Genital Chlamydia infection in hyperlipidemic mouse models exacerbates atherosclerosis


      • Genital Chlamydia infection exacerbated atherosclerosis in two independent hyperlipidemic mouse models of atherosclerosis.
      • Chlamydia infection increased pro-inflammatory cytokines, chemokines, and VCAM-1 expression.
      • Interestingly, Chlamydia infection showed uterine pathology only in apoE-deficient mice.


      Background and aims

      Atherosclerosis is a chronic inflammatory disease, and recent studies have shown that infection at remote sites can contribute to the progression of atherosclerosis in hyperlipidemic mouse models. In this report, we tested the hypothesis that genital Chlamydia infection could accelerate the onset and progression of atherosclerosis.


      Apolipoprotein E (Apoe−/−) and LDL receptor knockout (Ldlr−/−) mice on a high-fat diet were infected intra-vaginally with Chlamydia muridarum. Atherosclerotic lesions on the aortic sinuses and in the descending aorta were assessed at 8-weeks post-infection. Systemic, macrophage, and vascular site inflammatory responses were assessed and quantified.


      Compared to the uninfected groups, infected Apoe−/− and Ldlr−/− mice developed significantly more atherosclerotic lesions in the aortic sinus and in the descending aorta. Increased lesions were associated with higher circulating levels of serum amyloid A-1, IL-1β, TNF-α, and increased VCAM-1 expression in the aortic sinus, suggesting an association with inflammatory responses observed during C. muridarum infection. Genital infection courses were similar in Apoe−/−, Ldlr−/−, and wild type mice. Further, Apoe−/− mice developed severe uterine pathology with increased dilatations. Apoe-deficiency also augmented cytokine/chemokine response in C. muridarum infected macrophages, suggesting that the difference in macrophage response could have contributed to the genital pathology in Apoe−/− mice.


      Overall, these studies demonstrate that genital Chlamydia infection exacerbates atherosclerotic lesions in hyperlipidemic mouse and suggest a novel role for Apoe in full recovery of uterine anatomy after chlamydial infection.

