Advertisement

Dual inhibition of endothelial miR-92a-3p and miR-489-3p reduces renal injury-associated atherosclerosis

      Highlights

      • Aortic endothelial miR-92a-3p levels are increased in a mouse model of renal injury.
      • Dual inhibition of miR-92a-3p and miR-489-3p significantly reduced atherosclerotic lesion area (28.6%) after a week.
      • Dual miRNA inhibition in 5/6Nx;Apoe−/− mice significantly altered TGFβ signaling pathway and STAT3 transcriptional activity.
      • Tgfb2 and Fam220a are novel targets of miR-489-3p and miR-92a-3p, respectively.
      • Within human endothelial cells, miR-92a-3p directly regulates Fam220a, which negatively regulates STAT3 activity.

      Abstract

      Background and aims

      Cardiovascular disease (CVD) is the leading cause of death in chronic kidney disease (CKD) patients, however, the underlying mechanisms that link CKD and CVD are not fully understood and limited treatment options exist in this high-risk population. microRNAs (miRNA) are critical regulators of gene expression for many biological processes in atherosclerosis, including endothelial dysfunction and inflammation. We hypothesized that renal injury-induced endothelial miRNAs promote atherosclerosis. Here, we demonstrate that dual inhibition of endothelial miRNAs inhibits atherosclerosis in the setting of renal injury.

      Methods

      Aortic endothelial miRNAs were analyzed in apolipoprotein E-deficient (Apoe−/-) mice with renal damage (5/6 nephrectomy, 5/6Nx) by real-time PCR. Endothelial miR-92a-3p and miR-489-3p were inhibited by locked-nucleic acid (LNA) miRNA inhibitors complexed to HDL.

      Results

      Renal injury significantly increased endothelial miR-92a-3p levels in Apoe−/-;5/6Nx mice. Dual inhibition of miR-92a-3p and miR-489-3p in Apoe−/−;5/6Nx with a single injection of HDL + LNA inhibitors significantly reduced atherosclerotic lesion area by 28.6% compared to HDL + LNA scramble (LNA-Scr) controls. To examine the impact of dual LNA treatment on aortic endothelial gene expression, total RNA sequencing was completed, and multiple putative target genes and pathways were identified to be significantly altered, including the STAT3 immune response pathway. Among the differentially expressed genes, Tgfb2 and Fam220a were identified as putative targets of miR-489-3p and miR-92a-3p, respectively. Both Tgfb2 and Fam220a were significantly increased in aortic endothelium after miRNA inhibition in vivo compared to HDL + LNA-Scr controls. Furthermore, Tgfb2 and Fam220a were validated with gene reporter assays as direct targets of miR-489-3p and miR-92a-3p, respectively. In human coronary artery endothelial cells, over-expression and inhibition of miR-92a-3p decreased and increased FAM220A expression, respectively. Moreover, miR-92a-3p overexpression increased STAT3 phosphorylation, likely through direct regulation of FAM220A, a negative regulator of STAT3 phosphorylation.

