Advertisement

PCSK9 inhibition and inflammation: A narrative review

      Highlights

      • PCSK9 monoclonal antibodies dramatically reduce LDL-C, but not hs-CRP.
      • The two-dose regimen of inclisiran (300 mg), a siRNA direct against PCSK9, reduced hs-CRP by 16.7%.
      • hs-CRP levels identify ASCVD patients who better respond to PCSK9 monoclonal antibodies.
      • In the Anitschkow study, evolocumab modestly reduced Lp(a) with no changes of hs-CRP or arterial inflammation.

      Abstract

      Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality despite excellent pharmacological and revascularization approaches. Low-density lipoproteins (LDL) are undoubtedly the most significant biochemical variables associated with atheroma, however, compelling data identify inflammation as critical for the maintenance of the atherosclerotic process, underlying some of the most feared vascular complications. Although its causal role is questionable, high-sensitivity C-reactive protein (hs-CRP) represents a major biomarker of inflammation and associated risk in CVD. While statin-associated reduced risk may be related to the lowering of both LDL-C and hs-CRP, PCSK9 inhibitors leading to dramatic LDL-C reductions do no alter hs-CRP levels. On the other hand, hs-CRP levels identify groups of patients with a high risk of CV disease achieving better ASCVD prevention in response to PCSK9 inhibition. In the FOURIER study, even in patients with extremely low levels of LDL-C, there was a stepwise risk increment according to the values of hs-CRP: +9% (<1 mg/L), +10.8% (1–3 mg/L) and +13.1% (>3 mg/L). Likewise, in the SPIRE-1 and -2 studies, bococizumab patients with hs-CRP> 3 mg/L had a 60% greater risk of future CV events. Most of the patients enrolled in the PCSK9 trials were on maximally tolerated statin therapy at baseline, and an elevated hs-CRP may reflect residual inflammatory risk after standard LDL-C lowering therapy. Moreover, data on changes in inflammation markers in carriers of PCSK9 loss-of-function mutations are scanty and not conclusive, thus, evidence from the effects of anti-inflammatory molecules on PCSK9 levels might help unravel this hitherto complex tangle.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Du L.
        • Cheng Z.
        • Zhang Y.
        • et al.
        The impact of medication adherence on clinical outcomes of coronary artery disease: a meta-analysis.
        Eur. J. Prev. Cardiol. 2017; 24: 962-970
        • Kaasenbrood L.
        • Boekholdt S.M.
        • van der Graaf Y.
        • et al.
        Distribution of estimated 10-year risk of recurrent vascular events and residual risk in a secondary prevention population.
        Circulation. 2016; 134: 1419-1429
        • Held C.
        • White H.D.
        • Stewart R.A.H.
        • et al.
        Inflammatory biomarkers interleukin-6 and C-reactive protein and outcomes in stable coronary heart disease: experiences from the STABILITY (stabilization of atherosclerotic plaque by initiation of darapladib therapy) trial.
        J. Am. Heart Assoc. 2017; 6
        • Ridker P.M.
        • Everett B.M.
        • Thuren T.
        • et al.
        Antiinflammatory therapy with canakinumab for atherosclerotic disease.
        N. Engl. J. Med. 2017; 377: 1119-1131
        • Silverman M.G.
        • Ference B.A.
        • Im K.
        • et al.
        Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis.
        J. Am. Med. Assoc. 2016; 316: 1289-1297
        • Ridker P.M.
        • Stampfer M.J.
        • Rifai N.
        Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease.
        J. Am. Med. Assoc. 2001; 285: 2481-2485
        • Ridker P.M.
        Residual inflammatory risk: addressing the obverse side of the atherosclerosis prevention coin.
        Eur. Heart J. 2016; 37: 1720-1722
        • Otterness I.G.
        The value of C-reactive protein measurement in rheumatoid arthritis.
        Semin. Arthritis Rheum. 1994; 24: 91-104
        • Koenig W.
        Low-Grade inflammation modifies cardiovascular risk even at very low LDL-C levels: are we aiming for a dual target concept?.
        Circulation. 2018; 138: 150-153
        • Yousuf O.
        • Mohanty B.D.
        • Martin S.S.
        • et al.
        High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link?.
        J. Am. Coll. Cardiol. 2013; 62: 397-408
        • Gaudino M.
        • Crea F.
        Inflammation in coronary artery disease: which biomarker and which treatment?.
