Advertisement

Glucose-6-phosphate dehydrogenase deficiency and risk of cardiovascular disease: A propensity score-matched study

      Highlights

      • Glucose-6-phosphate dehydrogenase (G6PD) deficiency increases the cardiovascular risk up to 70%.
      • The risk conferred by G6PD deficiency is moderate compared with the impact of primary cardiovascular risk factors.
      • G6PD deficient patients would be eligible for additional preventive measures against cardiovascular disease.

      Abstract

      Background and aims

      Cardiovascular disease (CVD) is associated with high morbidity and mortality. Studies in animal models and humans suggested that glucose‒6‒phosphate dehydrogenase (G6PD) deficiency, a genetically inherited condition causing haemolytic anemia, may be a risk factor for CVD. This hypothesis was tested in a large cohort from Northern Sardinia, where the population prevalence of G6PD deficiency is the highest in the Mediterranean area.

      Methods

      A retrospective observational case‒control study was performed using clinical records of 9604 patients undergoing digestive endoscopy between 2002 and 2017, with a known G6PD status and a complete clinical history including CVD and leading CVD risk factors. To circumvent covariates imbalance between cases and controls, a 1:2 propensity score‒matched analysis was performed.

      Results

      Major predictors of CVD, as expected, were age (OR 1.07; 95%CI 1.06–1.08), male sex (1.63; 95%CI 1.29–2.06), high blood pressure (OR 1.46; 95%CI 1.16–1.84), smoking (OR 3.03; 95%CI 2.42–3.79), diabetes (OR 1.65; 95%CI 1.23–2.21) and hypercholesterolemia (OR 2.20; 95%CI 1.71–2.84). The propensity score matching procedure resulted in 1123 G6PD deficient patients and 2246 patients with normal enzyme activity. When G6PD status was regressed on the CVD, including propensity score as a continuous covariate, an OR of 1.71 (95%CI 1.17–2.49; p = 0.006) was obtained.