      Conclusions

      These results support endothelial miRNAs as therapeutic targets and dual miRNA inhibition as viable strategy to reduce CKD-associated atherosclerosis.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Go A.S.
        • Chertow G.M.
        • Fan D.J.
        • McCulloch C.E.
        • Hsu C.Y.
        Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
        N. Engl. J. Med. 2004; 351: 1296-1305
        • Liu H.
        • Yan L.
        • Ma G.S.
        • Zhang L.P.
        • Gao M.
        • Wang Y.L.
        • Wang S.P.
        • Liu B.C.
        Association of chronic kidney disease and coronary artery disease in 1,010 consecutive patients undergoing coronary angiography.
        J. Nephrol. 2012; 25: 219-224
        • Briasoulis A.
        • Bakris G.L.
        Chronic kidney disease as a coronary artery disease risk equivalent.
        Curr. Cardiol. Rep. 2013; 15
        • Salmon A.H.J.
        • Ferguson J.K.
        • Burford J.L.
        • Gevorgyan H.
        • Nakano D.
        • Harper S.J.
        • Bates D.O.
        • Peti-Peterdi J.
        Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction.
        J. Am. Soc. Nephrol. 2012; 23: 1339-1350
        • Schober A.
        • Weber C.
        Mechanisms of MicroRNAs in atherosclerosis.
        Annu. Rev. Pathol. Mech. 2016; 11: 583-616
        • Laffont B.
        • Rayner K.J.
        MicroRNAs in the pathobiology and therapy of atherosclerosis.
        Can. J. Cardiol. 2017; 33: 313-324
        • Kumar S.
        • Kim C.W.
        • Simmons R.D.
        • Jo H.
        Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs.
        Arterioscler. Thromb. Vasc. Biol. 2014; 34: 2206-2216
        • Bartel D.P.
        MicroRNAs: genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Fang Y.
        • Davies P.F.
        Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium.
        Arterioscler. Thromb. Vasc. Biol. 2012; 32: 979-987
        • Boon R.A.
        • Hergenreider E.
        • Dimmeler S.
        Atheroprotective mechanisms of shear stress-regulated microRNAs.
        Thromb. Haemostasis. 2012; 108: 616-620
        • Liu H.
        • Li G.
        • Zhao W.
        • Hu Y.
        Inhibition of MiR-92a may protect endothelial cells after acute myocardial infarction in rats: role of KLF2/4.
        Med. Sci. Mon. 2016; 22: 2451-2462
        • Bonauer A.
        • Carmona G.
        • Iwasaki M.
        • Mione M.
        • Koyanagi M.
        • Fischer A.
        • Burchfield J.
        • Fox H.
        • Doebele C.
        • Ohtani K.
        • Chavakis E.
        • Potente M.
        • Tjwa M.
        • Urbich C.
        • Zeiher A.M.
        • Dimmeler S.
        MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice.
        Science. 2009; 324: 1710-1713
        • Loyer X.
        • Potteaux S.
        • Vion A.C.
        • Guerin C.L.
        • Boulkroun S.
        • Rautou P.E.
        • Ramkhelawon B.
        • Esposito B.
        • Dalloz M.
        • Paul J.L.
        • Julia P.
        • Maccario J.
        • Boulanger C.M.
        • Mallat Z.
        • Tedgui A.
        Inhibition of microrna-92a prevents endothelial dysfunction and atherosclerosis in mice.
        Circ. Res. 2014; 114: 434-443
        • Shang F.Q.
        • Wang S.C.
        • Hsu C.Y.
        • Miao Y.F.
        • Martin M.
        • Yin Y.J.
        • Wu C.C.
        • Wang Y.T.
        • Wu G.H.
        • Chien S.
        • Huang H.D.
        • Tarng D.C.
        • Shiu Y.T.
        • Cheung A.K.
        • Huang P.H.
        • Chen Z.
        • JYJ Shyy
        MicroRNA-92a mediates endothelial dysfunction in CKD.