        Eur. J. Prev. Cardiol. 2019 May; 26 (2047487319829307): 869-871
        • Everett B.M.
        • Glynn R.J.
        • MacFadyen J.G.
        • et al.
        Rosuvastatin in the prevention of stroke among men and women with elevated levels of C-reactive protein: justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER).
        Circulation. 2010; 121: 143-150
        • Kinlay S.
        Low-density lipoprotein-dependent and -independent effects of cholesterol-lowering therapies on C-reactive protein: a meta-analysis.
        J. Am. Coll. Cardiol. 2007; 49: 2003-2009
        • Franck G.
        • Even G.
        • Gautier A.
        • et al.
        Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis.
        Eur. Heart J. 2019; 40: 928-937
        • Dai G.
        • Kaazempur-Mofrad M.R.
        • Natarajan S.
        • et al.
        Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature.
        Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 14871-14876
        • Mundi S.
        • Massaro M.
        • Scoditti E.
        • et al.
        Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review.
        Cardiovasc. Res. 2018; 114: 35-52
        • Back M.
        • Yurdagul Jr., A.
        • Tabas I.
        • et al.
        Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities.
        Nat. Rev. Cardiol. 2019 Jul; 16: 389-406
        • Shah P.K.
        Inflammation, infection and atherosclerosis.
        Trends Cardiovasc. Med. 2019;
        • Hansson G.K.
        Inflammation, atherosclerosis, and coronary artery disease.
        N. Engl. J. Med. 2005; 352: 1685-1695
        • Paoletti R.
        • Gotto Jr., A.M.
        • Hajjar D.P.
        Inflammation in atherosclerosis and implications for therapy.
        Circulation. 2004; 109: III20-26
        • Hartley A.
        • Haskard D.
        • Khamis R.
        Oxidized LDL and anti-oxidized LDL antibodies in atherosclerosis - novel insights and future directions in diagnosis and therapy.
        Trends Cardiovasc. Med. 2019; 29: 22-26
        • Hansson G.K.
        • Robertson A.K.
        • Soderberg-Naucler C.
        Inflammation and atherosclerosis.
        Annu. Rev. Pathol. 2006; 1: 297-329
        • Raggi P.
        • Genest J.
        • Giles J.T.
        • et al.
        Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions.
        Atherosclerosis. 2018; 276: 98-108
        • Binder C.J.
        • Papac-Milicevic N.
        • Witztum J.L.
        Innate sensing of oxidation-specific epitopes in health and disease.
        Nat. Rev. Immunol. 2016; 16: 485-497
        • Binder C.J.
        Lipid modification and lipid peroxidation products in innate immunity and inflammation.
        Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017; 1862: 369-370
        • Allahverdian S.
        • Chehroudi A.C.
        • McManus B.M.
        • et al.
        Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis.
        Circulation. 2014; 129: 1551-1559
        • Pryma C.S.
        • Ortega C.
        • Dubland J.A.
        • et al.
        Pathways of smooth muscle foam cell formation in atherosclerosis.
        Curr. Opin. Lipidol. 2019; 30: 117-124
        • Luoma J.
        • Hiltunen T.
        • Sarkioja T.
        • et al.
        Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions.
        J. Clin. Investig. 1994; 93: 2014-2021
        • Tabas I.
        • Lichtman A.H.
        Monocyte-Macrophages and T Cells in atherosclerosis.
        Immunity. 2017; 47: 621-634
        • Duewell P.
        • Kono H.
        • Rayner K.J.
        • et al.
        NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.
        Nature. 2010; 464: 1357-1361
        • Janoudi A.
        • Shamoun F.E.
        • Kalavakunta J.K.
        • et al.
        Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque.
        Eur. Heart J. 2016; 37: 1959-1967
        • Grebe A.
        • Hoss F.
        • Latz E.
        NLRP3 inflammasome and the IL-1 pathway in atherosclerosis.
        Circ. Res. 2018; 122: 1722
        • Agostini L.
        • Martinon F.
        • Burns K.
        • et al.
        NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder.
        Immunity. 2004; 20: 319-325
        • Tall A.R.
        • Westerterp M.
        • Inflammasomes
        Neutrophil extracellular traps, and cholesterol.
        J. Lipid Res. 2019 Apr; 60: 721-727
        • Ference B.A.
        • Graham I.
        • Tokgozoglu L.
        • et al.
        Impact of lipids on cardiovascular health: JACC health promotion series.
