Advertisement

A disintegrin and metalloprotease 22 accelerates neointima formation by activating ERK signaling

  • Shu-Min Zhang
    Affiliations
    Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
    Search for articles by this author
  • Le Jiang
    Affiliations
    Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
    Search for articles by this author
  • Xin Zhao
    Affiliations
    Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
    Search for articles by this author
  • Jian-Feng Liu
    Affiliations
    Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China

    Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
    Search for articles by this author
  • Bin Liang
    Affiliations
    Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
    Search for articles by this author
  • Chang Liu
    Affiliations
    Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
    Search for articles by this author
  • Nian Liu
    Affiliations
    Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
    Search for articles by this author
  • Chang-Sheng Ma
    Correspondence
    Corresponding author. Beijing Anzhen Hospital, Capital Medical University, No. 2 Beijing Anzhen Road, Chaoyang District, Beijing, 100029, PR China.
    Affiliations
    Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
    Search for articles by this author

      Highlights

      • ADAM22, a novel regulator of VSMCs, is dramatically upregulated during the development of neointima formation.
      • ADAM22 enhances neointima formation by promoting VSMC proliferation, migration and phenotypic switching.
      • The exacerbating function of ADAM22 in vascular remodeling is largely dependent on activating ERK signaling.

      Abstract

      Background and aims

      Despite the advantage of arterial expansion for life-threatening vascular pathologies, the occurrence of neointima formation remains a prominent complication, with the underlying mechanisms largely unknown. A disintegrin and metalloprotease 22 (ADAM22) belongs to the family of ADAMs that possesses various biological capacities regulating vascular physiopathology. However, little is known about ADAM22 in vascular smooth muscle cell (VSMC)-mediated neointima formation. Here, we aimed to evaluate the potential functional regulation of ADAM22 in neointima formation and to further explore the underlying mechanisms.

      Methods

      In our study, platelet-derived growth factor-BB (PDGF-BB)-induced VSMC proliferation was examined using a 5-bromo-2′-deoxyuridine (BrdU) incorporation assay and a cell counting kit-8 (CCK8) assay, while VSMC migration was detected using a modified Boyden chamber method and a scratch-wound assay. The functional role of ADAM22 in neointima formation was evaluated based on a left carotid artery wire injury model in mice at 14 and 28 days.

      Results

      ADAM22 was significantly up-regulated in both PDGF-BB-challenged VSMCs and restenotic arteries of mice. When ADAM22 was overexpressed in VSMCs, cell proliferation, migration and phenotypic switching were simultaneously aggravated, whereas the opposite was observed when ADAM22 was knocked down in vitro. In ADAM22 heterozygote mice, wire-injury induced neointima formation was significantly ameliorated compared to wild-type control mice. Mechanistically, significantly up-regulated ERK phosphorylation is closely involved in the regulatory effects of ADAM22 in neointima formation. Interestingly, an ERK inhibitor largely reversed the aggravated VSMCs migration, proliferation and phenotypic switching induced by ADAM22 overexpression.