        J. Am. Soc. Nephrol. 2017; 28: 3250-3260
        • Zhou X.
        • Qu Z.
        • Zhu C.
        • Lin Z.
        • Huo Y.
        • Wang X.
        • Wang J.
        • Li B.
        Identification of urinary microRNA biomarkers for detection of gentamicin-induced acute kidney injury in rats.
        Regul. Toxicol. Pharmacol. 2016; 78: 78-84
        • Wei Q.
        • Liu Y.
        • Liu P.
        • Hao J.
        • Liang M.
        • Mi Q.S.
        • Chen J.K.
        • Dong Z.
        MicroRNA-489 induction by hypoxia-inducible factor-1 protects against ischemic kidney injury.
        J. Am. Soc. Nephrol. 2016; 27: 2784-2796
        • Yamamoto S.
        • Zuo Y.Q.
        • Ma J.
        • Yancey P.G.
        • Hunley T.E.
        • Motojima M.
        • Fogo A.B.
        • Linton M.F.
        • Fazio S.
        • Ichikawa I.
        • Kon V.
        Oral activated charcoal adsorbent (AST-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein E-deficient mice.
        Nephrol. Dial. Transplant. 2011; 26: 2491-2497
        • Nam D.
        • Ni C.W.
        • Rezvan A.
        • Suo J.
        • Budzyn K.
        • Llanos A.
        • Harrison D.G.
        • Giddens D.P.
        • Jo H.
        A model of disturbed flow-induced atherosclerosis in mouse carotid artery by partial ligation and a simple method of RNA isolation from carotid endothelium.
        JoVE. 2010; 40: 1861
        • Ponda M.P.
        • Barash I.
        • Feig J.E.
        • Fisher E.A.
        • Skolnik E.Y.
        Moderate kidney disease inhibits atherosclerosis regression.
        Atherosclerosis. 2010; 210: 57-62
        • Robertson A.K.L.
        • Rudling M.
        • Zhou X.H.
        • Gorellk L.
        • Flavell R.A.
        • Hansson G.K.
        Disruption of TGF-beta signaling in T cells accelerates atherosclerosis.
        J. Clin. Invest. 2003; 112: 1342-1350
        • Mallat Z.
        • Gojova A.
        • Marchiol-Fournigault C.
        • Esposito B.
        • Kamate C.
        • Merval R.
        • Fradelizi D.
        • Tedgui A.
        Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice.
        Circ. Res. 2001; 89: 930-934
        • Toma I.
        • McCaffrey T.A.
        Transforming growth factor-beta and atherosclerosis: interwoven atherogenic and atheroprotective aspects.
        Cell Tissue Res. 2012; 347: 155-175
        • Dutzmann J.
        • Daniel J.M.
        • Bauersachs J.
        • Hilfiker-Kleiner D.
        • Sedding D.G.
        Emerging translational approaches to target STAT3 signalling and its impact on vascular disease.
        Cardiovasc. Res. 2015; 106: 365-374
        • Ning H.X.
        • Rong Y.
        • Zhang Y.J.
        • Ren F.L.
        • Chang Z.J.
        SIPAR interacts with STAT3 and negatively regulates its activities.
        Prog. Biochem. Biophys. 2005; 32: 173-179
        • Ren F.L.
        • Geng Y.T.
        • Minami T.
        • Qiu Y.
        • Feng Y.R.
        • Liu C.X.
        • Zhao J.
        • Wang Y.Y.
        • Fan X.Z.
        • Wang Y.M.
        • Li M.D.
        • Li J.
        • Chang Z.J.
        Nuclear termination of STAT3 signaling through SIPAR (STAT3-Interacting Protein as a Repressor)-dependent recruitment of T cell tyrosine phosphatase TC-PTP.
        FEBS Lett. 2015; 589: 1890-1896
        • Ren F.L.
        • Su F.Q.
        • Ning H.X.
        • Wang Y.M.
        • Geng Y.T.
        • Feng Y.R.
        • Wang Y.Y.
        • Zhang Y.Q.
        • Jin Z.
        • Li Y.
        • Jia B.Q.
        • Chang Z.J.
        SIPAR negatively regulates STAT3 signaling and inhibits progression of melanoma.
        Cell. Signal. 2013; 25: 2272-2280
        • Lim C.P.