        J. Am. Coll. Cardiol. 2018; 72: 1141-1156
        • Nordestgaard B.G.
        • Benn M.
        • Schnohr P.
        • et al.
        Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women.
        J. Am. Med. Assoc. 2007; 298: 299-308
        • Ference B.A.
        • Kastelein J.J.P.
        • Ray K.K.
        • et al.
        Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease.
        J. Am. Med. Assoc. 2019; 321: 364-373
        • Watts G.F.
        • Ooi E.M.
        • Chan D.C.
        Demystifying the management of hypertriglyceridaemia.
        Nat. Rev. Cardiol. 2013; 10: 648-661
        • Bhatt D.L.
        • Steg P.G.
        • Miller M.
        • et al.
        Effects of icosapent ethyl on total ischemic events: from REDUCE-IT.
        J. Am. Coll. Cardiol. 2019 Jun 11; 73: 2791-2802
        • Shapiro M.D.
        • Fazio S.
        PCSK9 and atherosclerosis - lipids and beyond.
        J. Atheroscler. Thromb. 2017; 24: 462-472
        • Ding Z.
        • Liu S.
        • Wang X
        • et al.
        Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta.
        Antioxid Redox Signal. Mar 2015; 22: 760-771
        • Ferri N.
        • Tibolla G.
        • Pirillo A.
        • et al.
        Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels.
        Atherosclerosis. 2012; 220: 381-386
        • Shen L.
        • Peng H.C.
        • Nees S.N.
        • et al.
        Proprotein convertase subtilisin/kexin type 9 potentially influences cholesterol uptake in macrophages and reverse cholesterol transport.
        FEBS Lett. 2013; 587: 1271-1274
        • Boesen M.E.
        • Singh D.
        • Menon B.K.
        • et al.
        A systematic literature review of the effect of carotid atherosclerosis on local vessel stiffness and elasticity.
        Atherosclerosis. 2015; 243: 211-222
        • Maulucci G.
        • Cipriani F.
        • Russo D.
        • et al.
        Improved endothelial function after short-term therapy with evolocumab.
        J. Clin. Lipidol. 2018; 12: 669-673
        • Cicero A.F.G.
        • Toth P.P.
        • Fogacci F.
        • et al.
        Improvement in arterial stiffness after short-term treatment with PCSK9 inhibitors.
        Nutr. Metab. Cardiovasc. Dis. 2019; 29: 527-529
        • Tavori H.
        • Giunzioni I.
        • Predazzi I.M.
        • et al.
        Human PCSK9 promotes hepatic lipogenesis and atherosclerosis development via apoE- and LDLR-mediated mechanisms.
        Cardiovasc. Res. 2016; 110: 268-278
        • Giunzioni I.
        • Tavori H.
        • Covarrubias R.
        • et al.
        Local effects of human PCSK9 on the atherosclerotic lesion.
        J. Pathol. 2016; 238: 52-62
        • Ferri N.
        • Marchiano S.
        • Tibolla G.
        • et al.
        PCSK9 knock-out mice are protected from neointimal formation in response to perivascular carotid collar placement.
        Atherosclerosis. 2016; 253: 214-224
        • Cheng J.M.
        • Oemrawsingh R.M.
        • Garcia-Garcia H.M.
        • et al.
        PCSK9 in relation to coronary plaque inflammation: results of the ATHEROREMO-IVUS study.
        Atherosclerosis. 2016; 248: 117-122
        • Sun H.
        • Krauss R.M.
        • Chang J.T.
        • et al.
        PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction.
        J. Lipid Res. 2018; 59: 207-223
        • Adorni M.P.
        • Cipollari E.
        • Favari E.
        • et al.
        Inhibitory effect of PCSK9 on Abca1 protein expression and cholesterol efflux in macrophages.
        Atherosclerosis. 2017; 256: 1-6
        • Liu A.
        • Frostegard J.
        PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque.
        J. Intern. Med. 2018;
        • Tang Z.H.
        • Peng J.
        • Ren Z.
        • et al.
        New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-kappaB pathway.
        Atherosclerosis. 2017; 262: 113-122
        • Ricci C.
        • Ruscica M.
        • Camera M.
        • et al.
        PCSK9 induces a pro-inflammatory response in macrophages.
        Sci. Rep. 2018; 8: 2267
        • Ding Z.
        • Liu S.
        • Wang X.
        • et al.
        Cross-talk between LOX-1 and PCSK9 in vascular tissues.