      Graphical abstract


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Libby P.
        Inflammation in atherosclerosis.
        Nature. 2002; 420: 868-874
        • Moazed T.C.
        • Kuo C.
        • Grayston J.T.
        • et al.
        Murine models of Chlamydia pneumoniae infection and atherosclerosis.
        J. Infect. Dis. 1997; 175: 883-890
        • Michelsen K.S.
        • Doherty T.M.
        • Shah P.K.
        • et al.
        TLR signaling: an emerging bridge from innate immunity to atherogenesis.
        J. Immunol. 2004; 173: 5901-5907
        • Gibson 3rd, F.C.
        • Hong C.
        • Chou H.H.
        • et al.
        Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice.
        Circulation. 2004; 109: 2801-2806
        • Saikku P.
        • Leinonen M.
        • Mattila K.
        • et al.
        Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction.
        Lancet. 1988; 2: 983-986
        • Thom D.H.
        • Grayston J.T.
        • Siscovick D.S.
        • et al.
        Association of prior infection with Chlamydia pneumoniae and angiographically demonstrated coronary artery disease.
        J. Am. Med. Assoc. 1992; 268: 68-72
        • Grayston J.T.
        • Kuo C.C.
        • Coulson A.S.
        • et al.
        Chlamydia pneumoniae (TWAR) in atherosclerosis of the carotid artery.
        Circulation. 1995; 92: 3397-3400
        • Thom D.H.
        • Wang S.P.
        • Grayston J.T.
        • et al.
        Chlamydia pneumoniae strain TWAR antibody and angiographically demonstrated coronary artery disease.
        Arterioscler. Thromb. 1991; 11: 547-551
        • Tormakangas L.
        • Erkkila L.
        • Korhonen T.
        • et al.
        Effects of repeated Chlamydia pneumoniae inoculations on aortic lipid accumulation and inflammatory response in C57BL/6J mice.
        Infect. Immun. 2005; 73: 6458-6466
        • Blessing E.
        • Campbell L.A.
        • Rosenfeld M.E.
        • et al.
        Chlamydia pneumoniae infection accelerates hyperlipidemia induced atherosclerotic lesion development in C57BL/6J mice.
        Atherosclerosis. 2001; 158: 13-17
        • Moazed T.C.
        • Campbell L.A.
        • Rosenfeld M.E.
        • et al.
        Chlamydia pneumoniae infection accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice.
        J. Infect. Dis. 1999; 180: 238-241
        • Hu H.
        • Pierce G.N.
        • Zhong G.
        The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae.
        J. Clin. Investig. 1999; 103: 747-753
        • Hauer A.D.
        • de Vos P.
        • Peterse N.
        • et al.
        Delivery of Chlamydia pneumoniae to the vessel wall aggravates atherosclerosis in LDLr-/- mice.
        Cardiovasc. Res. 2006; 69: 280-288
        • Workowski K.A.
        • Bolan G.A.
        • Centers for Disease C.
        • et al.
        Sexually transmitted diseases treatment guidelines.
        MMWR Recomm. Rep. (Morb. Mortal. Wkly. Rep.). 2015; 64 (2015): 1-137
        • Eckert L.O.
        • Hawes S.E.
        • Wolner-Hanssen P.K.
        • et al.
        Endometritis: the clinical-pathologic syndrome.
        Am. J. Obstet. Gynecol. 2002; 186: 690-695
        • Crichton J.
        • Hickman M.
        • Campbell R.
        • et al.
        Prevalence of chlamydia in young adulthood and association with life course socioeconomic position: birth cohort study.
        PLoS One. 2014; 9e104943
        • Crichton J.
        • Hickman M.
        • Campbell R.
        • et al.
        Socioeconomic factors and other sources of variation in the prevalence of genital chlamydia infections: a systematic review and meta-analysis.
        BMC Public Health. 2015; 15: 729
        • Nagarajan U.M.
        • Prantner D.
        • Sikes J.D.
        • et al.
        Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model.
        Infect. Immun. 2008; 76: 4642-4648
        • Nagarajan U.M.
        • Sikes J.D.
        • Yeruva L.
        • et al.
        Significant role of IL-1 signaling, but limited role of inflammasome activation, in oviduct pathology during Chlamydia muridarum genital infection.
        J. Immunol. 2012; 188: 2866-2875
        • Ng H.P.
        • Zhu X.
        • Harmon E.Y.
        • et al.
        Reduced Atherosclerosis in apoE-inhibitory FcgammaRIIb-deficient mice Is associated with increased anti-inflammatory responses by T Cells and macrophages.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35: 1101-1112
        • Schiller N.K.
        • Black A.S.
        • Bradshaw G.P.
        • et al.
        Participation of macrophages in atherosclerotic lesion morphology in LDLr-/- mice.
        J. Lipid Res. 2004; 45: 1398-1409
        • Thampi P.
        • Stewart B.W.
        • Joseph L.
        • et al.
        Dietary homocysteine promotes atherosclerosis in apoE-deficient mice by inducing scavenger receptors expression.
        Atherosclerosis. 2008; 197: 620-629
        • Zhang Y.
        • Yeruva L.
        • Marinov A.
        • et al.
        The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-beta during Chlamydia trachomatis infection.
        J. Immunol. 2014; 193: 2394-2404
        • Ng H.P.
        • Burris R.L.
        • Nagarajan S.
        Attenuated atherosclerotic lesions in apoE-Fcgamma-chain-deficient hyperlipidemic mouse model is associated with inhibition of Th17 cells and promotion of regulatory T cells.
        J. Immunol. 2011; 187: 6082-6093
        • Nagarajan U.M.
        • Sikes J.
        • Prantner D.
        • et al.
        MyD88 deficiency leads to decreased NK cell gamma interferon production and T cell recruitment during Chlamydia muridarum genital tract infection, but a predominant Th1 response and enhanced monocytic inflammation are associated with infection resolution.
        Infect. Immun. 2011; 79: 486-498
        • Galkina E.
        • Ley K.
        Vascular adhesion molecules in atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 2292-2301
        • Cybulsky M.I.
        • Iiyama K.
        • Li H.
        • et al.
