Advertisement
Clinical and scientific debates on atherosclerosis| Volume 283, P7-12, April 2019

Download started.

Ok

HDL cholesterol and ASCVD risk stratification: A debate

  • Philip Barter
    Affiliations
    Lipid Research Group, School of Medical Sciences, The University of New South Wales Kensington, NSW, Australia
    Search for articles by this author
  • Jacques Genest
    Correspondence
    Corresponding author. McGill University Health Center/Royal Victoria Hospital, 1001 boul. Decarie Bloc E, EM12212, Montréal, Québec, H4A 3J1, Canada.
    Affiliations
    McGill University Health Center/Royal Victoria Hospital Montréal, Québec, H4A 3J1, Canada
    Search for articles by this author

      Highlights

      • HDL-C is a strong, graded and coherent biomarker of cardiovascular health.
      • A very high HDL-C is not necessarily protective against ASCVD.
      • Mendelian randomization does not support HDL-C as a causal cardiovascular risk factor.
      • The clinical trial data does not support raising HDL-C pharmacologically to decrease outcomes.
      • HDL function (e.g. cellular cholesterol efflux) may be the way forward.

      Abstract

      This debate is designed to review the usefulness of the cholesterol mass within high-density lipoproteins (HDL-C) to predict the risk of atherosclerotic cardiovascular disease (ASCVD).

      Pro

      There is much current confusion regarding the role of high density lipoproteins (HDLs) in atherosclerotic cardiovascular disease (ASCVD). While it is an established fact that the concentration of HDL cholesterol is a robust, independent, inverse predictor of the risk of having an ASCVD event, recent studies have questioned whether HDLs actually protect against ASCVD. But this in no way challenges that fact that the concentration of HDL cholesterol is a powerful tool to be used in risk stratification of ASCVD.

