Advertisement

Vulnerable plaque and vulnerable blood: Two critical factors for spontaneous atherothrombosis in mouse models

      Highlights

      • Preclinical atherothrombosis research is hampered by a lack of mouse models.
      • A combined approach is a promising strategy to induce atherothrombosis in mice.
      • Caution is warranted in the interpretation of plaque vulnerability in mice.

      Abstract

      Atherothrombotic events such as myocardial infarction and ischemic stroke are a major cause of morbidity and mortality worldwide. Understanding the molecular and cellular mechanisms of atherosclerotic plaque destabilization or erosion, and developing new therapeutics to prevent acute cardiovascular events is important for vascular biology research and clinical cardiovascular medicine. However, basic research on plaque destabilization, rupture and erosion is hampered by the lack of appropriate animal models of atherothrombosis. Unprovoked atherothrombosis is very scarce in commonly used mouse models for atherosclerosis, the low-density lipoprotein receptor knockout and apolipoprotein E knockout mice. Therefore, specific interventions are required to induce atherothrombosis in these models. Two strategies can be employed to induce atherothrombosis: 1) plaque destabilization and 2) induction of blood hypercoagulability. Although the individual strategies yield atherothrombosis at low incidence, it appears that the combination of both plaque destabilization and an increase in blood coagulability is the most promising strategy to induce atherothrombosis on a larger scale. In this review, we summarize the recent developments on mouse models for the investigation of atherothrombosis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Viles-Gonzalez J.F.
        • Fuster V.
        • Badimon J.J.
        Atherothrombosis: a widespread disease with unpredictable and life-threatening consequences.
        Eur. Heart J. 2004; 25: 1197-1207
        • Lippi G.
        • Franchini M.
        • Targher G.
        Arterial thrombus formation in cardiovascular disease.
        Nat. Rev. Cardiol. 2011; 8: 502-512https://doi.org/10.1038/nrcardio.2011.91
        • Davies M.J.
        Stability and instability: two faces of coronary atherosclerosis the Paul dudley white lecture 1995.
        Circulation. 1996; 94: 2013-2020
        • Buffon A.
        • Biasucci L.M.
        • Liuzzo G.
        • D'Onofrio G.
        • Crea F.
        • Maseri A.
        Widespread coronary inflammation in unstable angina.
        N. Engl. J. Med. 2002; 346: 1845-1853
        • Crea F.
        • Liuzzo G.
        Pathogenesis of acute coronary syndromes.
        J. Am. Coll. Cardiol. 2013; 61: 1-11https://doi.org/10.1016/j.jacc.2012.07.064
        • Falk E.
        • Shah P.K.
        • Fuster V.
        Coronary plaque disruption.
        Circulation. 1995; 92: 657-671
        • Libby P.
        • Theroux P.
        Pathophysiology of coronary artery disease.
        Circulation. 2005; 111: 3481-3488https://doi.org/10.1161/CIRCULATIONAHA.105.537878
        • Libby P.
        • Pasterkamp G.
        Requiem for the ‘vulnerable plaque.
        Eur. Heart J. 2015; : ehv349https://doi.org/10.1093/eurheartj/ehv349
        • Underhill H.R.
        • Yuan C.
        • Zhao X.-Q.
        • Kraiss L.W.
        • Parker D.L.
        • Saam T.
        • Chu B.
        • Takaya N.
        • Liu F.
        • Polissar N.L.
        • Neradilek B.
        • Raichlen J.S.
        • Cain V. a.
        • Waterton J.C.
        • Hamar W.
        • Hatsukami T.S.
        Effect of rosuvastatin therapy on carotid plaque morphology and composition in moderately hypercholesterolemic patients: a high-resolution magnetic resonance imaging trial.
        Am. Heart J. 2008; 155: 584.e1-584.e8https://doi.org/10.1016/j.ahj.2007.11.018
        • Libby P.
        How does lipid lowering prevent coronary events? New insights from human imaging trials.
        Eur. Heart J. 2015; 36: 472-474https://doi.org/10.1093/eurheartj/ehu510
        • Hu S.
        • Jia H.
        • Vergallo R.
        • Abtahian F.
        • Tian J.
        • Soeda T.
        • Rosenfield K.
        • Jang I.-K.
        Plaque Erosion : in vivo diagnosis and treatment guided by optical coherence tomography.
