Advertisement

ApoB in clinical care: Pro and Con

  • Allan D. Sniderman
    Correspondence
    Corresponding author. McGill University Heath Centre, Royal Victoria Hospital, 1001 Decarie Boulevard, Room C04.4180, Montreal, Quebec, H4A 3J1, Canada.
    Affiliations
    McGill University Health Centre, Royal Victoria Hospital, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
    Search for articles by this author
  • Jennifer G. Robinson
    Affiliations
    Departments of Epidemiology and Internal Medicine, Division of Cardiology, University of Iowa, 145 N Riverside Dr S455 CPHB, Iowa City, IA, 52242, United States
    Search for articles by this author

      Highlights

      • Highlights - Pro
      • ApoB is a more accurate measure of cardiovascular risk than LDL C or non HDL C.
      • ApoB is a more accurate measure of the adequacy of lipid therapy than LDLC or non HDL C.
      • ApoB is essential to diagnose Type III hyperlipidemia.
      • ApoB should replace LDL C/non-HDL C in routine clinical care.
      • Highlights – Con
      • Apo B lipoprotein measurement needed for research.
      • Apo B levels - Too much information for clinic.
      • Apo B - Not needed for risk prediction in primary prevention.
      • Apo B - Not needed for determining treatment thresholds/goals.
      • Apo B - Not needed for guiding treatment.

      Abstract

      Whether apoB adds significantly to the assessment of the risk and therapy of the atherogenic dyslipoproteinemias has been vigorously contested over many years. That trapping of apoB lipoprotein particles within the arterial wall is fundamental to the initiation and maturation of atherosclerotic lesions within the arterial wall is now widely accepted. At the same time, the concept that primary prevention should be based on the risk of a cardiovascular event, a measure that integrates the effects of age, sex, blood pressure, lipids and other factors, has also become widely accepted. Within the risk framework, the issue becomes whether apoB adds significantly to the assessment of risk. On the other hand, it can be argued that the risk model undervalues how important a role that LDL and blood pressure play as causes of atherosclerosis and that when considered as causes, the importance of apoB emerges. These are the two sides of the debate that will be presented in the article that follows: one will highlight the pros of measuring apoB, the second the cons. The reader can make up his or her mind which side of the issue they favour.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fredrickson D.S.
        • Levy R.I.
        • Lees R.S.
        Fat transport in lipoproteins--an integrated approach to mechanisms and disorders.
        N. Engl. J. Med. 1967; 276 (contd): 34-42https://doi.org/10.1056/NEJM196701052760107
        • Morganroth J.
        • Levy R.I.
        • Fredrickson D.S.
        The biochemical, clinical, and genetic features of type III hyperlipoproteinemia.
        Ann. Intern. Med. 1975; 82: 158-174
        • Hazzard W.R.
        • Goldstein J.L.
        • Schrott M.G.
        • Motulsky A.G.
        • Bierman E.L.
        Hyperlipidemia in coronary heart disease. 3. Evaluation of lipoprotein phenotypes of 156 genetically defined survivors of myocardial infarction.
        J. Clin. Invest. 1973; 52: 1569-1577https://doi.org/10.1172/JCI107333
        • Hopkins P.N.
        • Brinton E.A.
        • Nanjee M.N.
        Hyperlipoproteinemia type 3: the forgotten phenotype.
        Curr. Atherosclerosis Rep. 2014; 16 (440–19)https://doi.org/10.1007/s11883-014-0440-2
        • De Graaf J.
        • Couture P.
        • Sniderman A.
        A diagnostic algorithm for the atherogenic apolipoprotein B dyslipoproteinemias.
        . 2008; 4: 608-618https://doi.org/10.1038/ncpendmet0982
        • Sniderman A.D.
        • De Graaf J.
        • Thanassoulis G.
        • Tremblay A.J.
        • Martin S.S.
        • Couture P.
        The spectrum of type III hyperlipoproteinemia.