        • Fu X.Y.
        Multiple roles of STAT3 in cardiovascular inflammatory responses.
        Prog. Mol. Biol. Transl. 2012; 106: 63-73
        • Yamamoto S.
        • Zhong J.
        • Yancey P.G.
        • Zuo Y.
        • Linton M.F.
        • Fazio S.
        • Yang H.
        • Narita I.
        • Kon V.
        Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype.
        Atherosclerosis. 2015; 242: 56-64
        • Bro S.
        • Bentzon J.F.
        • Falk E.
        • Andersen C.B.
        • Olgaard K.
        • Nielsen L.B.
        Chronic renal failure accelerates atherogenesis in apolipoprotein E-deficient mice.
        J. Am. Soc. Nephrol. 2003; 14: 2466-2474
        • Bro S.
        • Moeller F.
        • Andersen C.B.
        • Olgaard K.
        • Nielsen L.B.
        Increased expression of adhesion molecules in uremic atherosclerosis in apolipoprotein-E-deficient mice.
        J. Am. Soc. Nephrol. 2004; 15: 1495-1503
        • Baigent C.
        • Landray M.J.
        • Reith C.
        • Emberson J.
        • Wheeler D.C.
        • Tomson C.
        • Wanner C.
        • Krane V.
        • Cass A.
        • Craig J.
        • Neal B.
        • Jiang L.X.
        • Hooi L.S.
        • Levin A.
        • Agodoa L.
        • Gaziano M.
        • Kasiske B.
        • Walker R.
        • Massy Z.A.
        • Feldt-Rasmussen B.
        • Krairittichai U.
        • Ophascharoensuk V.
        • Fellstrom B.
        • Holdaas H.
        • Tesar V.
        • Wiecek A.
        • Grobbee D.
        • de Zeeuw D.
        • Gronhagen-Riska C.
        • Dasgupta T.
        • Lewis D.
        • Herrington W.
        • Mafham M.
        • Majoni W.
        • Wallendszus K.
        • Grimm R.
        • Pedersen T.
        • Tobert J.
        • Armitage J.
        • Baxter A.
        • Bray C.
        • Chen Y.P.
        • Chen Z.M.
        • Hill M.
        • Knott C.
        • Parish S.
        • Simpson D.
        • Sleight P.
        • Young A.
        • Collins R.
        • Investigators S.
        The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial.
        Lancet. 2011; 377: 2181-2192
        • Frutkin A.D.
        • Otsuka G.
        • Stempien-Otero A.
        • Sesti C.
        • Du L.
        • Jaffe M.
        • Dichek H.L.
        • Pennington C.J.
        • Edwards D.R.
        • Nieves-Cintron M.
        • Minter D.
        • Preusch M.
        • Hu J.H.
        • Marie J.C.
        • Dichek D.A.
        TGF-beta 1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice.
        Arterioscl. Throm. Vas. 2009; 29: 1251-1257
        • Wood H.
        FDA approves patisiran to treat hereditary transthyretin amyloidosis.
        Nat. Rev. Neurol. 2018; 14: 570
        • Adams D.
        • Gonzalez-Duarte A.
        • O'Riordan W.D.
        • Yang C.C.
        • Ueda M.
        • Kristen A.V.
        • Tournev I.
        • Schmidt H.H.
        • Coelho T.
        • Berk J.L.
        • Lin K.P.
        • Vita G.
        • Attarian S.
        • Plante-Bordeneuve V.
        • Mezei M.M.
        • Campistol J.M.
        • Buades J.
        • Brannagan 3rd, T.H.
        • Kim B.J.
        • Oh J.
        • Parman Y.
        • Sekijima Y.
        • Hawkins P.N.
        • Solomon S.D.
        • Polydefkis M.
        • Dyck P.J.
        • Gandhi P.J.
        • Goyal S.
        • Chen J.
        • Strahs A.L.
        • Nochur S.V.
        • Sweetser M.T.
        • Garg P.P.
        • Vaishnaw A.K.
        • Gollob J.A.
        • Suhr O.B.
        Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis.
        N. Engl. J. Med. 2018; 379: 11-21
        • Michell D.L.
        • Vickers K.C.
