Advertisement

Hypercholesterolemia impairs megakaryopoiesis and platelet production in scavenger receptor BI knockout mice

      Highlights

      • Megakaryocytes accumulate unesterified cholesterol in SR-BI knockout mice.
      • Hypercholesterolemia impairs megakaryopoiesis and platelet production.
      • Bone marrow specific SR-BI deficiency does not alter megakaryocyte function.

      Abstract

      Background and aims

      Thrombocytopenia in scavenger receptor BI (SR-BI) knockout mice is suggested to result from augmented platelet clearance induced by elevated intracellular unesterified cholesterol (UC) levels. We hypothesize that SR-BI deficiency may also influence platelet production at the level of its precursor cell in the bone marrow, the megakaryocyte.

      Methods

      In this study, we compared megakaryopoiesis and platelet production in SR-BI knockout and wild-type mice.

      Results

      In line with our hypothesis, megakaryocytes from SR-BI knockout mice exhibited UC accumulation while no accumulation of UC was detectable in wild-type megakaryocytes. Bone marrow expression of transcription factors involved in megakaryocyte maturation was induced, but megakaryocyte counts were unchanged in bone marrow of SR-BI knockout mice. Interestingly, we did find a striking 62% decrease (p < 0.01) in proplatelet production by SR-BI knockout megakaryocytes. SR-BI knockout mice displayed an impaired increase in circulating platelet concentrations and bone marrow megakaryocyte numbers upon thrombopoietin challenge. Importantly, megakaryocytes from normolipidemic bone marrow-specific SR-BI knockout mice exhibited a normal ability to produce proplatelets. Moreover, bone marrow-specific deletion of SR-BI did not impair the thrombopoietin response or induce thrombocytopenia, confirming that absence of megakaryocyte SR-BI does not underlie the thrombocytopenic phenotype in total body SR-BI knockout mice.