        J. Clin. Lipidol. 2018; https://doi.org/10.1016/j.jacl.2018.09.006
        • Stone N.J.
        • Robinson J.G.
        • Lichtenstein A.H.
        • Bairey Merz C.N.
        • Blum C.B.
        • Eckel R.H.
        • et al.
        ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.
        Circulation. 2013; 129: S1-S45https://doi.org/10.1161/01.cir.0000437738.63853.7a
        • Navar-Boggan A.M.
        • Peterson E.D.
        • D'Agostino R.B.
        • Neely B.
        • Sniderman A.D.
        • Pencina M.J.
        Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease.
        Circulation. 2015; 131: 451-458https://doi.org/10.1161/CIRCULATIONAHA.114.012477
        • Sniderman A.D.
        • St-Pierre A.C.
        • Cantin B.
        • Dagenais G.R.
        • Després J.-P.
        • Lamarche B.
        Concordance/discordance between plasma apolipoprotein B levels and the cholesterol indexes of atherosclerotic risk.
        Am. J. Cardiol. 2003; 91: 1173-1177
        • Cromwell W.C.
        • Otvos J.D.
        • Keyes M.J.
        • Pencina M.J.
        • Sullivan L.
        • Vasan R.S.
        • et al.
        LDL particle number and risk of future cardiovascular disease in the Framingham offspring study - implications for LDL management.
        J. Clin. Lipidol. 2007; 1: 583-592https://doi.org/10.1016/j.jacl.2007.10.001
        • Otvos J.D.
        • Mora S.
        • Shalaurova I.
        • Greenland P.
        • Mackey R.H.
        • Goff D.C.
        Clinical implications of discordance between low-density lipoprotein cholesterol and particle number.
        J. Clin. Lipidol. 2011; 5: 105-113https://doi.org/10.1016/j.jacl.2011.02.001
        • Sniderman A.D.
        • Islam S.
        • Yusuf S.
        • McQueen M.J.
        Discordance analysis of apolipoprotein B and non-high density lipoprotein cholesterol as markers of cardiovascular risk in the INTERHEART study.
        Atherosclerosis. 2012; 225: 444-449https://doi.org/10.1016/j.atherosclerosis.2012.08.039
        • Mora S.
        • Buring J.E.
        • Ridker P.M.
        Discordance of low-density lipoprotein (LDL) cholesterol with alternative LDL-related measures and future coronary events.
        Circulation. 2014; 129: 553-561https://doi.org/10.1161/CIRCULATIONAHA.113.005873
        • Pencina M.J.
        • D'Agostino R.B.
        • Zdrojewski T.
        • Williams K.
        • Thanassoulis G.
        • Furberg C.D.
        • et al.
        Apolipoprotein B improves risk assessment of future coronary heart disease in the Framingham Heart Study beyond LDL-C and non-HDL-C.
        Eur. J. Prev. Cardiol. 2015; 22: 1321-1327https://doi.org/10.1177/2047487315569411
        • Wilkins J.T.
        • Li R.C.
        • Sniderman A.
        • Chan C.
        • Lloyd-Jones D.M.
        Discordance between apolipoprotein B and LDL-cholesterol in young adults predicts coronary artery calcification: the CARDIA study.
        J. Am. Coll. Cardiol. 2016; 67: 193-201https://doi.org/10.1016/j.jacc.2015.10.055
        • Lawler P.R.
        • Akinkuolie A.O.
        • Ridker P.M.
        • Sniderman A.D.
        • Buring J.E.
        • Glynn R.J.
        • et al.
        Discordance between circulating atherogenic cholesterol mass and lipoprotein particle concentration in relation to future coronary events in women.
        Clin. Chem. 2017; 63: 870-879https://doi.org/10.1373/clinchem.2016.264515
        • Ference B.A.
        • Kastelein J.J.P.
        • Ginsberg H.N.
        • Chapman M.J.
        • Nicholls S.J.
        • Ray K.K.
        • et al.
        Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk.