      Con

      The measurement of HDL-C in the 1970 heralded a new area of promising and exciting research in cardiovascular disease. The measurement of HDL-C has been part of cardiovascular risk stratification for the past three decades. HDL have pleotropic beneficial effects on the arterial vasculature and promote the removal of excess cholesterol from lipid laden macrophages. These effects are only weakly correlated with HDL-C levels. While HDL-C is associated with atherosclerotic cardiovascular disease, the epidemiological relationship falters at the extremes of measurement. Mendelian randomization does not support a link of causality and to date, attempts to raise HDL-C pharmacologically have not yielded the expected outcomes. The time has come to consider abandoning HDL-C for cardiovascular risk prediction and clinical decision making and to double efforts to develop better biomarkers of HDL function.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Enger S.C.
        • Hjermann I.
        • Foss O.P.
        • Helgeland A.
        • Holme I.
        • Leren P.
        • et al.
        High density lipoprotein cholesterol and myocardial infarction or sudden coronary death: a prospective case-control study in middle-aged men of the Oslo study.
        Artery. 1979; 5: 170-181
        • Gordon D.J.
        • Knoke J.
        • Probstfield J.L.
        • Superko R.
        • Tyroler H.A.
        High-density lipoprotein cholesterol and coronary heart disease in hypercholesterolemic men: the lipid research clinics coronary primary prevention trial.
        Circulation. 1986; 74: 1217-1225
        • Gordon D.J.
        • Probstfield J.L.
        • Garrison R.J.
        • Neaton J.D.
        • Castelli W.P.
        • Knoke J.D.
        • et al.
        High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies.
        Circulation. 1989; 79: 8-15
        • Miller M.
        • Seidler A.
        • Kwiterovich P.O.
        • Pearson T.A.
        Long-term predictors of subsequent cardiovascular events with coronary artery disease and 'desirable' levels of plasma total cholesterol.
        Circulation. 1992; 86: 1165-1170
        • Miller N.E.
        • Thelle D.S.
        • Forde O.H.
        • Mjos O.D.
        The Tromso heart-study. High-density lipoprotein and coronary heart-disease: a prospective case-control study.
        Lancet. 1977; 1: 965-968
        • Pekkanen J.
        • Linn S.
        • Heiss G.
        • Suchindran C.M.
        • Leon A.
        • Rifkind B.M.
        • et al.
        Ten- year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease.
        N. Engl. J. Med. 1990; 322: 1700-1707
        • Jacobs Jr., D.R.
        • Mebane I.L.
        • Bangdiwala S.I.
        • Criqui M.H.
        • Tyroler H.A.
        High density lipoprotein cholesterol as a predictor of cardiovascular disease mortality in men and women: the follow-up study of the Lipid Research Clinics Prevalence Study.
        Am. J. Epidemiol. 1990; 131: 32-47
        • Pedersen T.R.
        • Olsson A.G.
        • Faergeman O.
        • Kjekshus J.
        • Wedel H.
        • Berg K.
        • et al.
        Lipoprotein changes and reduction in the incidence of major coronary heart disease events in the Scandinavian Simvastatin Survival Study (4S).
        Circulation. 1998; 97: 1453-1460
        • Sacks F.M.
        • Tonkin A.M.
        • Shepherd J.
        • Braunwald E.
        • Cobbe S.
        • Hawkins C.M.
        • et al.
        Effect of pravastatin on coronary disease events in subgroups defined by coronary risk factors: the Prospective Pravastatin Pooling Project.
        Circulation. 2000; 102: 1893-1900
        • Simes R.J.
        • Marschner I.C.
        • Hunt D.
        • Colquhoun D.
        • Sullivan D.
        • Stewart R.A.
        • et al.
        Relationship between lipid levels and clinical outcomes in the Long-term Intervention with Pravastatin in Ischemic Disease (LIPID) Trial: to what extent is the reduction in coronary events with pravastatin explained by on-study lipid levels?.
        Circulation. 2002; 105: 1162-1169
        • Barter P.
        • Gotto A.M.
        • LaRosa J.C.
        • Maroni J.
        • Szarek M.
        • Grundy S.M.
        • et al.
        HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events.
        N. Engl. J. Med. 2007; 357: 1301-1310
        • Emerging Risk Factors Collaboration
        • Di Angelantonio E.
        • Sarwar N.
        • Perry P.
        • Kaptoge S.
        • Ray K.K.
        • et al.
        Major lipids, apolipoproteins, and risk of vascular disease.
        JAMA. 2009 Nov 11; 302 (1993-200)
        • Badimon J.J.
        • Badimon L.
        • Fuster V.
        Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit.
        J. Clin. Invest. 1990; 85: 1234-1241
        • Paszty C.
        • Maeda N.
        • Verstuyft J.
        • Rubin E.M.
        Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice.
        J. Clin. Invest. 1994; 94: 899-903
        • Rubin E.M.
        • Krauss R.M.
        • Spangler E.A.
        • Verstuyft J.G.
        • Clift S.M.
        Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI.
        Nature. 1991; 353: 265-267
        • Plump A.S.
        • Scott C.J.
        • Breslow J.L.
        Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse.
        Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 9607-9611
        • Voight B.F.
        • Peloso G.M.
        • Orho-Melander M.
        • Frikke-Schmidt R.
        • Barbalic M.
        • et al.
        Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study.
        Lancet. 2012 Aug 11; 380: 572-580
        • Duffy D.
        • Rader D.J.
        Emerging therapies targeting high-density lipoprotein metabolism and reverse cholesterol transport.
        Circulation. 2006; 113: 1140-1150
        • Barter P.J.
        • Nicholls S.
        • Rye K.A.
        • Anantharamaiah G.M.
        • Navab M.
        • Fogelman A.M.
        Antiinflammatory properties of HDL.
        Circ. Res. 2004; 95: 764-772
        • Cockerill G.W.
        • Rye K.A.
        • Gamble J.R.
        • Vadas M.A.
        • Barter P.J.
        High-density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 1987-1994
        • Mineo C.
        • Deguchi H.
        • Griffin J.H.
        • Shaul P.W.
        Endothelial and antithrombotic actions of HDL.
        Circ. Res. 2006; 98: 1352-1364
        • Bisoendial R.J.
        • Hovingh G.K.
        • Levels J.H.
        • Lerch P.G.
        • Andresen I.
        • Hayden M.R.
        • et al.
        Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein.
        Circulation. 2003; 107: 2944-2948
        • Seetharam D.
        • Mineo C.
        • Gormley A.K.
        • Gibson L.L.
        • Vongpatanasin W.
        • Chambliss K.L.
        • et al.
        High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I.
        Circ. Res. 2006; 98: 63-72
        • Tso C.
        • Martinic G.
        • Fan W.H.
        • Rogers C.
        • Rye K.A.
        • Barter P.J.
        High-density lipoproteins enhance progenitor-mediated endothelium repair in mice.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 1144-1149
        • 25Sumi M.
        • Sata M.
        • Miura S.
        • Rye K.A.
        • Toya N.
        • Kanaoka Y.
        • et al.
        Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 813-818
        • Yvan-Charvet L.
        • Pagler T.
        • Gautier E.L.
        • Avagyan S.
        • Siry R.L.
        • Han S.
        • et al.
        ATP- binding cassette transporters and HDL suppress hematopoietic stem cell proliferation.
        Science. 2010; 328: 1689-1693
        • Drew B.G.
        • Duffy S.J.
        • Formosa M.F.
        • Natoli A.K.
        • Henstridge D.C.
        • Penfold S.A.
        • et al.
        High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus.
        Circulation. 2009; 119: 2103-2111
        • Drew B.G.
        • Rye K.A.
        • Duffy S.J.
        • Barter P.
        • Kingwell B.A.
        The emerging role of HDL in glucose metabolism.
        Nat. Rev. Endocrinol. 2012; 8: 237-245
        • Rye K.A.
        • Barter P.J.
        Formation and metabolism of prebeta-migrating, lipid- poor apolipoprotein A-I.
        Arterioscler. Thromb. Vasc. Biol. 2004; 24: 421-428
        • Rye K.A.
        • Barter P.J.
        Cardioprotective functions of HDLs.
        J. Lipid Res. 2014; 55: 168-179
        • Rosenson R.S.
        • Brewer Jr., H.B.
        • Ansell B.J.
        • Barter P.
        • Chapman M.J.
        • Heinecke J.W.
        • et al.
        Dysfunctional HDL and atherosclerotic cardiovascular disease.
        Nat. Rev. Cardiol. 2016; 13: 48-60
        • Patel S.
        • Di Bartolo B.A.
        • Nakhla S.
        • et al.
        Anti-inflammatory effects of apolipoprotein A-I in the rabbit.
        Atherosclerosis. 2010 Oct; 212: 392-397
        • Duverger N.
        • Kruth H.
        • Emmanuel F.
        • Caillaud J.M.
        • Viglietta C.
        • Castro G.
        • et al.
        Inhibition of atherosclerosis development in cholesterol-fed human apolipoprotein A-I-transgenic rabbits.
        Circulation. 1996; 94: 713-717
        • Sugano M.
        • Makino N.
        • Sawada S.
        • Otsuka S.
        • Watanabe M.
        • Okamoto H.
        • et al.
        Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits.
        J. Biol. Chem. 1998; 273: 5033-5036
        • Rittershaus C.W.
        • Miller D.P.
        • Thomas L.J.
        • Picard M.D.
        • Honan C.M.
        • Emmett C.D.
        • et al.
        Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2106-2112
        • Liaw Y.W.
        • Lin C.Y.
        • Lai Y.S.
        • Yang T.C.
        • Wang C.J.
        • Whang-Peng J.
        • et al.
        A vaccine targeted at CETP alleviates high fat and high cholesterol diet-induced atherosclerosis and non-alcoholic steatohepatitis in rabbit.
        PLoS One. 2014; 9e111529
        • 36Okamoto H.
        • Yonemori F.
        • Wakitani K.
        • Minowa T.
        • Maeda K.
        • Shinkai H.
        A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits.
        Nature. 2000; 406: 203-207
        • 37Morehouse L.A.
        • Sugarman E.D.
        • Bourassa P.A.
        • Sand T.M.
        • Zimetti F.
        • Gao F.
        • et al.
        Inhibition of CETP activity by torcetrapib reduces susceptibility to diet- induced atherosclerosis in New Zealand White rabbits.
        J. Lipid Res. 2007; 48: 1263-1272
        • Nissen S.E.
        • Tsunoda T.
        • Tuzcu E.M.
        • Schoenhagen P.
        • Cooper C.J.
        • Yasin M.
        • et al.
        Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial.
        JAMA. 2003; 290: 2292-2300
        • Canner P.L.
        • Berge K.G.
        • Wenger N.K.
        • Stamler J.
        • Friedman L.
        • Prineas R.J.
        • et al.
        Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin.
        J. Am. Coll. Cardiol. 1986; 8: 1245-1255
        • Boden W.E.
        • Probstfield J.L.
        • Anderson T.
        • Chaitman B.R.
        • Desvignes-Nickens P.
        • et al.
        Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy.
        N. Engl. J. Med. 2011; 365: 2255-2267
        • Landray M.J.
        • Haynes R.
        • Hopewell J.C.
        • Parish S.
        • Aung T.
        • et al.
        Effects of extended-release niacin with laropiprant in high-risk patients.
        N. Engl. J. Med. 2014; 371: 203-212
        • Barter P.J.
        • Caulfield M.
        • Eriksson M.
        • Grundy S.M.
        • Kastelein J.J.
        • Komajda M.
        • et al.
        Effects of torcetrapib in patients at high risk for coronary events.
        N. Engl. J. Med. 2007; 357: 2109-2122
        • Schwartz G.G.
        • Olsson A.G.
        • Abt M.
        • Ballantyne C.M.
        • Barter P.J.
        • Brumm J.
        • et al.
        Effects of dalcetrapib in patients with a recent acute coronary syndrome.
        N. Engl. J. Med. 2012; 367: 2089-2099
        • Lincoff A.M.
        • Nicholls S.J.
        • Riesmeyer J.S.
        • Barter P.J.
        • Brewer H.B.
        • Fox K.A.A.
        • et al.
        Evacetrapib and cardiovascular outcomes in high-risk vascular disease.
        N. Engl. J. Med. 2017; 376: 1933-1942
        • Besler C.
        • Heinrich K.
        • Rohrer L.
        • Doerries C.
        • Riwanto M.
        • Shih D.M.
        • et al.
        Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease.
        J. Clin. Invest. 2011; 121: 2693-2708
        • Bowman L.
        • Hopewell J.C.
        • Chen F.
        • Wallendszus K.
        • Stevens W.
        • et al.
        Effects of anacetrapib in patients with atherosclerotic vascular disease.
        N. Engl. J. Med. 2017; 377: 1217-1227
        • Madsen C.M.
        • Varbo A.
        • Nordestgaard B.G.
        Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies.
        Eur. Heart J. 2017; 38: 2478-2486
        • Luscher T.F.
        • Landmesser U.
        • von Eckardstein A.
        • Fogelman A.M.
        High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target.
        Circ. Res. 2014; 114: 171-182
        • Shah A.S.
        • Tan L.
        • Long J.L.
        • Davidson W.S.
        Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond.
        J. Lipid Res. 2013; 54: 2575-2585
        • Kontush A.
        • Lhomme M.
        • Chapman M.J.
        Unraveling the complexities of the HDL lipidome.
        J. Lipid Res. 2013; 54: 2950-2963
        • Canfran-Duque A.
        • Lin C.S.
        • Goedeke L.
        • Suarez Y.
        • Fernandez-Hernando C.
        Micro-RNAs and high-density lipoprotein metabolism.
        Arterioscler. Thromb. Vasc. Biol. 2016; 36: 1076-1084
        • Khera A.V.
        • Cuchel M.
        • de la Llera-Moya M.
        • Rodrigues A.
        • Burke M.F.
        • et al.
        Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.