      Conclusions

      Our results indicate that ADAM22 accelerates neointima formation by enhancing VSMC migration, proliferation and phenotypic switching via promoting ERK phosphorylation. Suppressing ADAM22 expression may be an effective strategy for ameliorating neointima formation.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Torres N.
        • Guevara-Cruz M.
        • Velázquez-Villegas L.A.
        • Tovar A.R.
        Nutrition and atherosclerosis.
        Arch. Med. Res. 2015; 46: 408-426
        • Dzau V.J.
        • Braun-Dullaeus R.C.
        • Sedding D.G.
        Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies.
        Nat. Med. 2002; 8: 1249-1256
        • Owens G.K.
        Regulation of differentiation of vascular smooth muscle cells.
        Physiol. Rev. 1995; 75: 487-517
        • Thyberg J.
        Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury.
        Histol. Histopathol. 1998; 13: 871-891
        • Zargham R.
        • Thibault G.
        alpha8beta1 Integrin expression in the rat carotid artery: involvement in smooth muscle cell migration and neointima formation.
        Cardiovasc. Res. 2005; 65: 813-822
        • Kawai-Kowase K.
        • Owens G.K.
        Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells.
        Am. J. Physiol. Cell Physiol. 2007; 292: C59-C69
        • Wehrle-Haller B.
        • Imhof B.A.
        Actin, microtubules and focal adhesion dynamics during cell migration.
        Int. J. Biochem. Cell Biol. 2003; 35: 39-50
        • Moiseeva E.P.
        Adhesion receptors of vascular smooth muscle cells and their functions.
        Cardiovasc. Res. 2001; 52: 372-386
        • Seals D.F.
        • Courtneidge S.A.
        The ADAMs family of metalloproteases: multidomain proteins with multiple functions.
        Genes Dev. 2003; 17: 7-30
        • Horiuchi K.
        • Weskamp G.
        • Lum L.
        • Hammes H.P.
        • Cai H.
        • Brodie T.A.
        • Ludwig T.
        • Chiusaroli R.
        • Baron R.
        • Preissner K.T.
        • Manova K.
        • Blobel C.P.
        Potential role for ADAM15 in pathological neovascularization in mice.
        Mol. Cell Biol. 2003; 23: 5614-5624
        • Hartmann D.
        • de Strooper B.
        • Serneels L.
        • Craessaerts K.
        • Herreman A.
        • Annaert W.
        • Umans L.
        • Lübke T.
        • Lena I.A.
        • von F.K.
        • Saftig P.
        The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts.
        Hum. Mol. Genet. 2002; 11: 2615-2624
        • Kurohara K.
        • Komatsu K.
        • Kurisaki T.
        • Masuda A.
        • Irie N.
        • Asano M.
        • Sudo K.
        • Nabeshima Y.
        • Iwakura Y.
        • Sehara-Fujisawa A.
        Essential roles of Meltrin beta (ADAM19) in heart development.
        Dev. Biol. 2004; 267: 14-28
        • Zhou H.M.
        • Weskamp G.
        • Chesneau V.
        • Sahin U.
        • Vortkamp A.
        • Horiuchi K.
        • Chiusaroli R.
        • Hahn R.
        • Wilkes D.
        • Fisher P.
        • Baron R.
        • Manova K.
        • Basson C.T.
        • Hempstead B.
        • Blobel C.P.
        Essential role for ADAM19 in cardiovascular morphogenesis.
        Mol. Cell Biol. 2004; 24: 96-104
        • Ohtsu H.
        • Dempsey P.J.
        • Eguchi S.
        ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors.
        Am. J. Physiol. Cell Physiol. 2006; 291: C1-C10
        • Duffy M.J.
        • Mullooly M.
        • O'Donovan N.
        • Sukor S.
        • Crown J.
        • Pierce A.
        • McGowan P.M.
        The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer.
        Clin. Proteonomics. 2011; 8: 9
        • Muona M.
        • Fukata Y.
        • Anttonen A.K.
        • Laari A.
        • Palotie A.
        • Pihko H.
        • Lönnqvist T.
        • Valanne L.
        • Somer M.
        • Fukata M.