        Jama. 2017; 318: 947-956https://doi.org/10.1001/jama.2017.11467
        • Goldstein J.L.
        • Schrott H.G.
        • Hazzard W.R.
        • Bierman E.L.
        • Motulsky A.G.
        Hyperlipidemia in coronary heart disease II. Genetic analysis OF lipid levels IN 176 families and delineation OF a new inherited disorder, combined hyperlipidemia.
        J. Clin. Invest. 1973; 52: 1544-1568https://doi.org/10.1172/JCI107332
        • Sniderman A.D.
        • Thanassoulis G.
        • Williams K.
        • Pencina M.
        Risk of premature cardiovascular disease vs the number of premature cardiovascular events.
        JAMA Cardiol. 2016; 1: 492-494https://doi.org/10.1001/jamacardio.2016.0991
        • Wang T.J.
        • Gona P.
        • Larson M.G.
        • Tofler G.H.
        • Levy D.
        • Newton-Cheh C.
        • et al.
        Multiple biomarkers for the prediction of first major cardiovascular events and death.
        N. Engl. J. Med. 2006; 355: 2631-2639https://doi.org/10.1056/NEJMoa055373
        • Sniderman A.D.
        • Pencina M.
        • Thanassoulis G.
        Limitations in the conventional assessment of the incremental value of predictors of cardiovascular risk.
        Curr. Opin. Lipidol. 2015; 26: 210-214https://doi.org/10.1097/MOL.0000000000000181
        • Sniderman A.D.
        • Furberg C.D.
        Age as a modifiable risk factor for cardiovascular disease.
        Lancet. 2008; 371: 1547-1549https://doi.org/10.1016/S0140-6736(08)60313-X
        • Pencina M.J.
        • Navar-Boggan A.M.
        • D'Agostino R.B.
        • Williams K.
        • Neely B.
        • Sniderman A.D.
        • et al.
        Application of new cholesterol guidelines to a population-based sample.
        N. Engl. J. Med. 2014; 370: 1422-1431https://doi.org/10.1056/NEJMoa1315665
        • Ference B.A.
        • Ginsberg H.N.
        • Graham I.
        • Ray K.K.
        • Packard C.J.
        • Bruckert E.
        • et al.
        Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel.
        Eur. Heart J. 2017; 38: 2459-2472https://doi.org/10.1093/eurheartj/ehx144
        • Sniderman A.D.
        • D'Agostino R.B.
        • Pencina M.J.
        The role of physicians in the era of predictive analytics.
        Jama. 2015; 314: 25-26https://doi.org/10.1001/jama.2015.6177
        • Borén J.
        • Williams K.J.
        The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity.
        Curr. Opin. Lipidol. 2016; 27: 473-483https://doi.org/10.1097/MOL.0000000000000330
        • Que X.
        • Hung M.-Y.
        • Yeang C.
        • Gonen A.
        • Prohaska T.A.
        • Sun X.
        • et al.
        Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice.
        Nature. 2018; 558: 301-306https://doi.org/10.1038/s41586-018-0198-8
        • Ketelhuth D.F.J.
        • Rios F.J.O.
        • Wang Y.
        • Liu H.
        • Johansson M.E.
        • Fredrikson G.N.
        • et al.
        Identification of a danger-associated peptide from apolipoprotein B100 (ApoBDS-1) that triggers innate proatherogenic responses.
        Circulation. 2011; 124 (2433–43– 1–7)https://doi.org/10.1161/CIRCULATIONAHA.111.051599
        • Avraham-Davidi I.
        • Ely Y.
        • Pham V.N.
        • Castranova D.
        • Grunspan M.
        • Malkinson G.
        • et al.
        ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1.
        Nat. Med. 2012; 18: 967-973https://doi.org/10.1038/nm.2759
        • Gisterå A.
        • Ketelhuth D.F.J.
        Lipid-driven immunometabolic responses in atherosclerosis.
        Curr. Opin. Lipidol. 2018; 29: 375-380https://doi.org/10.1097/MOL.0000000000000540
        • Collins R.