        HDL and microRNA therapeutics in cardiovascular disease.
        Pharmacol. Therapeut. 2016; 168: 43-52
        • Chakraborty C.
        • Sharma A.R.
        • Sharma G.
        • Doss C.G.P.
        • Lee S.S.
        Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine.
        Mol. Ther. Nucleic Acids. 2017; 8: 132-143
        • Stein C.A.
        • Castanotto D.
        FDA-approved oligonucleotide therapies in 2017.
        Mol. Ther. 2017; 25: 1069-1075
        • Kaczmarek J.C.
        • Kowalski P.S.
        • Anderson D.G.
        Advances in the delivery of RNA therapeutics: from concept to clinical reality.
        Genome Med. 2017; 9
        • Vickers K.C.
        • Palmisano B.T.
        • Shoucri B.M.
        • Shamburek R.D.
        • Remaley A.T.
        MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins.
        Nat. Cell Biol. 2011; 13: 423-433
        • Tabet F.
        • Vickers K.C.
        • Cuesta Torres L.F.
        • Wiese C.B.
        • Shoucri B.M.
        • Lambert G.
        • Catherinet C.
        • Prado-Lourenco L.
        • Levin M.G.
        • Thacker S.
        • Sethupathy P.
        • Barter P.J.
        • Remaley A.T.
        • Rye K.A.
        HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells.
        Nat. Commun. 2014; 5: 3292
        • Gille A.
        • D'Andrea D.
        • Tortorici M.A.
        • Hartel G.
        • Wright S.D.
        CSL112 (apolipoprotein A-I [human]) enhances cholesterol efflux similarly in healthy individuals and stable Atherosclerotic disease patients.
        Arterioscl. Throm. Vas. 2018; 38: 953-963
        • Kootte R.S.
        • Smits L.P.
        • van der Valk F.M.
        • Dasseux J.L.
        • Keyserling C.H.
        • Barbaras R.
        • Paolini J.F.
        • Santos R.D.
        • van Dijk T.H.
        • Dallinga-van Thie G.M.
        • Nederveen A.J.
        • Mulder W.J.M.
        • Hovingh G.K.
        • Kastelein J.J.P.
        • Groen A.K.
        • Stroes E.S.
        Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA.
        J. Lipid Res. 2015; 56: 703-712
        • Tardif J.C.
        • Ballantyne C.M.
        • Barter P.
        • Dasseux J.L.
        • Fayad Z.A.
        • Guertin M.C.
        • Kastelein J.J.P.
        • Keyserling C.
        • Klepp H.
        • Koenig W.
        • L'Allier P.L.
        • Lesperance J.
        • Luscher T.F.
        • Paolini J.F.
        • Tawakol A.
        • Waters D.D.
        • Significantly C.H.I.
        Effects of the high-density lipoprotein mimetic agent CER-001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial.
        Eur. Heart J. 2014; 35: 3277-3286
        • Kataoka Y.
        • Andrews J.
        • Duong M.
        • Nguyen T.
        • Schwarz N.
        • Fendler J.
        • Puri R.
        • Butters J.
        • Keyserling C.
        • Paolini J.F.
        • Dasseux J.L.
        • Nicholls S.J.
        Regression of coronary atherosclerosis with infusions of the high-density lipoprotein mimetic CER-001 in patients with more extensive plaque burden.
        Cardiovasc. Diagn. Ther. 2017; 7: 252-263
        • Yamamoto S.
        • Kon V.
        Chronic kidney disease induced dysfunction of high density lipoprotein.
        Clin. Exp. Nephrol. 2014; 18: 251-254
        • Rayner K.J.
        • Sheedy F.J.
        • Esau C.C.
        • Hussain F.N.
        • Temel R.E.
        • Parathath S.
        • van Gils J.M.
        • Rayner A.J.
        • Chang A.N.
        • Suarez Y.
        • Fernandez-Hernando C.
        • Fisher E.A.
        • Moore K.J.
        Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis.
        J. Clin. Invest. 2011; 121: 2921-2931