Advertisement

Leukocyte telomere length, mitochondrial DNA copy number, and coronary artery disease risk and severity: A two-stage case-control study of 3064 Chinese subjects

      Highlights

      • Lower leukocyte telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN) independently increased coronary artery disease (CAD) risk.
      • The aggregated score of TL and mtDNA-CN may better predict CAD risk and severity.
      • The aggregated score may inversely correlate with markers of oxidative stress.

      Abstract

      Background and aims

      Leukocyte telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN), as hallmarks of cellular aging, may be involved in the development of coronary artery disease (CAD) by modulating oxidative stress. This study aimed to investigate the effects of leukocyte TL and mtDNA-CN alone or in combination on CAD risk and severity in the Chinese population.

      Methods

      In this two-stage case-control study with 1511 CAD patients and 1553 controls, leukocyte TL and mtDNA-CN were determined by a quantitative PCR assay. Three oxidative parameters, including leukocyte 8-hydroxy-2′-deoxyguanosine (8-OHdG), plasma malondialdehyde, and plasma reactive oxygen species (ROS), were quantified by ELISA or colorimetric kits in a subset of 129 cases and 129 controls.

      Results

      In the combined cohort, each 1-SD decrease in TL and mtDNA-CN was significantly associated with a 1.17-fold and 1.14-fold increased risk of CAD (p < 0.001 for all), respectively, after adjusting for confounders. The aggregated score, which reflected the cumulative dosage of the tertiles of TL and mtDNA-CN, showed inverse dose-response correlations with CAD risk (ptrend < 0.001), and severity, as determined by the severity of clinical presentations (ptrend = 0.037), the presence of multi-vessel CAD (ptrend = 0.004), and modified Gensini scores (ptrend = 0.009). Similar dose-response relations of the aggregated score to leukocyte 8-OHdG and plasma ROS were also identified.