        JACC Cardiovasc. Interv. 2014; 7: e63-e64https://doi.org/10.1016/j.jcin.2013.10.024
        • Braunwald E.
        Coronary plaque Erosion : recognition and management.
        JACC Cardiovasc. Imaging. 2013; 6: 288-289https://doi.org/10.1016/j.jcmg.2013.01.003
        • Zhang S.H.
        • Reddick R.L.
        • Piedrahita J.A.
        • Maeda N.
        Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E.
        Science. 1992; 258: 468-471
        • Plump A.S.
        • Smith J.D.
        • Hayek T.
        • Aalto-Setälä K.
        • Walsh A.
        • Verstuyft J.G.
        • Rubin E.M.
        • Breslow J.L.
        Severe hypercholesterolemia and atherosclerosis in apolipoprotein E- deficient mice created by homologous recombination in ES cells.
        Cell. 1992; 71: 343-353https://doi.org/10.1016/0092-8674(92)90362-G
        • Ishibashi S.
        • Brown M.S.
        • Goldstein J.L.
        • Gerard R.D.
        • Hammer R.E.
        • Herz J.
        Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery.
        J. Clin. Investig. 1993; 92: 883-893https://doi.org/10.1172/JCI116663
        • Bjorklund M.M.
        • Hollensen A.K.
        • Hagensen M.K.
        • Dagnaes-Hansen F.
        • Christoffersen C.
        • Mikkelsen J.G.
        • Bentzon J.F.
        Induction of atherosclerosis in mice and hamsters without germline genetic engineering.
        Circ. Res. 2014; 114: 1684-1689https://doi.org/10.1161/CIRCRESAHA.114.302937
        • Paigen B.
        • Morrow A.
        • Holmes P.A.
        • Mitchell D.
        • Williams R.A.
        Quantitative assessment of atherosclerotic lesions in mice.
        Atherosclerosis. 1987; 68: 231-240
        • Reddick R.L.
        • Zhang S.H.
        • Maeda N.
        Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression.
        Arterioscler. Thromb. J. Vasc. Biol. 1994; 14: 141-147
        • Nakashima Y.
        • Plump A.S.
        • Raines E.W.
        • Breslow J.L.
        • Ross R.
        ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree.
        Arterioscler. Thromb. J. Vasc. Biol. 1994; 14: 133-140
        • Tangirala R.K.
        • Rubin E.M.
        • Palinski W.
        Quantitation of atherosclerosis in murine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E- deficient mice.
        J. Lipid Res. 1995; 36: 2320-2328
        • von der Thusen J.H.
        • van Berkel T.J.
        • Biessen E.A.
        Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice.
        Circulation. 2001; 103: 1164-1170
        • Kuijpers M.J.E.
        • Gilio K.
        • Reitsma S.
        • Nergiz-Unal R.
        • Prinzen L.
        • Heeneman S.
        • Lutgens E.
        • van Zandvoort M.A.M.J.
        • Nieswandt B.
        • Egbrink M.G.A.O.
        • Heemskerk J.W.M.
        Complementary roles of platelets and coagulation in thrombus formation on plaques acutely ruptured by targeted ultrasound treatment: a novel intravital model.
        J. Thromb. Haemost. 2009; 7: 152-161https://doi.org/10.1111/j.1538-7836.2008.03186.x
        • van Montfoort M.L.
        • Kuijpers M.J.E.
        • Knaup V.L.
        • Bhanot S.
        • Monia B.P.
        • Roelofs J.J.T.H.
        • Heemskerk J.W.M.
        • Meijers J.C.M.
        Factor XI regulates pathological thrombus formation on acutely ruptured atherosclerotic plaques.
        Arterioscler. Thromb. Vasc. Biol. 2014; 34: 1668-1673https://doi.org/10.1161/ATVBAHA.114.303209
        • Kuijpers M.J.E.
        • van der Meijden P.E.J.
        • Feijge M.A.H.
        • Mattheij N.J.A.
        • May F.
        • Govers- Riemslag J.
        • Meijers J.C.M.
        • Heemskerk J.W.M.
        • Renné T.
        • Cosemans J.M.E.M.
        Factor XII regulates the pathological process of thrombus formation on ruptured plaques.
        Arterioscler. Thromb. Vasc. Biol. 2014; 34: 1674-1680https://doi.org/10.1161/ATVBAHA.114.303315
        • Calara F.
        • Silvestre M.
        • Casanada F.
        • Yuan N.
        • Napoli C.
        • Palinski W.
        Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice.
        J. Pathol. 2001; 195: 257-263https://doi.org/10.1002/path.915
        • Rosenfeld M.E.
        • Polinsky P.
        • Virmani R.
        • Kauser K.
        • Rubanyi G.
        • Schwartz S.M.
        Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2587-2592https://doi.org/10.1161/01.ATV.20.12.2587
        • Johnson J.L.
        • Jackson C.L.
        Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse.
        Atherosclerosis. 2001; 154: 399-406
        • Johnson J.
        • Carson K.
        • Williams H.
        • Karanam S.
        • Newby A.
        • Angelini G.
        • George S.
        • Jackson C.
        Plaque rupture after short periods of fat feeding in the apolipoprotein E- knockout mouse: model characterization and effects of pravastatin treatment.
        Circulation. 2005; 111: 1422-1430https://doi.org/10.1161/01.CIR.0000158435.98035.8D
        • Mann J.
        • Davies M.J.
        Mechanisms of progression in native coronary artery disease: role of healed plaque disruption.
        Heart. 1999; 82: 265-268
        • Burke A.P.
        • Kolodgie F.D.
        • Farb A.
        • Weber D.K.
        • Malcom G.T.
        • Smialek J.
        • Virmani R.
        Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression.
        Circulation. 2001; 103: 934-940
        • von der Thusen J.H.
        • van Vlijmen B.J.M.
        • Hoeben R.C.
        • Kockx M.M.
        • Havekes L.M.
        • van Berkel TJC
        • Biessen E.A.L.
        Induction of atherosclerotic plaque rupture in apolipoprotein E-/- mice after adenovirus-mediated transfer of p53.
        Circulation. 2002; 105: 2064-2070
        • Sasaki T.
        • Kuzuya M.
        • Nakamura K.
        • Cheng X.W.
        • Shibata T.
        • Sato K.
        • Iguchi A.
        A simple method of plaque rupture induction in apolipoprotein E-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 1304-1309https://doi.org/10.1161/01.ATV.0000219687.71607.f7
        • Tchaikovski S.N.
        • VAN Vlijmen B.J.M.
        • Rosing J.
        • Tans G.
        Development of a calibrated automated thrombography based thrombin generation test in mouse plasma.
        J. Thromb. Haemost. 2007; 5: 2079-2086https://doi.org/10.1111/j.1538-7836.2007.02719.x
        • Welch C.L.
        • Sun Y.
        • Arey B.J.
        • Lemaitre V.
        • Sharma N.
        • Ishibashi M.
        • Sayers S.
        • Li R.
        • Gorelik A.
        • Pleskac N.
        • Collins-Fletcher K.
        • Yasuda Y.
        • Bromme D.
        • D'Armiento J.M.
        • Ogletree M.L.
        • Tall A.R.
        Spontaneous atherothrombosis and medial degradation in Apoe-/-, Npc1-/- mice.
        Circulation. 2007; 116: 2444-2452https://doi.org/10.1161/CIRCULATIONAHA.107.701276
        • Ouweneel A.B.
        • Heestermans M.
        • Verwilligen R.A.F.
        • Gijbels M.J.J.
        • Reitsma P.H.
        • Van Eck M.
        • van Vlijmen B.J.M.
        Silencing of anticoagulant protein C evokes low-incident but spontaneous atherothrombosis in apolipoprotein E-deficient mice-brief report.
        Arterioscler. Thromb. Vasc. Biol. 2017; 37: 782-785https://doi.org/10.1161/ATVBAHA.117.309188
        • Heestermans M.
        • Ouweneel A.B.
        • Hassan J.
        • Kloosterman M.
        • Reitsma P.H.
        • Gijbels M.J.J.
        • van Vlijmen B.J.M.
        • van Eck M.
        Predilection of low protein C-induced spontaneous atherothrombosis for the right coronary sinus in apolipoprotein E deficient mice.
        Sci. Rep. 2018; 8: 15106https://doi.org/10.1038/s41598-018-32584-y
        • Borissoff J.I.
        • Otten J.J.T.
        • Heeneman S.
        • Leenders P.
        • van Oerle R.
        • Soehnlein O.
        • Loubele S.T.B.G.
        • Hamulyák K.
        • Hackeng T.M.
        • Daemen M.J.A.P.
        • Degen J.L.
        • Weiler H.
        • Esmon C.T.
        • van Ryn J.
        • Biessen E. a L.
        • Spronk H.M.H.
        • ten Cate H.
        Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner.
        PLoS One. 2013; 8e55784https://doi.org/10.1371/journal.pone.0055784
        • Liu X.
        • Ni M.
        • Ma L.
        • Yang J.
        • Wang L.
        • Liu F.
        • Dong M.
        • Yang X.
        • Zhang M.
        • Lu H.
        • Wang J.
        • Zhang C.
        • Jiang F.
        • Zhang Y.
        Targeting blood thrombogenicity precipitates atherothrombotic events in a mouse model of plaque destabilization.
        Sci. Rep. 2015 May; 5: 10225https://doi.org/10.1038/srep10225