        Cardiovasc. Res. 2015; 107: 556-567
        • Ding Z.
        • Liu S.
        • Wang X.
        • et al.
        PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages.
        Cardiovasc. Res. 2018; 114: 1145-1153
        • Kuhnast S.
        • van der Hoorn J.W.
        • Pieterman E.J.
        • et al.
        Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin.
        J. Lipid Res. 2014; 55: 2103-2112
        • Landlinger C.
        • Pouwer M.G.
        • Juno C.
        • et al.
        The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice.
        Eur. Heart J. 2017; 38: 2499-2507
        • Bernelot Moens S.J.
        • Neele A.E.
        • Kroon J.
        • et al.
        PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia.
        Eur. Heart J. 2017; 38: 1584-1593
        • Wu H.
        • Ballantyne C.M.
        • Dyslipidaemia
        PCSK9 inhibitors and foamy monocytes in familial hypercholesterolaemia.
        Nat. Rev. Cardiol. 2017; 14: 385-386
        • Stiekema L.C.A.
        • Stroes E.S.G.
        • Verweij S.L.
        • et al.
        Persistent arterial wall inflammation in patients with elevated lipoprotein(a) despite strong low-density lipoprotein cholesterol reduction by proprotein convertase subtilisin/kexin type 9 antibody treatment.
        Eur. Heart J. 2018;
        • Verweij S.L.
        • Duivenvoorden R.
        • Stiekema L.C.A.
        • et al.
        CCR2 expression on circulating monocytes is associated with arterial wall inflammation assessed by 18F-FDG PET/CT in patients at risk for cardiovascular disease.
        Cardiovasc. Res. 2018; 114: 468-475
        • Gencer B.
        • Mach F.
        Lipoprotein(a): the perpetual supporting actor.
        Eur. Heart J. 2018; 39: 2597-2599
        • Tsimikas S.
        A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies.
        J. Am. Coll. Cardiol. 2017; 69: 692-711
        • Boffa M.B.
        • Koschinsky M.L.
        Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease.
        Nat. Rev. Cardiol. 2019 May; 16: 305-318
        • O’Donoghue M.L.
        • Fazio S.
        • Giugliano R.P.
        • et al.
        Lipoprotein(a), PCSK9 inhibition and cardiovascular risk: Insights from the FOURIER trial.
        Circulation. 2019 Mar 19; 139: 1483-1492
        • Ruscica M.
        • Watts G.F.
        • Sirtori C.R.
        PCSK9 monoclonal antibodies and lipoprotein apheresis for lowering lipoprotein(a): making choices in an era of RNA-based therapies.
        Eur. J. Prev. Cardiol. 2019; (2047487319833504)
        • Elliott P.
        • Chambers J.C.
        • Zhang W.
        • et al.
        Genetic Loci associated with C-reactive protein levels and risk of coronary heart disease.
        J. Am. Med. Assoc. 2009; 302: 37-48
        • Collaboration, CRPCHDG
        • Wensley F.
        • Gao P.
        • et al.
        Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data.
        BMJ. 2011; 342: d548
        • Dehghan A.
        • Dupuis J.
        • Barbalic M.
        • et al.
        Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels.
        Circulation. 2011; 123: 731-738
        • Ridker P.M.
        • Koenig W.
        • Kastelein J.J.
        • et al.
        Has the time finally come to measure hsCRP universally in primary and secondary cardiovascular prevention?.
        Eur. Heart J. 2018; 39: 4109-4111
        • Danesh J.
        • Wheeler J.G.
        • Hirschfield G.M.
        • et al.
        C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease.
        N. Engl. J. Med. 2004; 350: 1387-1397
        • Lane T.
        • Wassef N.
        • Poole S.
        • et al.
        Infusion of pharmaceutical-grade natural human C-reactive protein is not proinflammatory in healthy adult human volunteers.
        Circ. Res. 2014; 114: 672-676
        • Hirschfield G.M.
        • Gallimore J.R.
        • Kahan M.C.
        • et al.
        Transgenic human C-reactive protein is not proatherogenic in apolipoprotein E-deficient mice.
        Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 8309-8314
        • Torzewski M.
        • Reifenberg K.
        • Cheng F.
        • et al.
        No effect of C-reactive protein on early atherosclerosis in LDLR-/-/human C-reactive protein transgenic mice.
        Thromb. Haemost. 2008; 99: 196-201
        • Reifenberg K.
        • Lehr H.A.