        • Reith C.
        • Emberson J.
        • Armitage J.
        • Baigent C.
        • Blackwell L.
        • et al.
        Interpretation of the evidence for the efficacy and safety of statin therapy.
        Lancet. 2016; 388: 2532-2561https://doi.org/10.1016/S0140-6736(16)31357-5
        • Thanassoulis G.
        • Williams K.
        • Ye K.
        • Brook R.
        • Couture P.
        • Lawler P.R.
        • et al.
        Relations of change in plasma levels of LDL-C, non-HDL-C and apoB with risk reduction from statin therapy: a meta-analysis of randomized trials.
        J. Am. Heart Assoc. 2014; 3e000759https://doi.org/10.1161/JAHA.113.000759
        • Sniderman A.D.
        Differential response of cholesterol and particle measures of atherogenic lipoproteins to LDL-lowering therapy: implications for clinical practice.
        J. Clin. Lipidol. 2008; 2: 36-42https://doi.org/10.1016/j.jacl.2007.12.006
        • European Association for Cardiovascular Prevention & Rehabilitation
        • Reiner Z.
        • Catapano A.L.
        • De Backer G.
        • Graham I.
        • Taskinen M.-R.
        • et al.
        ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European society of Cardiology (ESC) and the European atherosclerosis society (EAS).
        Eur. Heart J. 2011; 32: 1769-1818https://doi.org/10.1093/eurheartj/ehr158
        • Anderson T.J.
        • Grégoire J.
        • Hegele R.A.
        • Couture P.
        • Mancini G.B.J.
        • McPherson R.
        • et al.
        Update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult.
        Can. J. Cardiol. 2012; 29: 151-167https://doi.org/10.1016/j.cjca.2012.11.032
        • Sathiyakumar V.
        • Park J.
        • Quispe R.
        • Elshazly M.B.
        • Michos E.D.
        • Banach M.
        • et al.
        Impact of novel LDL-C assessment on the utility of secondary non-HDL-C and ApoB targets in selected worldwide dyslipidemia guidelines.
        Circulation. 2018; 117 (CIRCULATIONAHA): 032463https://doi.org/10.1161/CIRCULATIONAHA.117.032463
        • Friedewald W.T.
        • Levy R.I.
        • Fredrickson D.S.
        Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.
        Clin. Chem. 1972; 18: 499-502
        • Oliveira M.J.A.
        • van Deventer H.E.
        • Bachmann L.M.
        • Warnick G.R.
        • Nakajima K.
        • Nakamura M.
        • et al.
        Evaluation of four different equations for calculating LDL-C with eight different direct HDL-C assays.
        Clin. Chim. Acta. 2013; 423: 135-140https://doi.org/10.1016/j.cca.2013.04.009
        • Martin S.S.
        • Blaha M.J.
        • Elshazly M.B.
        • Toth P.P.
        • Kwiterovich P.O.
        • Blumenthal R.S.
        • et al.
        Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile.
        Jama. 2013; 310: 2061-2068https://doi.org/10.1001/jama.2013.280532
        • Miller W.G.
        • Myers G.L.
        • Sakurabayashi I.
        • Bachmann L.M.
        • Caudill S.P.
        • Dziekonski A.
        • et al.
        Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures.
        Clin. Chem. 2010; 56: 977-986https://doi.org/10.1373/clinchem.2009.142810
        • AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices
        • Cole T.G.
        • Contois J.H.
        • Csako G.
        • McConnell J.P.
        • Remaley A.T.
        • et al.
        Association of apolipoprotein B and nuclear magnetic resonance spectroscopy-derived LDL particle number with outcomes in 25 clinical studies: assessment by the AACC Lipoprotein and Vascular Diseases Division Working Group on Best Practices.
        Clin. Chem. 2013; 59: 752-770https://doi.org/10.1373/clinchem.2012.196733
        • Langlois M.R.
        • Chapman M.J.
        • Cobbaert C.
        • Mora S.
        • Remaley A.T.