      Conclusions

      Our data suggested reductions in both TL and mtDNA-CN as independent risk factors for CAD. The combination of TL and mtDNA-CN might jointly contribute to CAD risk, CAD severity, and oxidative stress.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Benjamin E.J.
        • Virani S.S.
        • Callaway C.W.
        • Chamberlain A.M.
        • Chang A.R.
        • Cheng S.
        • et al.
        Heart disease and stroke statistics-2018 update: a report from the American heart association.
        Circulation. 2018; 137: e67-e492
        • Andersson C.
        • Vasan R.S.
        Compiling the complement of genes implicated in coronary artery disease.
        Circ. Cardiovasc. Genet. 2014; 7: 738-740
        • Wang J.
        • Uryga A.K.
        • Reinhold J.
        • Figg N.
        • Baker L.
        • Finigan A.
        • et al.
        Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability.
        Circulation. 2015; 132: 1909-1919
        • Uryga A.K.
        • Bennett M.R.
        Ageing induced vascular smooth muscle cell senescence in atherosclerosis.
        J. Physiol. 2016; 594: 2115-2124
        • De Meyer T.
        • Nawrot T.
        • Bekaert S.
        • De Buyzere M.L.
        • Rietzschel E.R.
        • Andres V.
        Telomere length as cardiovascular aging biomarker: JACC review topic of the week.
        J. Am. Coll. Cardiol. 2018; 72: 805-813
        • Dai D.F.
        • Rabinovitch P.S.
        • Ungvari Z.
        Mitochondria and cardiovascular aging.
        Circ. Res. 2012; 110: 1109-1124
        • Armanios M.
        • Blackburn E.H.
        The telomere syndromes.
        Nat. Rev. Genet. 2012; 13: 693-704
        • Herrmann M.
        • Pusceddu I.
        • Marz W.
        • Herrmann W.
        Telomere biology and age-related diseases.
        Clin. Chem. Lab. Med. 2018; 56: 1210-1222
        • Gustafsson C.M.
        • Falkenberg M.
        • Larsson N.G.
        Maintenance and expression of mammalian mitochondrial DNA.
        Annu. Rev. Biochem. 2016; 85: 133-160
        • Jezek J.
        • Cooper K.F.
        • Strich R.
        Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression.
        Antioxidants (Basel). 2018; 7
        • Clay Montier L.L.
        • Deng J.J.
        • Bai Y.
        Number matters: control of mammalian mitochondrial DNA copy number.
        J. Genet. Genom. 2009; 36: 125-131
        • Jeng J.Y.
        • Yeh T.S.
        • Lee J.W.
        • Lin S.H.
        • Fong T.H.
        • Hsieh R.H.
        Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth.
        J. Cell. Biochem. 2008; 103: 347-357
        • Foote K.
        • Reinhold J.
        • Yu E.P.K.
        • Figg N.L.
        • Finigan A.
        • Murphy M.P.
        • et al.
        Restoring mitochondrial DNA copy number preserves mitochondrial function and delays vascular aging in mice.
        Aging Cell. 2018; e12773
        • Tyrka A.R.
        • Carpenter L.L.
        • Kao H.T.
        • Porton B.
        • Philip N.S.
        • Ridout S.J.
        • et al.
        Association of telomere length and mitochondrial DNA copy number in a community sample of healthy adults.
        Exp. Gerontol. 2015; 66: 17-20
        • Passos J.F.
        • Saretzki G.
        • Ahmed S.
        • Nelson G.
        • Richter T.
        • Peters H.
        • et al.
        Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence.
        PLoS Biol. 2007; 5: e110
        • Sahin E.
        • Colla S.
        • Liesa M.
        • Moslehi J.
        • Muller F.L.
        • Guo M.
        • et al.
        Telomere dysfunction induces metabolic and mitochondrial compromise.
        Nature. 2011; 470: 359-365
        • D'Mello M.J.
        • Ross S.A.
        • Briel M.
        • Anand S.S.
        • Gerstein H.
        • Pare G.
        Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis.
        Circ. Cardiovasc. Genet. 2015; 8: 82-90
        • Yang Z.
        • Huang X.
        • Jiang H.
        • Zhang Y.
        • Liu H.
        • Qin C.
        • et al.
        Short telomeres and prognosis of hypertension in a Chinese population.
        Hypertension. 2009; 53: 639-645
        • Ding H.
        • Chen C.
        • Shaffer J.R.
        • Liu L.
        • Xu Y.
        • Wang X.
        • et al.
        Telomere length and risk of stroke in Chinese.
        Stroke. 2012; 43: 658-663
        • Ashar F.N.
        • Zhang Y.
        • Longchamps R.J.
        • Lane J.
        • Moes A.
        • Grove M.L.
        • et al.
        Association of mitochondrial DNA copy number with cardiovascular disease.
        JAMA Cardiol. 2017; 2: 1247-1255
        • Wang X.B.
        • Cui N.H.
        • Zhang S.
        • Guo S.R.
        • Liu Z.J.
        • Ming L.
        PARP-1 variant Rs1136410 confers protection against coronary artery disease in a Chinese han population: a two-stage case-control study involving 5643 subjects.
        Front. Physiol. 2017; 8: 916
        • Dandona S.
        • Stewart A.F.
        • Chen L.
        • Williams K.
        • So D.
        • O'Brien E.
        • et al.
        Gene dosage of the common variant 9p21 predicts severity of coronary artery disease.
        J. Am. Coll. Cardiol. 2010; 56: 479-486
        • Head S.J.
        • Milojevic M.
        • Daemen J.
        • Ahn J.M.
        • Boersma E.
        • Christiansen E.H.
        • et al.
        Stroke rates following surgical versus percutaneous coronary revascularization.
        J. Am. Coll. Cardiol. 2018; 72: 386-398
        • Revesz D.
        • Verhoeven J.E.
        • Picard M.
        • Lin J.
        • Sidney S.
        • Epel E.S.
        • et al.
        Associations between cellular aging markers and metabolic syndrome: findings from the CARDIA study.
        J. Clin. Endocrinol. Metab. 2018; 103: 148-157
        • Williams S.B.
        • Ye Y.
        • Huang M.
        • Chang D.W.
        • Kamat A.M.
        • Pu X.
        • et al.
        Mitochondrial DNA content as risk factor for bladder cancer and its association with mitochondrial DNA polymorphisms.
        Cancer Prev. Res.(Phila). 2015; 8: 607-613
        • Xu C.
        • Yang Q.
        • Xiong H.
        • Wang L.
        • Cai J.
        • Wang F.
        • et al.