        • Baskal D.
        • et al.
        Role of C-reactive protein in atherogenesis: can the apolipoprotein E knockout mouse provide the answer?.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 1641-1646
        • Teupser D.
        • Weber O.
        • Rao T.N.
        • et al.
        No reduction of atherosclerosis in C-reactive protein (CRP)-deficient mice.
        J. Biol. Chem. 2011; 286: 6272-6279
        • Mani P.
        • Puri R.
        • Schwartz G.G.
        • et al.
        Association of initial and serial C-reactive protein levels with adverse cardiovascular events and death after acute coronary syndrome: a secondary analysis of the VISTA-16 trial.
        JAMA Cardiol. 2019;
        • Labos C.
        • Brophy J.M.
        • Smith G.D.
        • et al.
        Evaluation of the pleiotropic effects of statins: a reanalysis of the randomized trial evidence using egger regression-brief report.
        Arterioscler. Thromb. Vasc. Biol. 2018; 38: 262-265
        • Ridker P.M.
        • Rifai N.
        • Pfeffer M.A.
        • et al.
        Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators.
        Circulation. 1998; 98: 839-844
        • Ridker P.M.
        • Danielson E.
        • Fonseca F.A.
        • et al.
        Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial.
        Lancet. 2009; 373: 1175-1182
        • Ridker P.M.
        • Danielson E.
        • Fonseca F.A.
        • et al.
        Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein.
        N. Engl. J. Med. 2008; 359: 2195-2207
        • Catapano A.L.
        • Pirillo A.
        • Norata G.D.
        Vascular inflammation and low-density lipoproteins: is cholesterol the link? A lesson from the clinical trials.
        Br. J. Pharmacol. 2017; 174: 3973-3985
        • Ridker P.M.
        • Morrow D.A.
        • Rose L.M.
        • et al.
        Relative efficacy of atorvastatin 80 mg and pravastatin 40 mg in achieving the dual goals of low-density lipoprotein cholesterol <70 mg/dl and C-reactive protein <2 mg/l: an analysis of the PROVE-IT TIMI-22 trial.
        J. Am. Coll. Cardiol. 2005; 45: 1644-1648
        • Nissen S.E.
        • Tuzcu E.M.
        • Schoenhagen P.
        • et al.
        Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial.
        J. Am. Med. Assoc. 2004; 291: 1071-1080
        • Heart Protection Study Collaborative G.
        • Jonathan E.
        • Derrick B.
        • et al.
        C-reactive protein concentration and the vascular benefits of statin therapy: an analysis of 20,536 patients in the Heart Protection Study.
        Lancet. 2011; 377: 469-476
        • Kwon O.
        • Kang S.J.
        • Kang S.H.
        • et al.
        Relationship between serum inflammatory marker levels and the dynamic changes in coronary plaque characteristics after statin therapy.
        Circ. Cardiovasc. Imag. 2017 Jul; 10e005934
        • Nicholls S.J.
        • Puri R.
        • Anderson T.
        • et al.
        Effect of evolocumab on coronary plaque composition.
        J. Am. Coll. Cardiol. 2018; 72: 2012-2021
        • Mayer F.J.
        • Binder C.J.
        • Wagner O.F.
        • et al.
        Combined effects of inflammatory status and carotid atherosclerosis: a 12-year follow-up study.
        Stroke. 2016; 47: 2952-2958
        • Ruscica M.
        • Castelnuovo S.
        • Macchi C.
        • et al.
        Left main coronary wall thickness correlates with the carotid intima media thickness and may provide a new marker of cardiovascular risk.
        Eur. J. Prev. Cardiol. 2019 Jun; 26 (2047487318806985): 1001-1004
        • Turgeon R.D.
        • Tsuyuki R.T.
        • Gyenes G.T.
        • et al.
        Cardiovascular efficacy and safety of PCSK9 inhibitors: systematic review and meta-analysis including the ODYSSEY OUTCOMES trial.
        Can. J. Cardiol. 2018; 34: 1600-1605
        • Karatasakis A.
        • Danek B.A.
        • Karacsonyi J.
        • et al.
        Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: a meta-analysis of 35 randomized controlled trials.
        J. Am. Heart Assoc. 2017; 6
        • Dicembrini I.
        • Giannini S.
        • Ragghianti B.
        • et al.
        Effects of PCSK9 inhibitors on LDL cholesterol, cardiovascular morbidity and all-cause mortality: a systematic review and meta-analysis of randomized controlled trials.