        • Lehesjoki A.E.
        Dysfunctional ADAM22 implicated in progressive encephalopathy with cortical atrophy and epilepsy.
        Neurol. Genet. 2016; 2: e46
        • Lovero K.L.
        • Fukata Y.
        • Granger A.J.
        • Fukata M.
        • Nicoll R.A.
        The LGI1-ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function.
        Proc. Natl. Acad. Sci. U.S.A. 2015; 112: E4129-E4137
        • McCartan D.
        • Bolger J.C.
        • Fagan A.
        • Byrne C.
        • Hao Y.
        • Qin L.
        • McIlroy M.
        • Xu J.
        • Hill A.D.
        • Gaora P.Ó.
        • Young L.S.
        Global characterization of the SRC-1 transcriptome identifies ADAM22 as an ER-independent mediator of endocrine-resistant breast cancer.
        Cancer Res. 2012; 72: 220-229
        • Ren L.
        • Wu C.
        • Yang K.
        • Chen S.
        • Ye P.
        • Wu J.
        • Zhang A.
        • Huang X.
        • Wang K.
        • Deng P.
        • Ding X.
        • Chen M.
        • Xia J.
        A disintegrin and metalloprotease-22 attenuates hypertrophic remodeling in mice through inhibition of the protein kinase B signaling pathway.
        J. Am. Heart Assoc. 2018; 7
        • Zhang S.M.
        • Zhu L.H.
        • Chen H.Z.
        • Zhang R.
        • Zhang P.
        • Jiang D.S.
        • Gao L.
        • Tian S.
        • Wang L.
        • Zhang Y.
        • Wang P.X.
        • Zhang X.F.
        • Zhang X.D.
        • Liu D.P.
        • Li H.
        Interferon regulatory factor 9 is critical for neointima formation following vascular injury.
        Nat. Commun. 2014; 5: 5160
        • Zhang S.M.
        • Zhu L.H.
        • Li Z.Z.
        • Wang P.X.
        • Chen H.Z.
        • Guan H.J.
        • Jiang D.S.
        • Chen K.
        • Zhang X.F.
        • Tian S.
        • Yang D.
        • Zhang X.D.
        • Li H.
        Interferon regulatory factor 3 protects against adverse neo-intima formation.
        Cardiovasc. Res. 2014; 102: 469-479
        • Cheng W.L.
        • She Z.G.
        • Qin J.J.
        • Guo J.H.
        • Gong F.H.
        • Zhang P.
        • Fang C.
        • Tian S.
        • Zhu X.Y.
        • Gong J.
        • Wang Z.H.
        • Huang Z.
        • Li H.
        Interferon regulatory factor 4 inhibits neointima formation by engaging Krüppel-like factor 4 signaling.
        Circulation. 2017; 136: 1412-1433
        • Blank R.S.
        • Owens G.K.
        Platelet-derived growth factor regulates actin isoform expression and growth state in cultured rat aortic smooth muscle cells.
        J. Cell. Physiol. 1990; 142: 635-642
        • Jawien A.
        • Bowen-Pope D.F.
        • Lindner V.
        • Schwartz S.M.
        • Clowes A.W.
        Platelet-derived growth factor promotes smooth muscle migration and intimal thickening in a rat model of balloon angioplasty.
        J. Clin. Invest. 1992; 89: 507-511
        • Sagane K.
        • Hayakawa K.
        • Kai J.
        • Hirohashi T.
        • Takahashi E.
        • Miyamoto N.
        • Ino M.
        • Oki T.
        • Yamazaki K.
        • Nagasu T.
        Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice.
        BMC Neurosci. 2005; 6: 33
        • Mourani P.M.
        • Garl P.J.
        • Wenzlau J.M.
        • Carpenter T.C.
        • Stenmark K.R.
        • Weiser-Evans M.C.
        Unique, highly proliferative growth phenotype expressed by embryonic and neointimal smooth muscle cells is driven by constitutive Akt, mTOR, and p70S6K signaling and is actively repressed by PTEN.
        Circulation. 2004; 109: 1299-1306
        • Kavurma M.M.
        • Khachigian L.M.
        ERK, JNK, and p38 MAP kinases differentially regulate proliferation and migration of phenotypically distinct smooth muscle cell subtypes.
        J. Cell. Biochem. 2003; 89: 289-300
        • Jiang W.
        • Zhang D.
        • Xu B.
        • Wu Z.
