster R.H.
        Studies of the mechanism of “hypersplenic” thrombocytopenia in rats.
        J. Lab. Clin. Med. 1967; 70: 736-751
        • Li R.
        • Hoffmeister K.M.
        • Falet H.
        Glycans and the platelet life cycle.
        Platelets. 2016; 27: 505-511
        • Grozovsky R.
        • Begonja A.J.
        • Liu K.
        • et al.
        The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling.
        Nat. Med. 2015; 21: 47-54
        • Dole V.S.
        • Matuskova J.
        • Vasile E.
        • et al.
        Thrombocytopenia and Platelet Abnormalities in High-density Lipoprotein Receptor – Deficient Mice.
        • Korporaal SJ. a.
        • Meurs I.
        • Hauer a. D.
        • et al.
        Deletion of the high-density lipoprotein receptor scavenger receptor BI in mice modulates thrombosis susceptibility and indirectly affects platelet function by elevation of plasma free cholesterol.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 34-42
        • Ma Y.
        • Ashraf M.Z.
        • Podrez E.A.
        Scavenger receptor BI modulates platelet reactivity and thrombosis in dyslipidemia. 2017; 116 (An): 1932-1942 268508
        • Rigotti A.
        • Trigatti B.L.
        • Penman M.
        • Rayburn H.
        • Herz J.
        • Krieger M.
        A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism.
        Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 12610-12615
        • Out R.
        • Hoekstra M.
        • Spijkers J.A.A.
        • et al.
        Scavenger receptor class B type I is solely responsible for the selective uptake of cholesteryl esters from HDL by the liver and the adrenals in mice.
        J. Lipid Res. 2004; 45: 2088-2095 JLR200
        • Van Eck M.
        • Twisk J.
        • Hoekstra M.
        • et al.
        Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver.
        J. Biol. Chem. 2003; 278: 23699-23705
        • Vergeer M.
        • Korporaal S.J.A.
        • Franssen R.
        • et al.
        Genetic variant of the scavenger receptor BI in humans.
        N. Engl. J. Med. 2011; 364: 136-145
        • Imachi H.
        • Murao K.
        • Cao W.
        • et al.
        Expression of Human Scavenger Receptor B1 on and in Human Platelets.
        2003: 898-905
        • Murphy A.J.
        • Bijl N.
        • Yvan-Charvet L.
        • et al.
        Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis.
        Nat. Med. 2013; 19: 586-594
        • Out R.
        • Hoekstra M.
        • Hildebrand R.B.
        • et al.
        Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 2295-2300
        • Eckly A.
        • Strassel C.
        • Cazenave J.-P.
        • Lanza F.
        • Leon C.
        • Gachet C.
        Characterization of megakaryocyte development in the native bone marrow environment.
        Meth. Mol. Biol. 2012; 788: 175-192
        • Thacker S.G.
        • Rousset X.
        • Esmail S.
        • et al.
        Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice.
        J. Lipid Res. 2015; 56: 1282-1295
        • Dalal K.B.
        • Leven R.M.
        • Yee T.
        Lipid and membrane fluidity abnormalities in platelets and megakaryocytes of the hereditary macrothrombocytopenic Wistar Furth rat.
        Biochim. Biophys. Acta. 1991; 1070: 253-258
        • Eckly A.
        • Heijnen H.
        • Pertuy F.
        • et al.
        Biogenesis of the demarcation membrane system (DMS) in megakaryocytes.
        Blood. 2014; 123: 921-930 492330
        • Quinn P.J.
        The fluidity of cell membranes and its regulation.
        Prog. Biophys. Mol. Biol. 1981; 38: 1-104
        • Suda T.
        • Shimizu D.
        • Maeda N.
        • Shiga T.
        Decreased viscosity of human erythrocyte suspension induced by chlorpromazine and isoxsuprine.
        Biochem. Pharmacol. 1981; 30: 2057-2064
        • Meurs I.
        • Hoekstra M.
        • van Wanrooij E.J.A.
        • et al.
        HDL cholesterol levels are an important factor for determining the lifespan of erythrocytes.
        Exp. Hematol. 2005; 33: 1309-1319
        • Martin J.F.
        • Slater D.N.
        • Kishk Y.T.
        • Trowbridge E a
        Platelet and megakaryocyte changes in cholesterol-induced experimental atherosclerosis.
        Arteriosclerosis. 1985; 5: 604-612
        • Schick B.P.
        • Schick P.K.
        The effect of hypercholesterolemia on Guinea pig platelets, erythrocytes and megakaryocytes.
        Biochim. Biophys. Acta. 1985; 833: 291-302
        • Pathansali R.
        • Smith N.
        • Bath P.
        Altered megakaryocyte–platelet haemostatic axis in hypercholesterolaemia.
        Platelets. 2001; 12: 292-297
        • Schick B.P.
        • Schick P.K.
        Cholesterol exchange in platelets, erythrocytes and megakaryocytes.
        Biochim. Biophys. Acta. 1985; 833: 281-290