        J. Endocrinol. Investig. 2019;
        • Ruscica M.
        • Ferri N.
        • Corsini A.
        • et al.
        PCSK9 antagonists and inflammation.
        Atherosclerosis. 2018; 268: 235-236
        • Cao Y.X.
        • Li S.
        • Liu H.H.
        • et al.
        Impact of PCSK9 monoclonal antibodies on circulating hs-CRP levels: a systematic review and meta-analysis of randomised controlled trials.
        BMJ Open. 2018; 8e022348
        • Moriarty P.M.
        • Thompson P.D.
        • Cannon C.P.
        • et al.
        Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the ODYSSEY ALTERNATIVE randomized trial.
        J. Clin. Lipidol. 2015; 9: 758-769
        • Sullivan D.
        • Olsson A.G.
        • Scott R.
        • et al.
        Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial.
        J. Am. Med. Assoc. 2012; 308: 2497-2506
        • Stroes E.
        • Colquhoun D.
        • Sullivan D.
        • et al.
        Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 randomized, placebo-controlled phase 3 clinical trial of evolocumab.
        J. Am. Coll. Cardiol. 2014; 63: 2541-2548
        • Nissen S.E.
        • Stroes E.
        • Dent-Acosta R.E.
        • et al.
        Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial.
        J. Am. Med. Assoc. 2016; 315: 1580-1590
        • Pradhan A.D.
        • Aday A.W.
        • Rose L.M.
        • et al.
        Residual inflammatory risk on treatment with PCSK9 inhibition and statin therapy.
        Circulation. 2018; 138: 141-149
        • Ruscica M.
        • Ricci C.
        • Macchi C.
        • et al.
        Suppressor of cytokine signaling-3 (SOCS-3) induces proprotein convertase subtilisin kexin type 9 (PCSK9) expression in hepatic HepG2 cell line.
        J. Biol. Chem. 2016; 291: 3508-3519
        • Sabatine M.S.
        • Giugliano R.P.
        • Keech A.C.
        • et al.
        Evolocumab and clinical outcomes in patients with cardiovascular disease.
        N. Engl. J. Med. 2017; 376: 1713-1722
        • Bohula E.A.
        • Giugliano R.P.
        • Leiter L.A.
        • et al.
        Inflammatory and cholesterol risk in the FOURIER trial.
        Circulation. 2018; 138: 131-140
        • Schwartz G.G.
        • Steg P.G.
        • Szarek M.
        • et al.
        Alirocumab and cardiovascular outcomes after acute coronary syndrome.
        N. Engl. J. Med. 2018; 379: 2097-2107
        • White H.D.
        • Steg P.G.
        • Szarek M.
        • et al.
        Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial.
        Eur. Heart J. 2019;
        • Steg P.G.
        • Szarek M.
        • Bhatt D.L.
        • et al.
        Effect of alirocumab on mortality after acute coronary syndromes: An analysis of the odyssey outcomes randomized clinical trial.
        Circulation. 2019 Jul 9; 140: 103-112
        • Jukema J.W.
        • Szarek M.
        • Zijlstra L.E.
        • et al.
        Patients with recent acute coronary syndrome and polyvascular disease derive large absolute benefit from alirocumab: ODYSSEY OUTCOMES trial.
        J. Am. Coll. Cardiol. 2019;
        • Macchi C.
        • Banach M.
        • Corsini A.
        • et al.
        Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels - experimental and clinical approaches with lipid-lowering agents.
        Eur. J. Prev. Cardiol. 2019 Jun; 26 (2047487319831500): 930-949
        • Ray K.K.
        • Landmesser U.
        • Leiter L.A.
        • et al.
        Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol.
        N. Engl. J. Med. 2017; 376: 1430-1440
        • Rosenson R.S.
        • Hegele R.A.
        • Fazio S.
        • et al.
        The evolving future of PCSK9 inhibitors.
        J. Am. Coll. Cardiol. 2018; 72: 314-329
        • Sliz E.
        • Kettunen J.
        • Holmes M.V.
        • et al.
        Metabolomic consequences of genetic inhibition of PCSK9 compared with statin treatment.
        Circulation. 2018; 138: 2499-2512
        • Bell J.D.
        • Brown J.C.
        • Nicholson J.K.
        • et al.
        Assignment of resonances for 'acute-phase' glycoproteins in high resolution proton NMR spectra of human blood plasma.
