Advertisement

A peptide antagonist of F11R/JAM-A reduces plaque formation and prolongs survival in an animal model of atherosclerosis

      Highlights

      • We examined effects of F11R derived peptide 4D (P4D) on cardiovascular health and atherosclerotic plaque of ApoE-/- mice.
      • The F11R peptide 4D reduced plaque formation and prolonged survival with overall better health in ApoE-/- mice.
      • P4D inhibited adhesion of platelets to cytokine-inflamed aortic endothelium in ApoE-/- mice shown by intravital microscopy.
      • P4D represents a potential drug for the prevention and treatment of thrombosis and atherosclerosis triggered by inflammation.

      Abstract

      Background and aims

      The F11 Receptor (F11R), AKA Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A), is an adhesion protein constitutively expressed on the membrane surface of circulating platelets and the luminal surface of inflamed endothelial cells (EC).
      Platelet adhesion to an inflamed endothelium is one of the early steps of atherosclerotic plaque formation. Our previous studies, conducted with cultured EC in vitro, have demonstrated the expression of F11R/JAM-A on the luminal surface of inflamed EC, platelet adhesion to inflamed EC through F11R/JAM-A interactions, and inhibition of this interaction by the presence of F11R/JAM-A antagonistic peptide (F11Rpeptide 4D). In the present study, we examined in vivo the overall health-benefits and cardiovascular effects of long-term treatment of animals prone to atherosclerosis, ApoE−/− mice, with F11R-peptide 4D.

      Methods

      Twenty ApoE−/− mice were assigned to daily treatment with peptide 4D and compared to their counterparts control untreated mice. Mice were observed for wellness and survival. Plaque size in the aorta and heart was measured using histological analysis. Effects of peptide 4D (or scramble control) on platelet adhesion to inflamed endothelium were measured using intravital microscopy.

      Results

      Significant reductions in atherosclerotic plaques number and size, an overall robust health with longer survival were found in the peptide 4D treated group of ApoE−/− mice. Intravital microscopic studies conducted in exposed vessels of ApoE−/− mice demonstrated significant inhibition by peptide 4D of platelet adhesion to the cytokine-inflamed endothelium.