        • Ros E.
        • et al.
        Quantifying atherogenic lipoproteins: current and future challenges in the era of personalized medicine and very low concentrations of LDL cholesterol. A consensus statement from EAS and EFLM.
        Clin. Chem. 2018; 64: 1006-1033https://doi.org/10.1373/clinchem.2018.287037
        • Marcovina S.M.
        • Albers J.J.
        • Kennedy H.
        • Mei J.V.
        • Henderson L.O.
        • Hannon W.H.
        International federation of clinical chemistry standardization project for measurements of apolipoproteins A-I and B. IV. Comparability of apolipoprotein B values by use of international reference material.
        Clin. Chem. 1994; 40: 586-592
        • Cao J.
        • Steffen B.T.
        • Guan W.
        • Remaley A.T.
        • McConnell J.P.
        • Palamalai V.
        • et al.
        A comparison of three apolipoprotein B methods and their associations with incident coronary heart disease risk over a 12-year follow-up period: the Multi-Ethnic Study of Atherosclerosis.
        J. Clin. Lipidol. 2018; 12: 300-304https://doi.org/10.1016/j.jacl.2017.12.013
        • Robinson J.G.
        • Williams K.J.
        • Gidding S.
        • Borén J.
        • Tabas I.
        • Fisher E.A.
        • et al.
        Eradicating the burden of atherosclerotic cardiovascular disease by lowering apolipoprotein B lipoproteins Earlier in life.
        J. Am. Heart Assoc. 2018; 7https://doi.org/10.1161/JAHA.118.009778
        • Varbo A.
        • Benn M.
        • Tybjaerg-Hansen A.
        • Nordestgaard B.G.
        Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation.
        Circulation. 2013; 128: 1298-1309https://doi.org/10.1161/CIRCULATIONAHA.113.003008
        • Wulff A.B.
        • Nordestgaard B.G.
        • Tybjaerg-Hansen A.
        APOC3 loss-of-function mutations, remnant cholesterol, low-density lipoprotein cholesterol, and cardiovascular risk: mediation- and meta-analyses of 137 895 individuals.
        Arterioscler. Thromb. Vasc. Biol. 2018; 38: 660-668https://doi.org/10.1161/ATVBAHA.117.310473
        • Williams K.J.
        • Tabas I.
        • Fisher E.A.
        How an artery heals.
        Circ. Res. 2015; 117: 909-913https://doi.org/10.1161/CIRCRESAHA.115.307609
        • Moore K.J.
        • Sheedy F.J.
        • Fisher E.A.
        Macrophages in atherosclerosis: a dynamic balance.
        Nat. Rev. Immunol. 2013; 13: 709-721https://doi.org/10.1038/nri3520
        • Tabas I.
        Russell ross memorial lecture in vascular biology: molecular-cellular mechanisms in the progression of atherosclerosis.
        arterioscler. Thromb. Vasc. Biol. 2016; 37: 183-189https://doi.org/10.1161/ATVBAHA.116.308036
        • Salfati E.
        • Nandkeolyar S.
        • Fortmann S.P.
        • Sidney S.
        • Hlatky M.A.
        • Quertermous T.
        • et al.
        Susceptibility loci for clinical coronary artery disease and subclinical coronary atherosclerosis throughout the life-course.
        Circ. Cardiovasc. Genet. 2015; 8: 803-811https://doi.org/10.1161/CIRCGENETICS.114.001071
        • Fernández-Friera L.
        • Fuster V.
        • López-Melgar B.
        • Oliva B.
        • García-Ruiz J.M.
        • Mendiguren J.
        • et al.
        Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors.
        J. Am. Coll. Cardiol. 2017; 70: 2979-2991https://doi.org/10.1016/j.jacc.2017.10.024
        • Cohen J.C.
        • Boerwinkle E.
        • Mosley T.H.
        • Hobbs H.H.
        Sequence variations in PCSK9, low LDL, and protection against coronary heart disease.