        FEBS Lett. 1987; 215: 311-315
        • Lawler P.R.
        • Akinkuolie A.O.
        • Chandler P.D.
        • et al.
        Circulating N-linked glycoprotein acetyls and longitudinal mortality risk.
        Circ. Res. 2016; 118: 1106-1115
        • Akinkuolie A.O.
        • Glynn R.J.
        • Padmanabhan L.
        • et al.
        Circulating N-linked glycoprotein side-chain biomarker, rosuvastatin therapy, and incident cardiovascular disease: an analysis from the JUPITER trial.
        J. Am. Heart Assoc. 2016; 5
        • Freiberg M.S.
        • Chang C.C.
        • Kuller L.H.
        • et al.
        HIV infection and the risk of acute myocardial infarction.
        JAMA Intern. Med. 2013; 173: 614-622
        • Boccara F.
        • Lang S.
        • Meuleman C.
        • et al.
        HIV and coronary heart disease: time for a better understanding.
        J. Am. Coll. Cardiol. 2013; 61: 511-523
        • Ruscica M.
        • Watts G.F.
        • Sirtori C.R.
        PCSK9 in HIV infection: new opportunity or red herring?.
        Atherosclerosis. 2019; 284: 216-217
        • Boccara F.
        • Ghislain M.
        • Meyer L.
        • et al.
        Impact of protease inhibitors on circulating PCSK9 levels in HIV-infected antiretroviral-naive patients from an ongoing prospective cohort.
        AIDS. 2017; 31: 2367-2376
        • Kohli P.
        • Ganz P.
        • Ma Y.
        • et al.
        HIV and hepatitis C-coinfected patients have lower low-density lipoprotein cholesterol despite higher proprotein convertase subtilisin kexin 9 (PCSK9): an apparent "PCSK9-lipid paradox.
        J Am Heart Assoc. 2016; 5
        • Gencer B.
        • Pagano S.
        • Vuilleumier N.
        • et al.
        Clinical, behavioral and biomarker predictors of PCSK9 levels in HIV-infected patients naive of statin therapy: a cross-sectional analysis from the Swiss HIV cohort.
        Atherosclerosis. 2019; 284: 253-259
        • Boyd J.H.
        • Fjell C.D.
        • Russell J.A.
        • et al.
        Increased plasma PCSK9 levels are associated with reduced endotoxin clearance and the development of acute organ failures during sepsis.
        J Innate Immun. 2016; 8: 211-220
        • Le Bras M.
        • Roquilly A.
        • Deckert V.
        • et al.
        Plasma PCSK9 is a late biomarker of severity in patients with severe trauma injury.
        J. Clin. Endocrinol. Metab. 2013; 98: E732-E736
        • Goldfine A.B.
        • Shoelson S.E.
        Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk.
        J. Clin. Investig. 2017; 127: 83-93
        • Ooi T.C.
        • Krysa J.A.
        • Chaker S.
        • et al.
        The effect of PCSK9 loss-of-function variants on the postprandial lipid and apob-lipoprotein response.
        J. Clin. Endocrinol. Metab. 2017; 102: 3452-3460
        • Sabatine M.S.
        • Leiter L.A.
        • Wiviott S.D.
        • et al.
        Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial.
        Lancet Diabetes Endocrinol. 2017; 5: 941-950
        • Rosenson R.S.
        • Daviglus M.L.
        • Handelsman Y.
        • et al.
        Efficacy and safety of evolocumab in individuals with type 2 diabetes mellitus: primary results of the randomised controlled BANTING study.
        Diabetologia. 2019; 62: 948-958
        • Lawler P.R.
        • Akinkuolie A.O.
        • Harada P.
        • et al.
        Residual risk of atherosclerotic cardiovascular events in relation to reductions in very-low-density lipoproteins.
        J. Am. Heart. Assoc. 2017; 6
        • Ray K.K.
        Alirocumab and Cardiovascular Outcomes in Patients with Acute Coronary Syndrome (ACS) and Diabetes--PrespeciAed Analyses of ODYSSEY OUTCOMES.
        2018
        • Gencer B.
        • Mach F.
        Lipid management in ACS: should we go lower faster?.
        Atherosclerosis. 2018; 275: 368-375
        • Cariou B.
        • Guerin P.
        • Le May C.
        • et al.
        Circulating PCSK9 levels in acute coronary syndrome: results from the PC-SCA-9 prospective study.
        Diabetes Metab. 2017; 43: 529-535
        • Bae K.H.