      Conclusions

      Our results demonstrate that peptide 4D significantly reduces atherosclerotic plaque formation in ApoE−/− mice and inhibits platelet adhesion to the inflamed arterial endothelium.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kummer D.
        • Ebnet K.
        Junctional adhesion molecules (JAMs): the JAM-integrin connection.
        Cells. 2018; 7: 25
        • Martìn-Padura I.
        • Lostaglio S.
        • Schneemann M.
        • et al.
        Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration.
        J. Cell Biol. 1998; 142: 117-127
        • Kornecki E.
        • Walkowiak B.
        • Naik U.P.
        • et al.
        Activation of human platelets by a stimulatory monoclonal antibody.
        J. Biol. Chem. 1990; 265: 10042-10048
        • Sobocka M.B.
        • Sobocki T.
        • Banerjee P.
        • et al.
        Cloning of the human platelet F11 receptor: a cell adhesion Molecule member of the immunoglobulin superfamily involved in platelet aggregation.
        Blood. 2000; 95: 2600-2609
        • Sobocki T.
        • Sobocka M.B.
        • Babinska A.
        • et al.
        Genomic structure, organization and promoter analysis of the human F11R/F11 receptor/junctional adhesion molecule-1/JAM-A.
        Gene. 2006; 17: 128-144
        • Babinska A.
        • Kedees M.M.
        • Athar H.
        • et al.
        F11-receptor (F11R/JAM) mediates platelet adhesion to endothelial cells: role in inflammatory thrombosis.
        Thromb. Haemostasis. 2002; 88: 843-850
        • Babinska A.
        • Azari B.M.
        • Salifu MO O.
        • et al.
        The F11 receptor (F11R/JAM-A) in atherothrombosis: overexpression of F11R in atherosclerotic plaques.
        Thromb. Haemostasis. 2007; 97: 272-281
        • Babinska A.
        • Kedees M.M.
        • Athar H.
        • et al.
        Two regions of the human platelet F11- receptor (F11R) are critical for platelet aggregation, potentiation and adhesion.
        Thromb. Haemostasis. 2002; 87: 712-721
        • Azari B.M.
        • Marmur J.D.
        • Salifu M.O.
        • et al.
        Transcription and translation of human F11R gene are required for an initial step of atherogenesis induced by inflammatory cytokines.
        J. Transl. Med. 2011; 9: 98-112
        • Azari B.M.
        • Marmur J.D.
        • Salifu M.O.
        • et al.
        A. Silencing of the F11R gene reveals a role for F11R/JAM-A in the migration of inflamed vascular smooth muscle cells and in atherosclerosis.
        Atherosclerosis. 2010; 212: 197-205
        • Gawaz M.
        • Brand K.
        • Dickfeld T.
        • et al.
        Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1 dependent mechanism. Implications for atherogenesis.
        Atherosclerosis. 2000; 148: 75-85
        • Ozaki H.
        • Ishii K.
        • Arai h.
        • et al.
        Cutting edge: combined treatment of TNF-alpha and INF-gamma causes redistribution of junctional adhesion molecule in human endothelial cells.
        J. Immunol. 1999; 163: 553-557
        • Cavusoglu E.
        • Kornecki E.
        • Sobocka M.B.
        • et al.
        Association of the F11 receptor/junctional adhesion molecule-A (F11R/JAM-A) with human atherosclerosis.
        JACC (J. Am. Coll. Cardiol.). 2007; 50: 1768-1776
        • Salifu M.O.
        • Kolff Q.
        • Murty P.
        • et al.
        Relationship between the soluble F11 receptor and markers of inflammation in hemodialysis patients.
        J. Invest. Med. 2007; 55: 115-119
        • Ong K.L.
        • Leung R.Y.
        • Babinska A.
        • et al.
        Elevated plasma level of soluble F11 receptor/junctional adhesion molecule-A (F11R/JAM-A) in hypertension.
        Am. J. Hypertens. 2009; 22: 500-505
        • Plump A.S.
        • Scott C.J.
        • Breslow J.L.
        Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse.
        Proc. Natl. Acad. Sci. Unit. States Am. 1994; 91: 9607-9611
        • Reddick R.L.
        • Zhang S.H.
        • Maeda N.
        Atheroslcerosis in mice lacking apoE. Evaluation of Lesional development and progression.
        Arterioscler. Thromb. 1994; 14: 141-147
        • Nakashima Y.
        • Plump A.S.
        • Raines W.
        • et al.
        ApoE-deficient mice develop lesions of all phases of atheroslcerosis thoughout the arterial tree.
        Arterioscler. Thromb. 1994; 14: 133-140
        • Plump A.S.
        • Smith J.D.
        • Hayek T.
        • et al.
        Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells.
        Cell. 1992; 71: 343-353
        • Babinska A.
        • Clement C.C.
        • Swiatkowska M.
        • et al.
        Development of new antiatherosclerotic and antithrombotic drugs utilizing F11 receptor (F11R/JAM-A) peptide.
        Biopolym. Pept. Sci. 2014; 102: 322-334
        • Babinska A.
        • Clement C.C.
        • Li Y.
        • Wzorek J.
        • Przygodzki T.
        • Talar M.
        • Swiatkowska M.
        • Ehrlich Y.H.
        • Kornecki E.
        • Watala C.
        • Salifu M.O.
        Effect of Chronic Administration of the JAM-A/F11R Antagonistic, Nonhydrolyzable Peptide 4D, on the Overall Health and Atherosclerotic Plaque Formation of ApoE-/- Mice.
        2019 (Data in Brief)
        • Teupser D.
        • et al.