      Conclusions

      In conclusion, the elevation of plasma unesterified cholesterol levels impairs megakaryopoiesis and platelet production in SR-BI knockout mice. Our findings suggest that, in addition to an increased platelet clearance, a decrease in platelet production may also, in part, explain the thrombocytopenic phenotype associated with SR-BI deficiency in mice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Davì G.
        • Patrono C.
        Mechanisms of disease: platelet activation and atherothrombosis.
        N. Engl. J. Med. 2007; 357: 2482-2494https://doi.org/10.1056/NEJMra071014
        • Martin J.F.
        • Plumb J.
        • Kilbey R.S.
        • Kishk Y.T.
        Changes in volume and density of platelets in myocardial infarction.
        Br. Med. J. 1983; 287: 456-459https://doi.org/10.1136/bmj.287.6390.456
        • Cameron H a
        • Phillips R.
        • Ibbotson R.M.
        • Carson P.H.
        Platelet size in myocardial infarction.
        Br. Med. J. 1983; 287: 449-451https://doi.org/10.1136/bmj.287.6390.449
        • Pizzulli L.
        • Yang a.
        • Martin J.F.
        • Lüderitz B.
        Changes in platelet size and count in unstable angina compared to stable angina or non-cardiac chest pain.
        Eur. Heart J. 1998; 19: 80-84https://doi.org/10.1053/euhj.1997.0747
        • Endler G.
        • Klimesch A.
        • Sunder-Plassmann H.
        • et al.
        Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease.
        Br. J. Haematol. 2002; 117: 399-404
        • Martin J.
        • Bath P.
        • Burr M.L.
        Influence of platelet size on outcome after myocardial infarction.
        Lancet. 1991; 338 (doi:0140-6736(91)92719-I [pii]): 1409-1411
        • Nakeff A.
        • Maat B.
        Separation of megakaryocytes from mouse bone marrow by velocity sedimentation.
        Blood. 1974; 43: 591-595
        • Hitchcock I.S.
        • Kaushansky K.
        Thrombopoietin from beginning to end.
        Br. J. Haematol. 2014; 165: 259-268https://doi.org/10.1111/bjh.12772
        • Machlus K.R.
        • Italiano J.E.
        The incredible journey: from megakaryocyte development to platelet formation.
        J. Cell Biol. 2013; 201: 785-796https://doi.org/10.1083/jcb.201304054
        • Richardson J.L.
        • Shivdasani R.A.
        • Boers C.
        • Hartwig J.H.
        • Italiano J.E.J.
        Mechanisms of organelle transport and capture along proplatelets during platelet production.
        Blood. 2005; 106: 4066-4075https://doi.org/10.1182/blood-2005-06-2206
        • Harker L.A.
        • Finch C.A.
        Thrombokinetics in man.
        J. Clin. Invest. 1969; 48: 963-974https://doi.org/10.1172/JCI106077
        • Aster R.H.
        Studies of the mechanism of “hypersplenic” thrombocytopenia in rats.
        J. Lab. Clin. Med. 1967; 70: 736-751
        • Li R.
        • Hoffmeister K.M.
        • Falet H.
        Glycans and the platelet life cycle.
        Platelets. 2016; 27: 505-511https://doi.org/10.3109/09537104.2016.1171304
        • Grozovsky R.
        • Begonja A.J.
        • Liu K.
        • et al.
        The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling.
        Nat. Med. 2015; 21: 47-54https://doi.org/10.1038/nm.3770
        • Dole V.S.
        • Matuskova J.
        • Vasile E.
        • et al.
        Thrombocytopenia and Platelet Abnormalities in High-density Lipoprotein Receptor – Deficient Mice.
        2008https://doi.org/10.1161/ATVBAHA.108.162347
        • Korporaal SJ. a.
        • Meurs I.
        • Hauer a. D.
        • et al.
        Deletion of the high-density lipoprotein receptor scavenger receptor BI in mice modulates thrombosis susceptibility and indirectly affects platelet function by elevation of plasma free cholesterol.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 34-42https://doi.org/10.1161/ATVBAHA.110.210252
        • Ma Y.
        • Ashraf M.Z.
        • Podrez E.A.
        Scavenger receptor BI modulates platelet reactivity and thrombosis in dyslipidemia. 2017; 116 (An): 1932-1942https://doi.org/10.1182/blood-2010-02- 268508
        • Rigotti A.
        • Trigatti B.L.
        • Penman M.
        • Rayburn H.
        • Herz J.
        • Krieger M.
        A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism.
        Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 12610-12615
        • Out R.
        • Hoekstra M.
        • Spijkers J.A.A.
        • et al.
        Scavenger receptor class B type I is solely responsible for the selective uptake of cholesteryl esters from HDL by the liver and the adrenals in mice.
        J. Lipid Res. 2004; 45: 2088-2095https://doi.org/10.1194/jlr.M400191- JLR200
        • Van Eck M.
        • Twisk J.
        • Hoekstra M.
        • et al.
        Differential effects of scavenger receptor BI deficiency on lipid metabolism in cells of the arterial wall and in the liver.
        J. Biol. Chem. 2003; 278: 23699-23705https://doi.org/10.1074/jbc.M211233200
        • Vergeer M.
        • Korporaal S.J.A.
        • Franssen R.
        • et al.
        Genetic variant of the scavenger receptor BI in humans.
        N. Engl. J. Med. 2011; 364: 136-145https://doi.org/10.1056/NEJMoa0907687
        • Imachi H.
        • Murao K.
        • Cao W.
        • et al.
        Expression of Human Scavenger Receptor B1 on and in Human Platelets.
        2003: 898-905https://doi.org/10.1161/01.ATV.0000067429.46333.7B
        • Murphy A.J.
        • Bijl N.
        • Yvan-Charvet L.
        • et al.
        Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis.
        Nat. Med. 2013; 19: 586-594https://doi.org/10.1038/nm.3150
        • Out R.
        • Hoekstra M.
        • Hildebrand R.B.
        • et al.
        Macrophage ABCG1 deletion disrupts lipid homeostasis in alveolar macrophages and moderately influences atherosclerotic lesion development in LDL receptor-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 2295-2300https://doi.org/10.1161/01.ATV.0000237629.29842.4c
        • Eckly A.
        • Strassel C.
        • Cazenave J.-P.
        • Lanza F.
        • Leon C.
        • Gachet C.
        Characterization of megakaryocyte development in the native bone marrow environment.
        Meth. Mol. Biol. 2012; 788: 175-192https://doi.org/10.1007/978-1-61779-307-3_13
        • Thacker S.G.
        • Rousset X.
        • Esmail S.
        • et al.
        Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice.
        J. Lipid Res. 2015; 56: 1282-1295https://doi.org/10.1194/jlr.M048629
        • Dalal K.B.
        • Leven R.M.
        • Yee T.
        Lipid and membrane fluidity abnormalities in platelets and megakaryocytes of the hereditary macrothrombocytopenic Wistar Furth rat.
        Biochim. Biophys. Acta. 1991; 1070: 253-258
        • Eckly A.
        • Heijnen H.
        • Pertuy F.
        • et al.
        Biogenesis of the demarcation membrane system (DMS) in megakaryocytes.
        Blood. 2014; 123: 921-930https://doi.org/10.1182/blood-2013-03- 492330
        • Quinn P.J.
        The fluidity of cell membranes and its regulation.
        Prog. Biophys. Mol. Biol. 1981; 38: 1-104
        • Suda T.
        • Shimizu D.
        • Maeda N.
        • Shiga T.
        Decreased viscosity of human erythrocyte suspension induced by chlorpromazine and isoxsuprine.
        Biochem. Pharmacol. 1981; 30: 2057-2064
        • Meurs I.
        • Hoekstra M.
        • van Wanrooij E.J.A.
        • et al.
        HDL cholesterol levels are an important factor for determining the lifespan of erythrocytes.
        Exp. Hematol. 2005; 33: 1309-1319https://doi.org/10.1016/j.exphem.2005.07.004
        • Martin J.F.
        • Slater D.N.
        • Kishk Y.T.
        • Trowbridge E a
        Platelet and megakaryocyte changes in cholesterol-induced experimental atherosclerosis.
        Arteriosclerosis. 1985; 5: 604-612https://doi.org/10.1161/01.ATV.5.6.604
        • Schick B.P.
        • Schick P.K.
        The effect of hypercholesterolemia on Guinea pig platelets, erythrocytes and megakaryocytes.
        Biochim. Biophys. Acta. 1985; 833: 291-302
        • Pathansali R.
        • Smith N.
        • Bath P.
        Altered megakaryocyte–platelet haemostatic axis in hypercholesterolaemia.
        Platelets. 2001; 12: 292-297https://doi.org/10.1080/09537100120058810
        • Schick B.P.
        • Schick P.K.
        Cholesterol exchange in platelets, erythrocytes and megakaryocytes.
        Biochim. Biophys. Acta. 1985; 833: 281-290