      Conclusions

      G6PD deficiency is significantly associated with increased risk of CVD, although the underlying mechanisms are still poorly understood. The loss of important protective pathways against oxidative stress, especially in the early stages of atherogenesis, might play a crucial role.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roth G.A.
        • Johnson C.
        • Abajobir A.
        • Abd-Allah F.
        • Abera S.F.
        • Abyu G.
        • et al.
        Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015.
        J. Am. Coll. Cardiol. 2017; 70: 1-25https://doi.org/10.1016/j.jacc.2017.04.052
        • Mozaffarian D.
        Global scourge of cardiovascular disease. Time for health care systems reform and precision population health.
        JACC (J. Am. Coll. Cardiol.). 2017; 70: 26‒28https://doi.org/10.1016/j.jacc.2017.05.007
        • Nowbar A.N.
        • Howard J.P.
        • Finegold J.A.
        • Asaria P.
        • Francis D.P.
        2014 global geographic analysis of mortality from ischaemic heart disease by country, age and income: statistics from World Health Organisation and United Nations.
        Int. J. Cardiol. 2014; 174: 293-298https://doi.org/10.1016/j.ijcard.2014.04.096
        • Patel S.A.
        • Winkel M.
        • Ali M.K.
        • Narayan K.M.
        • Mehta N.K.
        Cardiovascular mortality associated with 5 leading risk factors: national and state preventable fractions estimated from survey data.
        Ann. Intern. Med. 2015; 163: 245-253https://doi.org/10.7326/M14-1753
        • Lloyd-Jones D.M.
        • Nam B.H.
        • D'Agostino Sr R.B.
        • Levy D.
        • Murabito J.M.
        • Wang T.J.
        • Wilson P.W.
        • O'Donnell C.J.
        Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: a prospective study of parents and offspring.
        J. Am. Med. Assoc. 2004; 291: 2204-2211https://doi.org/10.1001/jama.291.18.2204
        • Kathiresan S.
        • Srivastava D.
        Genetics of human cardiovascular disease.
        Cell. 2012; 148: 1242-1257https://doi.org/10.1016/j.cell.2012.03.001
        • Schunkert H.
        • von Scheidt M.
        • Kessler T.
        • Stiller B.
        • Zeng L.
        • Vilne B.
        Genetics of coronary artery disease in the light of genome-wide association studies.
        Clin. Res. Cardiol. 2018; 107: 2-9https://doi.org/10.1007/s00392-018-1324-1
        • Dai K.
        • Wiernek S.
        • Evans J.P.
        • Runge M.S.
        Genetics of coronary artery disease and myocardial infarction.
        World J. Cardiol. 2016; 8: 1-23https://doi.org/10.4330/wjc.v8.i1.1
        • De Vita G.
        • Alcalay M.
        • Sampietro M.
        • Cappelini M.D.
        • Fiorelli G.
        • Toniolo D.
        Two point mutations are responsible for G6PD polymorphism in Sardinia.
        Am. J. Hum. Genet. 1989; 44 (PMID: 2912069)
        • Fiorelli G.
        • Meloni T.
        • Palomba V.
        • Manoussakis C.
        • Villa S.
        • Cappellini M.D.
        Gene frequency of glucose‒6‒phosphate dehydrogenase (G6PD) polymorphic variants in Sardinia.
        Gene Geogr. 1990; 4 (PMID: 2129615): 139‒142
        • Luzzatto L.
        • Notaro R.
        Malaria. Protecting against bad air.
        Science. 2001; 293: 442-443
        • Cocco P.
        • Todde P.
        • Fornera S.
        • Manca M.B.
        • Manca P.
        • Sias A.R.
        Mortality in a cohort of men expressing the glucose-6-phosphate dehydrogenase deficiency.
        Blood. 1998; 91 (PMID: 9427729): 706‒709
        • Meloni L.
        • Manca M.R.
        • Loddo I.
        • Cioglia G.
        • Cocco P.
        • Schwartz A.
        • Muntoni S.
        • Muntoni S.
        Glucose-6-phosphate dehydrogenase deficiency protects against coronary heart disease.
        J. Inherit. Metab. Dis. 2008; 31: 412-417https://doi.org/10.1007/s10545-008-0704-5
        • Muntoni S.
        • Batetta B.
        • Dessi S.
        • Muntoni S.
        • Pani P.
        Serum lipoprotein profile in the Mediterranean variant of glucose-6-phosphate dehydrogenase deficiency.
        Eur. J. Epidemiol. 1992; 8: 48-53
        • Hecker P.A.
        • Lionetti V.
        • Ribeiro Jr., R.F.
        • Rastogi S.
        • Brown B.H.
        • O'Connell K.A.
        • Cox J.W.
        • Shekar K.C.
        • Gamble D.M.
        • Sabbah H.N.
        • Leopold J.A.
        • Gupte S.A.
        • Recchia F.A.
        • Stanley W.C.
        Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure.
        Circ. Heart. Fail. 2013; 6: 118-126https://doi.org/10.1161/CIRCHEARTFAILURE.112.969576
        • Hecker P.A.
        • Leopold J.A.
        • Gupte S.A.
        • Recchia F.A.
        • Stanley W.C.
        Impact of glucose-6-phosphate dehydrogenase deficiency on the pathophysiology of cardiovascular disease.
        Am. J. Physiol. Heart Circ. Physiol. 2013; 304: H491-H500https://doi.org/10.1152/ajpheart.00721.2012
        • Thomas J.E.
        • Kang S.
        • Wyatt C.J.
        • Kim F.S.
        • Mangelsdorff A.D.
        • Weigel F.K.
        Glucose-6-Phosphate dehydrogenase deficiency is associated with cardiovascular disease in U.S. Military centers.
        Tex. Heart Inst. J. 2018; 45: 144-150https://doi.org/10.14503/THIJ-16-6052
        • Pes G.M.
        • Errigo A.
        • Bitti A.
        • Dore M.P.
        Effect of age, period and birth-cohort on the frequency of glucose-6-phosphate dehydrogenase deficiency in Sardinian adults.
        Ann. Med. 2018; 50: 68-73https://doi.org/10.1080/07853890.2017.1390247
        • Dore M.P.
        • Marras G.
        • Rocchi C.
        • Soro S.
        • Pes G.M.
        G6PD deficiency does not enhance susceptibility for acquiring Helicobacter pylori infection in Sardinian patients.
        PLoS One. 2016; 11: e0160032https://doi.org/10.1371/journal.pone.0160032 PMID: 27467818
        • Dore M.P.
        • Davoli A.
        • Longo N.