        • Liu S.
        • Zhang L.
        • Tian Y.
        • Han X.
        • Tian D.
        Long non-coding RNA BANCR promotes proliferation and migration of lung carcinoma via MAPK pathways.
        Biomed. Pharmacother. 2015; 69: 90-95
        • Fukata Y.
        • Adesnik H.
        • Iwanaga T.
        • Bredt D.S.
        • Nicoll R.A.
        • Fukata M.
        Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission.
        Science. 2006; 313: 1792-1795
        • Lee H.M.
        • Kim H.J.
        • Park H.J.
        • Won K.J.
        • Kim J.
        • Shin H.S.
        • Park P.J.
        • Kim H.J.
        • Lee K.Y.
        • Park S.H.
        • Lee C.K.
        • Kim B.
        Spleen tyrosine kinase participates in Src-mediated migration and proliferation by PDGF-BB in rat aortic smooth muscle cells.
        Arch Pharm. Res. (Seoul). 2007; 30: 761-769
        • Won K.J.
        • Lee H.M.
        • Lee C.K.
        • Lin H.Y.
        • Na H.
        • Lim K.W.
        • Roh H.Y.
        • Sim S.
        • Song H.
        • Choi W.S.
        • Lee S.H.
        • Kim B.
        Protein tyrosine phosphatase SHP-2 is positively involved in platelet-derived growth factor-signaling in vascular neointima formation via the reactive oxygen species-related pathway.
        J. Pharmacol. Sci. 2011; 115: 164-175
        • Newby A.C.
        • Zaltsman A.B.
        Molecular mechanisms in intimal hyperplasia.
        J. Pathol. 2000; 190: 300-309
        • Rönnstrand L.
        • Heldin C.H.
        Mechanisms of platelet-derived growth factor-induced chemotaxis.
        Int. J. Cancer. 2001; 91: 757-762
        • Pearson G.
        • Robinson F.
        • Beers G.T.
        • Xu B.E.
        • Karandikar M.
        • Berman K.
        • Cobb M.H.
        Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions.
        Endocr. Rev. 2001; 22: 153-183
        • Bessard A.
        • Frémin C.
        • Ezan F.
        • Fautrel A.
        • Gailhouste L.
        • Baffet G.
        RNAi-mediated ERK2 knockdown inhibits growth of tumor cells in vitro and in vivo.
        Oncogene. 2008; 27: 5315-5325
        • Jung S.M.
        • Park S.S.
        • Kim W.J.
        • Moon S.K.
        Ras/ERK1 pathway regulation of p27KIP1-mediated G1-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells.
        Eur. J. Pharmacol. 2012; 681: 15-22
        • Sagane K.
        • Yamazaki K.
        • Mizui Y.
        • Tanaka I.
        Cloning and chromosomal mapping of mouse ADAM11, ADAM22 and ADAM23.
        Gene. 1999; 236: 79-86
        • Zhu P.
        • Sang Y.
        • Xu H.
        • Zhao J.
        • Xu R.
        • Sun Y.
        • Xu T.
        • Wang X.
        • Chen L.
        • Feng H.
        • Li C.
        • Zhao S.
        ADAM22 plays an important role in cell adhesion and spreading with the assistance of 14-3-3.
        Biochem. Biophys. Res. Commun. 2005; 331: 938-946
        • D'Abaco G.M.
        • Ng K.
        • Paradiso L.
        • Godde N.J.
        • Kaye A.
        • Novak U.
        ADAM22, expressed in normal brain but not in high-grade gliomas, inhibits cellular proliferation via the disintegrin domain.
        Neurosurgery. 2006; 58 (discussion 179-86): 179-186
        • Welser J.V.
        • Lange N.
        • Singer C.A.
        • Elorza M.
        • Scowen P.
        • Keef K.D.
        • Gerthoffer W.T.
        • Burkin D.J.
        Loss of the alpha7 integrin promotes extracellular signal-regulated kinase activation and altered vascular remodeling.
        Circ. Res. 2007; 101: 672-681
        • Choi E.T.
        • Khan M.F.
        • Leidenfrost J.E.
        • Collins E.T.
        • Boc K.P.
        • Villa B.R.
        • Novack D.V.
        • Parks W.C.
        • Abendschein D.R.
        Beta3-integrin mediates smooth muscle cell accumulation in neointima after carotid ligation in mice.
        Circulation. 2004; 109: 1564-1569