        Induction of Atherosclerosis by Low-Fat, Semisynthetic Diets in LDL Receptor–Deficient C57BL/6J and FVB/NJ Mice: comparison of lesions of the aortic root, brachiocephalic artery, and whole aorta (en face measurement).
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 1907-1913
        • Jiang X.C.
        • Qin S.
        • Qiao C.
        • et al.
        Apolipoprotein B secretion and atherosclerosis are decreased in mice with phospholipid-transfer protein deficiency.
        Nat. Med. 2001; 7: 847-852
        • Hojjati M.R.
        • Li Z.
        • Zhou H.
        • et al.
        Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice.
        J. Biol. Chem. 2005; 280: 10284-10289
        • Liu J.
        • Huan C.
        • Chakraborty M.
        • et al.
        Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice.
        Circ. Res. 2009; 105: 295-303
        • Paigen B.
        • Morrow A.
        • Holmes P.A.
        • et al.
        Quantitative assessment of atherosclerotic lesions in mice.
        Atherosclerosis. 1987; 68: 231-240
        • Tinevez J.Y.
        • Perry N.
        • Schindelin J.
        • et al.
        TrackMate: an open and extensible platform for single-particle tracking.
        Methods. 2017; 115: 80-90
        • Przygodzki T.
        • Talar M.
        • Kassassir H.
        • et al.
        Enhanced adhesion of blood platelets to intact endothelium of mesenteric vascular bed in mice with streptozotocin-induced diabetes is mediated by an up-regulated endothelial surface deposition of VWF - in vivo study.
        Platelets. 2018; 29: 476-485
        • Nilsson A.
        • Duan R.D.
        Absorption and lipoprotein transport of sphingomyelin.
        J. Lipid Res. 2006; 47: 154-171
        • Libby P.
        Inflammation in atherosclerosis.
        Nature. 2002; 420: 868-874
        • Virmani R.
        • Kolodgie F.D.
        • Burke A.P.
        • et al.
        Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1262-1275
        • Van Dijk R.A.
        • Virmani R.
        • von der Thüsen J.H.
        • et al.
        The natural history of aortic atherosclerosis: a systematic histopathological evaluation of the peri-renal region.
        Atherosclerosis. 2010; 210: 100-106
        • Hartwig H.
        • Silvestre-Roig C.
        • Hendrikse J.
        • et al.
        Atherosclerotic plaque destabilization in mice: a comparative study.
        PLoS One. 2015; 10: e0141019
        • Khandoga A.
        • Kessler J.S.
        • Meissner H.
        • et al.
        Junctional adhesion molecule-A deficiency increases hepatic ischemia-reperfusion injury despite reduction of neutrophil transendothelial migration.
        Blood. 2005; 106: 725-733
        • Massberg S.
        • Brand K.
        • Grüner S.
        • et al.
        A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation.
        J. Exp. Med. 2002; 196: 887-896
        • Braun O.O.
        • Slotta J.E.
        • Menger M.D.
        • et al.
        Primary and secondary capture of platelets onto inflamed femoral artery endothelium is dependent on P-selectin and PSGL-1.
        Eur. J. Pharmacol. 2008; 592: 128-132
        • Massberg S.
        • Enders G.
        • Leiderer R.
        • et al.
        Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin.
        Blood. 1998; 92: 507-515
        • Huo Y.
        • Forlow A. Schober S.B.
        • et al.
        Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E.
        Nat. Med. 2003; 9: 61-67
        • Ostermann G.
        • Fraemohs L.
        • Baltus T.
        • et al.
        Involvement of JAM-A in mononuclear cell recruitment on inflamed or atherosclerotic endothelium: inhibition by soluble JAM-A.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 729-735
        • Schmitt M.M.
        • Megens R.T.
        • Zernecke A.
        • et al.
        Endothelial Junctional Adhesion Molecule-A guides monocytes into flow-dependent predilection sites of atherosclerosis.
        Circulation. 2014; 129: 66-76
        • Naik M.U.
        • Stalker T.J.
        • Brass L.F.
        • et al.
        JAM-A protects from thrombosis by suppressing integrin aIIbβ3-dependent outside-in signaling in platelets.
        Blood. 2012; 119: 3352-3360
        • Naik M.U.
        • Caplan J.L.
        • Naik U.P.
        Junctional adhesion molecule-A suppresses platelet integrin αIIbβ3 signaling by recruiting Csk to the integrin-c-Src complex.
        Blood. 2014; 123: 1393-1402
        • Karshovska E.
        • Zhao Z.
        • Blanchet X.
        • et al.
        Hyperreactivity of junctional adhesion molecule-A-deficient platelets accelerates atherosclerosis in hyperlipidemic mice.
        Circ. Res. 2015; 116: 587-599
        • Hiebert P.R.
        • Boivin W.A.
        • Abraham T.
        • et al.
        Granzyme B contributes to extracellular matrix remodeling and skin aging in apolipoprotein E knockout mice.
        Exp. Gerontol. 2011; 46: 489-499
        • Lim H.Y.
        • Ruthkowski J.M.
        • Helft J.
        • et al.
        Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration.
        Am. J. Pathol. 2009; 175: 1328-1337
        • Ueki T.
        • Iwasawa K.
        • Ishikawa H.
        • et al.
        Expression of junctional adhesion molecules on the human lymphatic endotheium.
        Microvasc. Res. 2008; 75: 269-278