Advertisement

Intravascular optical coherence tomography method for automated detection of macrophage infiltration within atherosclerotic coronary plaques

      Highlights

      • An IV-OCT methodology for automated identification of macrophage infiltration.
      • The NSD ratio feature of IV-OCT images highlights macrophage infiltration areas.
      • CD68 staining was used to correlate macrophages presence with NSD ratio values.

      Abstract

      Background and aims

      Significant macrophages infiltration in advanced atherosclerotic plaques promotes acute coronary events. Hence, the clinical imaging of macrophage content in coronary atherosclerotic plaques could potentially aid in identifying patients most at risk of future acute coronary events. The aim of this study was to introduce and validate a simple intravascular optical coherence tomography (IV-OCT) image processing method for automated, accurate and fast detection of macrophage infiltration within coronary atherosclerotic plaques.

      Methods

      This method calculates the ratio of the normalized-intensity standard deviation (NSD) values estimated over two axially-adjacent regions of interest in an IV-OCT cross-sectional image (B-scan). When applied to entire IV-OCT B-scans, this method highlights plaque areas with high NSD ratio values (NSDRatio), which was demonstrated to be correlated with the degree of coronary plaque macrophage infiltration.

      Results

      Using an optimized NSDRatio threshold value, coronary plaque macrophage infiltration could be detected with ~88% sensitivity and specificity in a database of 28 IV-OCT scans from postmortem coronary segments. For comparison, using an optimized NSD threshold value, considered the standard IV-OCT signature for macrophages, coronary plaque macrophage infiltration could be detected with only ~55% sensitivity and specificity.