        N. Engl. J. Med. 2006; 354: 1264-1272https://doi.org/10.1056/NEJMoa054013
        • Stone N.J.
        • Robinson J.G.
        • Lichtenstein A.H.
        • Bairey Merz C.N.
        • Blum C.B.
        • Eckel R.H.
        • et al.
        ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.
        J. Am. Coll. Cardiol. 2013; 63: 2889-2934https://doi.org/10.1016/j.jacc.2013.11.002
        • Authors/Task Force Members
        • Catapano A.L.
        • Graham I.
        • De Backer G.
        • Wiklund O.
        • Chapman M.J.
        • et al.
        ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European society of Cardiology (ESC) and European atherosclerosis society (EAS) developed with the special contribution of the European assocciation for cardiovascular prevention & rehabilitation (EACPR).
        Atherosclerosis. 2016; 253: 281-344https://doi.org/10.1016/j.atherosclerosis.2016.08.018
        • Orringer C.E.
        • Jacobson T.A.
        • Saseen J.J.
        • Brown A.S.
        • Gotto A.M.
        • Ross J.L.
        • et al.
        Update on the use of PCSK9 inhibitors in adults: recommendations from an expert panel of the national lipid association.
        J. Clin. Lipidol. 2017; 11: 880-890https://doi.org/10.1016/j.jacl.2017.05.001
        • Jacobson T.A.
        • Ito M.K.
        • Maki K.C.
        • Orringer C.E.
        • Bays H.E.
        • Jones P.H.
        • et al.
        National lipid association recommendations for patient-centered management of dyslipidemia: part 1--full report.
        J. Clin. Lipidol. 2015; 9: 129-169https://doi.org/10.1016/j.jacl.2015.02.003
        • Jacobson T.A.
        • Maki K.C.
        • Orringer C.E.
        • Jones P.H.
        • Kris-Etherton P.
        • Sikand G.
        • et al.
        National lipid association recommendations for patient-centered management of dyslipidemia: Part 2.
        J. Clin. Lipidol. 2015; 9 (S1–122.e1)https://doi.org/10.1016/j.jacl.2015.09.002
        • Catapano A.L.
        • Graham I.
        • De Backer G.
        • Wiklund O.
        • Chapman M.J.
        • Drexel H.
        • et al.
        ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European society of Cardiology (ESC) and European atherosclerosis society (EAS)developed with the special contribution of the European assocciation for cardiovascular prevention & rehabilitation (EACPR).
        Eur. Heart J. 2016; 37: 2999-3058https://doi.org/10.1093/eurheartj/ehw272
        • Goff D.C.
        • Lloyd-Jones D.M.
        • Bennett G.
        • Coady S.
        • D'Agostino R.B.
        • Gibbons R.
        • et al.
        ACC/AHA guideline on the assessment of cardiovascular risk: a report of the american College of cardiology/american heart association task force on practice guidelines.
        J. Am. Coll. Cardiol. 2013; 63: 2935-2959https://doi.org/10.1016/j.jacc.2013.11.005
        • Gidding S.S.
        • Rana J.S.
        • Prendergast C.
        • McGill H.
        • Carr J.J.
        • Liu K.
        • et al.
        Pathobiological determinants of atherosclerosis in youth (PDAY) risk score in young adults predicts coronary artery and abdominal aorta calcium in middle age: the CARDIA study.
        Circulation. 2016; 133: 139-146https://doi.org/10.1161/CIRCULATIONAHA.115.018042
        • Yeboah J.
        • Polonsky T.S.
        • Young R.
        • McClelland R.L.
        • Delaney J.C.
        • Dawood F.
        • et al.
        Utility of nontraditional risk markers in individuals ineligible for statin therapy according to the 2013 american College of cardiology/american heart association cholesterol guidelines.
        Circulation. 2015; 132: 916-922https://doi.org/10.1161/CIRCULATIONAHA.115.016846
        • Boekholdt S.M.
        • Arsenault B.J.
        • Mora S.
        • Pedersen T.R.
        • LaRosa J.C.