        • Marras G.
        • Pes G.M.
        Glucose-6-phosphate dehydrogenase deficiency and risk of colorectal cancer in Northern Sardinia: a retrospective observational study.
        Medicine (Baltim.). 2016; 95: e5254https://doi.org/10.1097/MD.0000000000005254 PMID: 27858887
        • Dore M.P.
        • Vidili G.
        • Marras G.
        • Assy S.
        • Pes G.M.
        Inverse association between glucose‒6‒phosphate dehydrogenase deficiency and hepatocellular carcinoma.
        Asian Pac. J. Cancer Prev. APJCP. 2018; 19: 1069-1073https://doi.org/10.22034/APJCP.2018.19.4.1069
        • Mosca A.
        • Paleari R.
        • Rosti E.
        • Luzzana M.
        • Barella S.
        • Sollaino C.
        • Galanello R.
        Simultaneous automated determination of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities in whole blood.
        Eur. J. Clin. Chem. Clin. Biochem. 1996; 34 (PMID: 8790979): 431-438
        • Pes G.M.
        • Ganau A.
        • Tognotti E.
        • Errigo A.
        • Rocchi C.
        • Dore M.P.
        The association of adult height with the risk of cardiovascular disease and cancer in the population of Sardinia.
        PLoS One. 2018; 13: e0190888https://doi.org/10.1371/journal.pone.0190888
        • Rosenbaum P.R.
        • Rubin D.B.
        The central role of the propensity score in observational studies for causal effects.
        Biometrika. 1983; 70: 41-55
        • Randolph J.J.
        • Falbe K.
        • Manuel A.K.
        • Balloun J.L.
        • Joseph L.
        A step-by-step guide to propensity score matching in R. Practical assessment.
        Res. Eval. 2014; 19: 1‒6
        • Guo S.
        • Fraser M.W.
        Propensity Score Analysis: Statistical Methods and Applications.
        SAGE Publications Inc, 2014
        • Beutler E.
        • Mitchell M.
        Special modifications of the fluorescent screening method for glucose-6-phosphate dehydrogenase deficiency.
        Blood. 1968; 32: 816‒8
        • Thielemans L.
        • Gornsawun G.
        • Hanboonkunupakarn B.
        • Paw M.K.
        • Porn P.
        • Moo P.K.
        • Van Overmeire B.
        • Proux S.
        • Nosten F.
        • McGready R.
        • Carrara V.I.
        • Bancone G G.
        Diagnostic performances of the fluorescent spot test for G6PD deficiency in newborns along the Thailand-Myanmar border: a cohort study.
        Wellcome Open Res. 2018; 3: 3https://doi.org/10.12688/wellcomeopenres.13373.1
        • Mari M.
        • Morales A.
        • Colell A.
        • Garcia-Ruiz C.
        • Fernandez-Checa J.C.
        Mitochondrial glutathione, a key survival antioxidant.
        Antioxidants Redox Signal. 2009; 11: 2685-2700https://doi.org/10.1089/ARS.2009.2695
        • Gotoh N.
        • Graham A.
        • Nikl E.
        • Darley-Usmar V.M.
        Inhibition of glutathione synthesis increases the toxicity of oxidized low-density lipoprotein to human monocytes and macrophages.
        Biochem. J. 1993; 296: 151-154
        • Cannon 3rd, R.O.
        Role of nitric oxide in cardiovascular disease: focus on the endothelium.
        Clin. Chem. 1998; 44: 1809-1819
        • Leopold J.A.
        • Cap A.
        • Scribner A.W.
        • Stanton R.C.
        • Loscalzo J.
        Glucose-6-phosphate dehydrogenase deficiency promotes endothelial oxidant stress and decreases endothelial nitric oxide bioavailability.
        FASEB J. 2001; 15: 1771-1773
        • Parsanathan R.
        • Jain S.K.
        L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes.
        Amino Acids. 2018; 50: 909-921https://doi.org/10.1007/s00726-018-2559-x
        • Nóbrega-Pereira S.
        • Fernandez-Marcos P.J.
        • Brioche T.
        • Gomez-Cabrera M.C.
        • Salvador-Pascual A.
        • Flores J.M.
        • Viña J.
        • Serrano M.
        G6PD protects from oxidative damage and improves healthspan in mice.
        Nat. Commun. 2016; 7: 10894https://doi.org/10.1038/ncomms10894
        • Mordmuller B.
        • Turrini F.
        • Long H.
        • Kremsner P.G.
        • Arese P.
        Neutrophils and monocytes from subjects with the Mediterranean G6PD variant: effect of Plasmodium falciparum hemozoin on G6PD activity, oxidative burst and cytokine production.
        Eur. Cytokine Netw. 1998; 9: 239-245
        • Liese A.M.
        • Siddiqi M.Q.
        • Siegel J.H.
        • Deitch E.A.
        • Spolarics Z.
        Attenuated monocyte IL-10 production in glucose-6-phosphate dehydrogenase-deficient trauma patients.
        Shock. 2002; 18: 18-23
        • Ledeboer A.
        • Brevé J.J.
        • Poole S.
        • Tilders F.J.
        • Van Dam A.M.
        Interleukin-10, interleukin-4, and transforming growth factor-beta differentially regulate lipopolysaccharide-induced production of pro-inflammatory cytokines and nitric oxide in co-cultures of rat astroglial and microglial cells.
        Glia. 2000; 30: 134-142
        • Caligiuri G.
        • Rudling M.
        • Ollivier V.
        • Jacob M.P.
        • Michel J.B.
        • Hansson G.K.
        • Nicoletti A.
        Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice.
        Mol. Med. 2003; 9: 10-17
        • Halvorsen B.
        • Waehre T.
        • Scholz H.
        • Damås J.K.
        • Yndestad A.
        • Aukrust P.
        Role of interleukin-10 in atherogenesis and plaque stabilization.
        Future Cardiol. 2006; 2: 75-83
        • Minucci A.
        • Giardina B.
        • Zuppi C.
        • Capoluongo E.
        Glucose-6-phosphate dehydrogenase laboratory assay: how, when, and why?.
        IUBMB Life. 2009; 61: 27-34https://doi.org/10.1002/iub.137
        • Houston M.
        The role of noninvasive cardiovascular testing, applied clinical nutrition and nutritional supplements in the prevention and treatment of coronary heart disease.
        Ther. Adv. Cardiovasc. Dis. 2018; 12: 85-108https://doi.org/10.1177/1753944717743920