      Conclusions

      The proposed NSDRatio method significantly increases the sensitivity and specificity for the detection of coronary plaque macrophage infiltration compared to the standard NSD method. This computationally efficient method can be seamlessly implemented within standard IV-OCT imaging systems for in-vivo real-time imaging of macrophage content in coronary plaques, which could potentially aid in identifying patients most at risk of future acute coronary events.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tearney G.J.
        • Regar E.
        • Akasaka T.
        • Adriaenssens T.
        • Barlis P.
        • Bezerra H.G.
        • Bouma B.
        • Bruining N.
        • Cho J.
        • Chowdhary S.
        • Costa M.A.
        • de Silva R.
        • Dijkstra J.
        • Di Mario C.
        • Dudeck D.
        • Falk E.
        • Feldman M.D.
        • Fitzgerald P.
        • Garcia H.
        • Gonzalo N.
        • Granada J.F.
        • Guagliumi G.
        • Holm N.R.
        • Honda Y.
        • Ikeno F.
        • Kawasaki M.
        • Kochman J.
        • Koltowski L.
        • Kubo T.
        • Kume T.
        • Kyono H.
        • Lam C.C.S.
        • Lamouche G.
        • Lee D.P.
        • Leon M.B.
        • Maehara A.
        • Manfrini O.
        • Mintz G.S.
        • Mizuno K.
        • Morel M.
        • Nadkarni S.
        • Okura H.
        • Otake H.
        • Pietrasik A.
        • Prati F.
        • Räber L.
        • Radu M.D.
        • Rieber J.
        • Riga M.
        • Rollins A.
        • Rosenberg M.
        • Sirbu V.
        • Serruys P.W.J.C.
        • Shimada K.
        • Shinke T.
        • Shite J.
        • Siegel E.
        • Sonada S.
        • Suter M.
        • Takarada S.
        • Tanaka A.
        • Terashima M.
        • Troels T.
        • Uemura S.
        • Ughi G.J.
        • van Beusekom H.M.M.
        • van der Steen A.F.W.
        • van Es G.-A.
        • van Soest G.
        • Virmani R.
        • Waxman S.
        • Weissman N.J.
        • Weisz G.
        Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation.
        J. Am. Coll. Cardiol. 2012; 59: 1058-1072https://doi.org/10.1016/J.JACC.2011.09.079
        • Tearney G.J.
        • Yabushita H.
        • Houser S.L.
        • Aretz H.T.
        • Jang I.-K.
        • Schlendorf K.H.
        • Kauffman C.R.
        • Shishkov M.
        • Halpern E.F.
        • Bouma B.E.
        Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography.
        Circulation. 2003; 107: 113-119
        • MacNeill B.D.
        • Jang I.-K.
        • Bouma B.E.
        • Iftimia N.
        • Takano M.
        • Yabushita H.
        • Shishkov M.
        • Kauffman C.R.
        • Houser S.L.
        • Aretz H.T.
        • DeJoseph D.
        • Halpern E.F.
        • Tearney G.J.
        Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease.
        J. Am. Coll. Cardiol. 2004; 44: 972-979https://doi.org/10.1016/J.JACC.2004.05.066
        • Raffel O.C.
        • Tearney G.J.
        • Gauthier D.D.
        • Halpern E.F.
        • Bouma B.E.
        • Jang I.-K.
        Relationship between a systemic inflammatory marker, plaque inflammation, and plaque characteristics determined by intravascular optical coherence tomography.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1820-1827https://doi.org/10.1161/ATVBAHA.107.145987
        • Phipps J.E.
        • Vela D.
        • Hoyt T.
        • Halaney D.L.
        • Mancuso J.J.
        • Buja L.M.
        • Asmis R.
        • Milner T.E.
        • Feldman M.D.
        Macrophages and intravascular OCT bright spots: a quantitative study.
        JACC Cardiovasc. Imaging. 2015; 8: 63-72
        • Otsu N.
        A threshold selection method from gray-level histograms.
        IEEE Trans. Syst. Man. Cybern. 1979; 9: 62-66https://doi.org/10.1109/TSMC.1979.4310076
        • Ughi G.J.
        • Adriaenssens T.
        • Sinnaeve P.
        • Desmet W.
        • D’hooge J.
        Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images.
        Biomed. Opt. Express. 2013; 4: 1014-1030https://doi.org/10.1364/BOE.4.001014
        • Yun S.H.
        • Tearney G.J.
        • Vakoc B.J.
        • Shishkov M.
        • Oh W.Y.
        • Desjardins A.E.
        • Suter M.J.
        • Chan R.C.
        • Evans J.A.
        • Jang I.-K.
        • Nishioka N.S.
        • de Boer J.F.
        • Bouma B.E.
        Comprehensive volumetric optical microscopy in vivo.
        Nat. Med. 2006; 12: 1429-1433https://doi.org/10.1038/nm1450
        • Villiger M.
        • Zhang E.Z.
        • Nadkarni S.K.
        • Oh W.-Y.
        • Vakoc B.J.
        • Bouma B.E.
        Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging.
        Opt. Express. 2013; 21 (16353)https://doi.org/10.1364/OE.21.016353
        • Boi A.
        • Jamthikar A.D.
        • Saba L.
        • Gupta D.
        • Sharma A.
        • Loi B.
        • Laird J.R.
        • Khanna N.N.
        • Suri J.S.
        A survey on coronary atherosclerotic plaque tissue characterization in intravascular optical coherence tomography.
        Curr. Atheroscler. Rep. 2018; 20: 33https://doi.org/10.1007/s11883-018-0736-8
        • Di Vito L.
        • Agozzino M.
        • Marco V.
        • Ricciardi A.
        • Concardi M.
        • Romagnoli E.
        • Gatto L.
        • Calogero G.
        • Tavazzi L.