        • Nestel P.J.
        • et al.
        Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis.
        Jama. 2012; 307: 1302-1309https://doi.org/10.1001/jama.2012.366
        • Robinson J.G.
        • Smith B.
        • Maheshwari N.
        • Schrott H.
        Pleiotropic effects of statins: benefit beyond cholesterol reduction? A meta-regression analysis.
        J. Am. Coll. Cardiol. 2005; 46: 1855-1862https://doi.org/10.1016/j.jacc.2005.05.085
        • Robinson J.G.
        • Wang S.
        • Smith B.J.
        • Jacobson T.A.
        Meta-analysis of the relationship between non-high-density lipoprotein cholesterol reduction and coronary heart disease risk.
        J. Am. Coll. Cardiol. 2009; 53: 316-322https://doi.org/10.1016/j.jacc.2008.10.024
        • Silverman M.G.
        • Ference B.A.
        • Im K.
        • Wiviott S.D.
        • Giugliano R.P.
        • Grundy S.M.
        • et al.
        Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis.
        Jama. 2016; 316: 1289-1297https://doi.org/10.1001/jama.2016.13985
        • Robinson J.G.
        • Wang S.
        • Jacobson T.A.
        Meta-analysis of comparison of effectiveness of lowering apolipoprotein B versus low-density lipoprotein cholesterol and nonhigh-density lipoprotein cholesterol for cardiovascular risk reduction in randomized trials.
        Am. J. Cardiol. 2012; 110: 1468-1476https://doi.org/10.1016/j.amjcard.2012.07.007
        • Cannon C.P.
        • Blazing M.A.
        • Giugliano R.P.
        • McCagg A.
        • White J.A.
        • Theroux P.
        • et al.
        Ezetimibe added to statin therapy after acute coronary syndromes.
        N. Engl. J. Med. 2015; 372: 2387-2397https://doi.org/10.1056/NEJMoa1410489
        • Sabatine M.S.
        • Giugliano R.P.
        • Keech A.C.
        • Honarpour N.
        • Wiviott S.D.
        • Murphy S.A.
        • et al.
        Evolocumab and clinical outcomes in patients with cardiovascular disease.
        N. Engl. J. Med. 2017; 376: 1713-1722https://doi.org/10.1056/NEJMoa1615664
      1. G. Schwartz, M. Szarek, D. Bhatt, V. Bittner, R. Diaz, J. Edelberg, et al., The ODYSSEY OUTCOMES trial: topline results alirocumab in patients after acute coornary syndrome, in: American College of Cardiology - 7th Scientific Sessions, n.d.

        • Robinson J.G.
        • Farnier M.
        • Krempf M.
        • Bergeron J.
        • Luc G.
        • Averna M.
        • et al.
        Efficacy and safety of alirocumab in reducing lipids and cardiovascular events.
        N. Engl. J. Med. 2015; 372: 1489-1499https://doi.org/10.1056/NEJMoa1501031
        • Sabatine M.S.
        • Giugliano R.P.
        • Wiviott S.D.
        • Raal F.J.
        • Blom D.J.
        • Robinson J.
        • et al.
        Efficacy and safety of evolocumab in reducing lipids and cardiovascular events.
        N. Engl. J. Med. 2015; 372: 1500-1509https://doi.org/10.1056/NEJMoa1500858
        • Robinson J.G.
        • Huijgen R.
        • Ray K.
        • Persons J.
        • Kastelein J.J.P.
        • Pencina M.J.
        Determining when to add nonstatin therapy: a quantitative approach.
        J. Am. Coll. Cardiol. 2016; 68: 2412-2421https://doi.org/10.1016/j.jacc.2016.09.928
        • Cholesterol Treatment Trialists' (CTT) Collaborators
        • Kearney P.M.
        • Blackwell L.
        • Collins R.
        • Keech A.
        • Simes J.
        • et al.
        Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis.
        Lancet. 2008; 371: 117-125https://doi.org/10.1016/S0140-6736(08)60104-X