        A major role for VCAM-1, but not ICAM-1, in early atherosclerosis.
        J. Clin. Investig. 2001; 107: 1255-1262
        • Ramirez J.A.
        Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae/Atherosclerosis Study Group.
        Ann. Intern. Med. 1996; 125: 979-982
        • Hirono S.
        • Pierce G.N.
        Dissemination of Chlamydia pneumoniae to the vessel wall in atherosclerosis.
        Mol. Cell. Biochem. 2003; 246: 91-95
        • Chen S.
        • Shimada K.
        • Zhang W.
        • et al.
        IL-17A is proatherogenic in high-fat diet-induced and Chlamydia pneumoniae infection-accelerated atherosclerosis in mice.
        J. Immunol. 2010; 185: 5619-5627
        • Caligiuri G.
        • Rottenberg M.
        • Nicoletti A.
        • et al.
        Chlamydia pneumoniae infection does not induce or modify atherosclerosis in mice.
        Circulation. 2001; 103: 2834-2838
        • Ezzahiri R.
        • Stassen F.R.
        • Kurvers H.A.
        • et al.
        Chlamydia pneumoniae infection induces an unstable atherosclerotic plaque phenotype in LDL-receptor, ApoE double knockout mice.
        Eur. J. Vasc. Endovasc. Surg.Off. J. Eur. Soc. Vasc. Surg. 2003; 26: 88-95
        • Kelly K.A.
        • Walker J.C.
        • Jameel S.H.
        • et al.
        Differential regulation of CD4 lymphocyte recruitment between the upper and lower regions of the genital tract during Chlamydia trachomatis infection.
        Infect. Immun. 2000; 68: 1519-1528
        • Nagarajan U.M.
        • Ojcius D.M.
        • Stahl L.
        • et al.
        Chlamydia trachomatis induces expression of IFN-gamma-inducible protein 10 and IFN-beta independent of TLR2 and TLR4, but largely dependent on MyD88.
        J. Immunol. 2005; 175: 450-460
        • Ezzahiri R.
        • Nelissen-Vrancken H.J.
        • Kurvers H.A.
        • et al.
        Chlamydophila pneumoniae (Chlamydia pneumoniae) accelerates the formation of complex atherosclerotic lesions in Apo E3-Leiden mice.
        Cardiovasc. Res. 2002; 56: 269-276
        • Azzam K.M.
        • Fessler M.B.
        Crosstalk between reverse cholesterol transport and innate immunity.
        Trends Endocrinol. Metab. 2012; 23: 169-178
        • Assar O.
        • Nejatizadeh A.
        • Dehghan F.
        • et al.
        Association of Chlamydia pneumoniae infection with atherosclerotic plaque formation.
        Glob. J. Health Sci. 2015; 8: 260-267
        • Roufaiel M.
        • Gracey E.
        • Siu A.
        • et al.
        CCL19-CCR7-dependent reverse transendothelial migration of myeloid cells clears Chlamydia muridarum from the arterial intima.
        Nat. Immunol. 2016; 17: 1263-1272
        • Poston T.B.
        • O'Connell C.M.
        • Girardi J.
        • et al.
        T cell-independent gamma interferon and B cells cooperate to prevent mortality associated with disseminated Chlamydia muridarum genital tract infection.
        Infect. Immun. 2018; 86
        • Shao L.
        • Melero J.
        • Zhang N.
        • et al.
        The cryptic plasmid is more important for Chlamydia muridarum to colonize the mouse gastrointestinal tract than to infect the genital tract.
        PLoS One. 2017; 12e0177691
        • Shao L.
        • Zhang T.
        • Liu Q.
        • et al.
        Chlamydia muridarum with mutations in chromosomal genes tc0237 and/or tc0668 Is deficient in colonizing the mouse gastrointestinal tract.
        Infect. Immun. 2017; 85 (429, 417)
        • Nagarajan U.M.
        • Tripathy M.
        • Kollipara A.
        • et al.
        Differential signaling pathways are initiated in macrophages during infection depending on the intracellular fate of Chlamydia spp.
        Immunol. Cell Biol. 2018; 96: 246-256
        • Burris R.L.
        • Ng H.P.
        • Nagarajan S.
        Soy protein inhibits inflammation-induced VCAM-1 and inflammatory cytokine induction by inhibiting the NF-kappaB and AKT signaling pathway in apolipoprotein E-deficient mice.
        Eur. J. Nutr. 2013; 53: 135-148
        • Kaynar A.M.
        • Yende S.
        • Zhu L.
        • et al.
        Effects of intra-abdominal sepsis on atherosclerosis in mice.
        Crit. Care. 2014; 18: 469
        • Moore K.J.
        • Freeman M.W.
        Scavenger receptors in atherosclerosis: beyond lipid uptake.
        Arterioscler. Thromb. Vasc. Biol. 2006; 26: 1702-1711
        • Huh H.Y.
        • Lo S.K.
        • Yesner L.M.
        • et al.
        CD36 induction on human monocytes upon adhesion to tumor necrosis factor-activated endothelial cells.
        J. Biol. Chem. 1995; 270: 6267-6271
        • McKellar G.E.
        • McCarey D.W.
        • Sattar N.
        • et al.
        Role for TNF in atherosclerosis? Lessons from autoimmune disease.
        Nat. Rev. Cardiol. 2009; 6: 410-417
        • Prantner D.
        • Sikes J.D.
        • Hennings L.
        • et al.
        Interferon regulatory transcription factor 3 protects mice from uterine horn pathology during Chlamydia muridarum genital infection.
        Infect. Immun. 2011; 79: 3922-3933
        • Curtiss L.K.
        • Boisvert W.A.
        Apolipoprotein E and atherosclerosis.
        Curr. Opin. Lipidol. 2000; 11: 243-251
        • Grainger D.J.
        • Reckless J.
        • McKilligin E.
        Apolipoprotein E modulates clearance of apoptotic bodies in vitro and in vivo, resulting in a systemic proinflammatory state in apolipoprotein E-deficient mice.
        J. Immunol. 2004; 173: 6366-6375
        • Roselaar S.E.
        • Daugherty A.
        Apolipoprotein E-deficient mice have impaired innate immune responses to Listeria monocytogenes in vivo.
        J. Lipid Res. 1998; 39: 1740-1743
        • de Bont N.
        • Netea M.G.
        • Demacker P.N.
        • et al.
        Apolipoprotein E knock-out mice are highly susceptible to endotoxemia and Klebsiella pneumoniae infection.
        J. Lipid Res. 1999; 40: 680-685
        • Hui D.Y.
        • Basford J.E.
        Distinct signaling mechanisms for apoE inhibition of cell migration and proliferation.
        Neurobiol. Aging. 2005; 26: 317-323