        • Arbustini E.
        • Prati F.
        Identification and quantification of macrophage presence in coronary atherosclerotic plaques by optical coherence tomography.
        Eur. Hear. J. - Cardiovasc. Imaging. 2015; 16: 807https://doi.org/10.1093/ehjci/jeu307
        • Garbin U.
        • Baggio E.
        • Stranieri C.
        • Pasini A.
        • Manfro S.
        • Mozzini C.
        • Vallerio P.
        • Lipari G.
        • Merigo F.
        • Guidi G.
        • Cominacini L.
        • Fratta Pasini A.
        Expansion of necrotic core and shedding of Mertk receptor in human carotid plaques: a role for oxidized polyunsaturated fatty acids?.
        Cardiovasc. Res. 2013; 97: 125-133https://doi.org/10.1093/cvr/cvs301
        • Tao H.
        • Yancey P.G.
        • Babaev V.R.
        • Blakemore J.L.
        • Zhang Y.
        • Ding L.
        • Fazio S.
        • Linton M.F.
        Macrophage SR-BI mediates efferocytosis via Src/PI3K/Rac1 signaling and reduces atherosclerotic lesion necrosis.
        J. Lipid Res. 2015; 56: 1449-1460https://doi.org/10.1194/jlr.M056689
        • Thorp E.
        • Li G.
        • Seimon T.A.
        • Kuriakose G.
        • Ron D.
        • Tabas I.
        Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of apoe-/- and ldlr-/- mice lacking CHOP.
        Cell Metabol. 2009; 9: 474-481https://doi.org/10.1016/j.cmet.2009.03.003
        • Seimon T.A.
        • Nadolski M.J.
        • Liao X.
        • Magallon J.
        • Nguyen M.
        • Feric N.T.
        • Koschinsky M.L.
        • Harkewicz R.
        • Witztum J.L.
        • Tsimikas S.
        • Golenbock D.
        • Moore K.J.
        • Tabas I.
        Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress.
        Cell Metabol. 2010; 12: 467-482https://doi.org/10.1016/j.cmet.2010.09.010
        • Libby P.
        Collagenases and cracks in the plaque.
        J. Clin. Investig. 2013; 123: 3201-3203https://doi.org/10.1172/JCI67526
        • Tabas I.
        • Bornfeldt K.E.
        Macrophage phenotype and function in different stages of atherosclerosis.
        Circ. Res. 2016; 118: 653-667https://doi.org/10.1161/CIRCRESAHA.115.306256
        • Drechsler M.
        • de Jong R.
        • Rossaint J.
        • Viola J.R.
        • Leoni G.
        • Wang J.M.
        • Grommes J.
        • Hinkel R.
        • Kupatt C.
        • Weber C.
        • Doring Y.
        • Zarbock A.
        • Soehnlein O.
        Annexin A1 counteracts chemokine-induced arterial myeloid cell recruitment.
        Circ. Res. 2015; 116: 827-835https://doi.org/10.1161/CIRCRESAHA.116.305825
        • Lewis D.R.
        • Petersen L.K.
        • York A.W.
        • Zablocki K.R.
        • Joseph L.B.
        • Kholodovych V.
        • Prud’homme R.K.
        • Uhrich K.E.
        • Moghe P.V.
        Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo.
        Proc. Natl. Acad. Sci. 2015; 112: 2693-2698https://doi.org/10.1073/pnas.1424594112
        • Duivenvoorden R.
        • Tang J.
        • Cormode D.P.
        • Mieszawska A.J.
        • Izquierdo-Garcia D.
        • Ozcan C.
        • Otten M.J.
        • Zaidi N.
        • Lobatto M.E.
        • van Rijs S.M.
        • Priem B.
        • Kuan E.L.
        • Martel C.
        • Hewing B.
        • Sager H.
        • Nahrendorf M.
        • Randolph G.J.
        • Stroes E.S.G.
        • Fuster V.
        • Fisher E.A.
        • Fayad Z.A.
        • Mulder W.J.M.
        A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation.
        Nat. Commun. 2014; 5: 3065https://doi.org/10.1038/ncomms4065
        • Tarkin J.M.
        • Dweck M.R.
        • Evans N.R.
        • Takx R.A.P.
        • Brown A.J.
        • Tawakol A.
        • Fayad Z.A.
        • Rudd J.H.F.
        Imaging atherosclerosis, circ.
        Res. 2016; 118: 750-769https://doi.org/10.1161/CIRCRESAHA.115.306247
        • Thorp E.
        • Li G.
        • Seimon T.A.
        • Kuriakose G.
        • Ron D.
        • Tabas I.
        Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP.
        Cell Metabol. 2009; 9: 474-481https://doi.org/10.1016/j.cmet.2009.03.003
        • Romagnoli E.
        • Gatto L.
        • Prati F.
        The CLIMA study: assessing the risk of myocardial infarction with a new anatomical score.
        Eur. Heart J. Suppl. 2019; 21: B80-B83https://doi.org/10.1093/eurheartj/suz032
        • Zahnd G.
        • Hoogendoorn A.
        • Combaret Nicolas
        • Karanasos A.
        • Péry E.
        • Sarry Laurent
        • Motreff Pascal
        • Niessen W.
        • Regar E.
        • Soest Gijs Van
        • Gijsen Frank
        • Van Walsum T.
        Contour segmentation of the intima, media, and adventitia layers in intracoronary OCT images: application to fully automatic detection of healthy wall regions.
        Int J CARS. 2017; (n.d.)https://doi.org/10.1007/s11548-017-1657-7
        • Cheimariotis G.-A.
        • Chatzizisis Y.S.
        • Koutkias V.G.
        • Toutouzas K.
        • Giannopoulos A.
        • Riga M.
        • Chouvarda I.
        • Antoniadis A.P.
        • Doulaverakis C.
        • Tsamboulatidis I.
        • Kompatsiaris I.
        • Giannoglou G.D.
        • Maglaveras N.
        Arc-oct: automatic detection of lumen border in intravascular OCT images.
        Comput. Methods Progr. Biomed. 2017; 151: 21-32https://doi.org/10.1016/j.cmpb.2017.08.007