        Candidate pathway-based genome-wide association studies identify novel associations of genomic variants in the complement system associated with coronary artery disease.
        Circ. Cardiovasc. Genet. 2014; 7: 887-894
        • Wong J.Y.Y.
        • Hu W.
        • Downward G.S.
        • Seow W.J.
        • Bassig B.A.
        • Ji B.T.
        • et al.
        Personal exposure to fine particulate matter and benzo[a]pyrene from indoor air pollution and leukocyte mitochondrial DNA copy number in rural China.
        Carcinogenesis. 2017; 38: 893-899
        • Schmittgen T.D.
        • Livak K.J.
        Analyzing real-time PCR data by the comparative C(T) method.
        Nat. Protoc. 2008; 3: 1101-1108
        • Cui N.H.
        • Qiao C.
        • Chang X.K.
        • Wei L.
        Associations of PARP-1 variant rs1136410 with PARP activities, oxidative DNA damage, and the risk of age-related cataract in a Chinese Han population: a two-stage case-control analysis.
        Gene. 2017; 600: 70-76
        • Franzeck F.C.
        • Hof D.
        • Spescha R.D.
        • Hasun M.
        • Akhmedov A.
        • Steffel J.
        • et al.
        Expression of the aging gene p66Shc is increased in peripheral blood monocytes of patients with acute coronary syndrome but not with stable coronary artery disease.
        Atherosclerosis. 2012; 220: 282-286
        • Nie H.
        • Chen G.
        • He J.
        • Zhang F.
        • Li M.
        • Wang Q.
        • et al.
        Mitochondrial common deletion is elevated in blood of breast cancer patients mediated by oxidative stress.
        Mitochondrion. 2016; 26: 104-112
        • Yoon J.C.
        • Ng A.
        • Kim B.H.
        • Bianco A.
        • Xavier R.J.
        • Elledge S.J.
        Wnt signaling regulates mitochondrial physiology and insulin sensitivity.
        Genes Dev. 2010; 24: 1507-1518
        • Rehkopf D.H.
        • Needham B.L.
        • Lin J.
        • Blackburn E.H.
        • Zota A.R.
        • Wojcicki J.M.
        • et al.
        Leukocyte telomere length in relation to 17 biomarkers of cardiovascular disease risk: a cross-sectional study of US adults.
        PLoS Med. 2016; 13: e1002188
        • Campa D.
        • Barrdahl M.
        • Santoro A.
        • Severi G.
        • Baglietto L.
        • Omichessan H.
        • et al.
        Mitochondrial DNA copy number variation, leukocyte telomere length, and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study.
        Breast Cancer Res. 2018; 20: 29
        • Goff Jr., D.C.
        • Lloyd-Jones D.M.
        • Bennett G.
        • Coady S.
        • D'Agostino Sr., R.B.
        • Gibbons R.
        • et al.
        2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American college of cardiology/American heart association task force on practice guidelines.
        J. Am. Coll. Cardiol. 2014; 63: 2935-2959
        • Wang Y.Y.
        • Chen A.F.
        • Wang H.Z.
        • Xie L.Y.
        • Sui K.X.
        • Zhang Q.Y.
        Association of shorter mean telomere length with large artery stiffness in patients with coronary heart disease.
        Aging Male. 2011; 14: 27-32
        • Tian R.
        • Zhang L.N.
        • Zhang T.T.
        • Pang H.Y.
        • Chen L.F.
        • Shen Z.J.
        • et al.
        Association between oxidative stress and peripheral leukocyte telomere length in patients with premature coronary artery disease.
        Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. 2017; 23: 4382-4390
        • Zhang W.G.
        • Zhu S.Y.
        • Zhao D.L.
        • Jiang S.M.
        • Li J.
        • Li Z.X.
        • et al.
        The correlation between peripheral leukocyte telomere length and indicators of cardiovascular aging.
        Heart Lung Circ. 2014; 23: 883-890
        • Huang S.
        • Ding R.
        • Lin Y.
        • He Z.
        • Wu F.
        • Dai X.
        • et al.
        Reduced T-cell thymic export reflected by sj-TREC in patients with coronary artery disease.
        J. Atheroscler. Thromb. 2016; 23: 632-643
        • Liu L.
        • Trimarchi J.R.
        • Smith P.J.
        • Keefe D.L.
        Mitochondrial dysfunction leads to telomere attrition and genomic instability.
        Aging Cell. 2002; 1: 40-46
        • Chaban Y.
        • Boekema E.J.
        • Dudkina N.V.
        Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation.
        Biochim. Biophys. Acta. 2014; 1837: 418-426
        • Chan S.W.
        • Chevalier S.
        • Aprikian A.
        • Chen J.Z.
        Simultaneous quantification of mitochondrial DNA damage and copy number in circulating blood: a sensitive approach to systemic oxidative stress.
        BioMed Res. Int. 2013; 2013: 157547
        • Chen S.
        • Xie X.
        • Wang Y.
        • Gao Y.
        • Xie X.
        • Yang J.
        • et al.
        Association between leukocyte mitochondrial DNA content and risk of coronary heart disease: a case-control study.
        Atherosclerosis. 2014; 237: 220-226
        • Davidson S.M.
        • Yellon D.M.
        Mitochondrial DNA damage, oxidative stress, and atherosclerosis: where there is smoke there is not always fire.
        Circulation. 2013; 128: 681-683
        • Dai D.F.
        • Chen T.
        • Wanagat J.
        • Laflamme M.
        • Marcinek D.J.
        • Emond M.J.
        • et al.
        Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria.
        Aging Cell. 2010; 9: 536-544
        • Liu L.P.
        • Cheng K.
        • Ning M.A.
        • Li H.H.
        • Wang H.C.
        • Li F.
        • et al.
        Association between peripheral blood cells mitochondrial DNA content and severity of coronary heart disease.
        Atherosclerosis. 2017; 261: 105-110
        • Moslehi J.
        • DePinho R.A.
        • Sahin E.
        Telomeres and mitochondria in the aging heart.
        Circ. Res. 2012; 110: 1226-1237
        • Lee J.Y.
        • Kim J.H.
        • Lee D.C.
        Combined impact of telomere length and mitochondrial DNA copy number on cognitive function in community-dwelling very old adults.
        Dement. Geriatr. Cognit. Disord. 2017; 44: 232-243
        • Daniali L.
        • Benetos A.
        • Susser E.
        • Kark J.D.
        • Labat C.
        • Kimura M.
        • et al.
        Telomeres shorten at equivalent rates in somatic tissues of adults.
        Nat. Commun. 2013; 4: 1597