        • Kim S.W.
        • Choi Y.K.
        • et al.
        Serum levels of PCSK9 are associated with coronary angiographic severity in patients with acute coronary syndrome.
        Diabetes Metab. J. 2018; 42: 207-214
        • Liberale L.
        • Carbone F.
        • Bertolotto M.
        • et al.
        Serum PCSK9 levels predict the occurrence of acute coronary syndromes in patients with severe carotid artery stenosis.
        Int. J. Cardiol. 2018; 263: 138-141
        • Koskinas K.C.
        • Windecker S.
        • Buhayer A.
        • et al.
        Design of the randomized, placebo-controlled evolocumab for early reduction of LDL-cholesterol levels in patients with acute coronary syndromes (EVOPACS) trial.
        Clin. Cardiol. 2018; 41: 1513-1520
        • Ruscica M.
        • Ferri N.
        • Macchi C.
        • et al.
        Lipid lowering drugs and inflammatory changes: an impact on cardiovascular outcomes?.
        Ann. Med. 2018; 50: 461-484
        • Rocha V.Z.
        • Santos R.D.
        Cholesterol and inflammation: the lesser the better in atherothrombosis.
        Eur. J. Prev. Cardiol. 2018; 25: 944-947
        • Ridker P.M.
        • Cannon C.P.
        • Morrow D.
        • et al.
        C-reactive protein levels and outcomes after statin therapy.
        N. Engl. J. Med. 2005; 352: 20-28
        • Bohula E.A.
        • Giugliano R.P.
        • Cannon C.P.
        • et al.
        Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT.
        Circulation. 2015; 132: 1224-1233
        • Tunon J.
        • Back M.
        • Badimon L.
        • et al.
        Interplay between hypercholesterolaemia and inflammation in atherosclerosis: translating experimental targets into clinical practice.
        Eur. J. Prev. Cardiol. 2018; 25: 948-955
        • Ridker P.M.
        Anticytokine agents: targeting interleukin signaling pathways for the treatment of atherothrombosis.
        Circ. Res. 2019; 124: 437-450
        • Penson P.E.
        • Long D.L.
        • Howard G.
        • et al.
        Associations between very low concentrations of low density lipoprotein cholesterol, high sensitivity C-reactive protein, and health outcomes in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) study.
        Eur. Heart J. 2018; 39: 3641-3653
        • Puri R.
        • Nissen S.E.
        • Libby P.
        • et al.
        C-reactive protein, but not low-density lipoprotein cholesterol levels, associate with coronary atheroma regression and cardiovascular events after maximally intensive statin therapy.
        Circulation. 2013; 128: 2395-2403
        • Lee S.E.
        • Chang H.J.
        • Sung J.M.
        • et al.
        Effects of statins on coronary atherosclerotic plaques: the PARADIGM study.
        JACC Cardiovasc. Imag. 2018; 11: 1475-1484
        • Tunon J.
        • Badimon L.
        • Bochaton-Piallat M.L.
        • et al.
        Identifying the anti-inflammatory response to lipid lowering therapy: a position paper from the working group on atherosclerosis and vascular biology of the European Society of Cardiology.
        Cardiovasc. Res. 2019; 115: 10-19
        • Macchi C.
        • Ferri N.
        • Favero C.
        • et al.
        Long-term exposure to air pollution raises circulating levels of proprotein convertase subtilisin/kexin type 9 in obese individuals.
        Eur. J. Prev. Cardiol. Apr 2019; 26: 578-588
        • Walley K.R.
        • Thain K.R.
        • Russell J.A.
        • et al.
        PCSK9 is a critical regulator of the innate immune response and septic shock outcome.
        Sci. Transl. Med. 2014; 6: 258ra143
        • Berger J.M.
        • Loza Valdes A.
        • Gromada J.
        • et al.
        Inhibition of PCSK9 does not improve lipopolysaccharide-induced mortality in mice.
        J. Lipid Res. 2017; 58: 1661-1669
        • Karagiannis A.D.
        • Liu M.
        • Toth P.P.
        • et al.
        Pleiotropic anti-atherosclerotic effects of PCSK9 InhibitorsFrom molecular biology to clinical translation.
        Curr. Atheroscler. Rep. 2018; 20: 20
        • Cannon C.P.
        • Cariou B.
        • Blom D.
        • et al.
        Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial.
        Eur. Heart J. 2015; 36: 1186-1194