        N. Engl. J. Med. 2011 Jan 13; 364: 127-135
        • Rohatgi A.
        • Khera A.
        • Berry J.D.
        • Givens E.G.
        • Ayers C.R.
        • et al.
        HDL cholesterol efflux capacity and incident cardiovascular events.
        N. Engl. J. Med. 2014 Dec 18; 371: 2383-2393
        • Khera A.V.
        • Demler O.
        • Adelman S.J.
        • Collins H.L.
        • Glynn R.J.
        • et al.
        Cholesterol efflux capacity, HDL particle number, and incident cardiovascular events. An analysis from the JUPITER trial (Justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin).
        Circulation. 2017 Apr 27; 135: 2494-2504
        • DiDonato J.A.
        • Huang Y.
        • Aulak K.S.
        • Even-Or O.
        • Gerstenecker G.
        • et al.
        Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma.
        Circulation. 2013; 128: 1644-1655
        • Huang Y.
        • DiDonato J.A.
        • Levison B.S.
        • Schmitt D.
        • Li L.
        • Wu Y.
        • Buffa J.
        • Kim T.
        • Gerstenecker G.S.
        • Gu X.
        • et al.
        An abundant dysfunctional apolipoprotein A1 in human atheroma.
        Nat. Med. 2014; 20: 193-203
        • Genest J.
        • Choi H.Y.
        Novel approaches for HDL-directed therapies.
        Curr. Atheroscler. Rep. 2017 Nov 4; 19: 55
        • Ko D.T.
        • Alter D.A.
        • Guo H.
        • Koh M.
        • Lau G.
        • et al.
        High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: the CANHEART study.
        J. Am. Coll. Cardiol. 2016 Nov 8; 68: 2073-2083
        • Boekholdt S.M.
        • Arsenault B.J.
        • Hovingh G.K.
        • Mora S.
        • Pedersen T.R.
        • et al.
        Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: a meta-analysis.
        Circulation. 2013 Oct 1; 128: 1504-1512
        • Bowe B.
        • Xie Y.
        • Xian H.
        • Balasubramanian S.
        • Zayed M.A.
        • Al-Aly Z.
        High density lipoprotein cholesterol and the risk of all-cause mortality among U.S. Veterans.
        Clin. J. Am. Soc. Nephrol. 2016 Oct 7; 11: 1784-1793
        • Ridker P.M.
        • Genest J.
        • Boekholdt S.M.
        • Libby P.
        • Gotto A.M.
        • et al.
        JUPITER Trial Study Group. HDL cholesterol and residual risk of first cardiovascular events after treatment with potent statin therapy: an analysis from the JUPITER trial.
        Lancet. 2010 Jul 31; 376: 333-339
        • Mortensen M.B.
        • Afzal S.
        • Nordestgaard B.G.
        • Falk E.
        The high-density lipoprotein-adjusted SCORE model worsens SCORE-based risk classification in a contemporary population of 30,824 Europeans: the Copenhagen General Population Study.
        Eur. Heart J. 2015 Sep 21; 36: 2446-2453
        • Frikke-Schmidt R.
        • Nordestgaard B.G.
        • Stene M.C.
        • Sethi A.A.
        • Remaley A.T.
        • et al.
        Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease.
        JAMA. 2008; 299: 2524-2532
        • Holmes M.V.
        • Asselbergs F.W.
        • Palmer T.M.
        • Drenos F.
        • Lanktree M.B.
        • et al.
        Mendelian randomization of blood lipids for coronary heart disease.
        Eur. Heart J. 2015 Mar 1; 36: 539-550
        • Geller A.S.
        • Polisecki E.Y.
        • Diffenderfer M.R.
        • Asztalos B.F.
        • Karathanasis S.K.
        • et al.
        Genetic and secondary causes of severe HDL deficiency and cardiovascular disease.
        J. Lipid Res. 2018 Dec; 59: 2421-2435
        • Jun M.
        • Foote C.
        • Lv J.
        • Neal B.
        • Patel A.
        • et al.
        Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis.
        Lancet. 2010; 375: 1875-1884
        • Lincoff A.M.
        • Tardif J.C.
        • Schwartz G.G.
        • Nicholls S.J.
        • Rydén L.
        • et al.
        AleCardio Investigators. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial.
        JAMA. 2014 Apr 16; 311: 1515-1525
        • Keene D.
        • Price C.
        • Shun-Shin M.J.
        • Francis D.P.
        Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients.
        BMJ. 2014; 349: g4379
        • Picaud S.
        • Wells C.
        • Felletar I.
        • Brotherton D.
        • Martin S.
        • et al.
        RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 19754-19759
        • Choi H.
        • Ruel I.
        • Malina A.
        • Garrod D.R.
        • Oda M.
        • et al.
        Desmocollin 1 is abundantly expressed in atherosclerosis and impairs HDL biogenesis.
        Eur. Heart J. 2018 Apr 7; 39: 1194-1202