Advertisement

Omega-3 fatty acid ethyl esters improve low-density lipoprotein subclasses without increasing low-density lipoprotein-cholesterol levels: A phase 4, randomized study

      Highlights

      • Dyslipidemia patients received omega-3 fatty acid ethyl esters or no treatment.
      • Low-density lipoprotein (LDL) particle sizes increased in treated patients.
      • Blood lipid concentrations decreased in treated patients.
      • Lipoprotein and apolipoprotein concentrations decreased in treated patients.
      • Serum lipid profile and LDL particle size may improve in treated patients.

      Abstract

      Background and aims

      We aimed to investigate blood lipid and lipoprotein profiles in patients with dyslipidemia receiving hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins) after 8 weeks of omega-3 fatty acid ethyl esters (Omega-3) treatment, using high-performance liquid chromatography with highly-sensitive gel filtration columns.

      Methods

      In this phase 4, randomized, open-label study, patients with dyslipidemia receiving statins were randomized 1:1 to Omega-3 treatment (oral Omega-3 2 g twice daily) or Control (no Omega-3). Primary endpoint was change in mean particle size of low-density lipoprotein (LDL) and small dense LDL (cholesterol monitoring) in the specific 20-lipoprotein fraction assay. Secondary endpoints included changes in lipids, apolipoproteins, and lipoprotein concentrations in fasting blood. Changes were compared between treatments using analysis of covariance, adjusted by baseline fasting triglycerides and age.

      Results

      Fifty-three patients were randomized (Omega-3, n = 24; Control, n = 29). The difference in LDL particle size between Omega-3 and Control groups was significant at week 8 (p = 0.0040). Differences in least squares mean change in concentration from baseline to week 8 between Omega-3 and Control groups were significant for total cholesterol (p = 0.0009), LDL-C (p = 0.0442), non-high-density lipoprotein cholesterol (p = 0.0009), and remnant lipoprotein-cholesterol (p = 0.0396). Differences were significant for apolipoproteins AI, AII, B, B-48, B-100, CII, CIII, and CII/III, but not apolipoprotein E.

      Conclusions

      Significant increases in LDL particle sizes and significant decreases in blood lipid, lipoprotein and apolipoprotein concentrations were observed with Omega-3 compared with Control. Omega-3 may improve blood lipid profile and increase LDL particle size, resulting in an anti-atherogenic profile.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • World Health Organisation (WHO)
        Cardiovascular diseases (CVDs) [Web page].
        (Available from:)
        • Alberti K.G.
        • Zimmet P.
        • Shaw J.
        Metabolic syndrome--a new world-wide definition. A consensus statement from the international diabetes federation.
        Diabet. Med. 2006; 23: 469-480https://doi.org/10.1111/j.1464-5491.2006.01858.x
        • Di Chiara T.
        • Argano C.
        • Corrao S.
        • Scaglione R.
        • Licata G.
        Hypoadiponectinemia: a link between visceral obesity and metabolic syndrome.
        J Nutr Metab. 2012; : 175245https://doi.org/10.1155/2012/175245
        • Zidi W.
        • Allal-Elasmi M.
        • Zayani Y.
        • Zaroui A.
        • Guizani I.
        • et al.
        Metabolic syndrome, independent predictor for coronary artery disease.
        Clin. Lab. 2015; 61: 1545-1552
        • The National Heart, Lung, and Blood Institute (NHLBI)
        Atherosclerosis.
        ([Web page], Available from:)
        https://www.nhlbi.nih.gov/health-topics/atherosclerosis
        Date: 2019
        Date accessed: February 19, 2019
        • Kinoshita M.
        • Yokote K.
        • Arai H.
        • Iida M.
        • Ishigaki Y.
        • et al.
        Japan Atherosclerosis Society (JAS) guidelines for prevention of atherosclerotic cardiovascular diseases 2017.
        J. Atheroscler. Thromb. 2018; 25: 846-984https://doi.org/10.5551/jat.GL2017
        • Daniel M.J.
        Lipid management in patients with type 2 diabetes.
        Am Health Drug Benefits. 2011; 4: 312-322
        • Toth P.P.
        Insulin resistance, small LDL particles, and risk for atherosclerotic disease.
        Curr. Vasc. Pharmacol. 2014; 12: 653-657
        • Austin M.A.
        • Breslow J.L.
        • Hennekens C.H.
        • Buring J.E.
        • Willett W.C.
        • et al.
        Low-density lipoprotein subclass patterns and risk of myocardial infarction.
        J. Am. Med. Assoc. 1988; 260: 1917-1921
        • Koba S.
        • Hirano T.
        • Yoshino G.
        • Sakai K.
        • Sakaue T.
        • et al.
        Remarkably high prevalence of small dense low-density lipoprotein in Japanese men with coronary artery disease, irrespective of the presence of diabetes.
        Atherosclerosis. 2002; 160: 249-256https://doi.org/10.1016/s0021-9150(01)00580-9
        • Bradberry J.C.
        • Hilleman D.E.
        Overview of omega-3 fatty acid therapies.
        PT. 2013; 38: 681-691
        • Tatsuno I.
        • Saito Y.
        • Kudou K.
        • Ootake J.
        Efficacy and safety of TAK-085 compared with eicosapentaenoic acid in Japanese subjects with hypertriglyceridemia undergoing lifestyle modification: the omega-3 fatty acids randomized double-blind (ORD) study.
        J Clin Lipidol. 2013; 7: 199-207https://doi.org/10.1016/j.jacl.2013.01.006
        • Tousoulis D.
        • Plastiras A.
        • Siasos G.
        • Oikonomou E.
        • Verveniotis A.
        • et al.
        Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome.
        Atherosclerosis. 2014; 232: 10-16https://doi.org/10.1016/j.atherosclerosis.2013.10.014
        • Okazaki M.
        • Yamashita S.
        Recent advances in analytical methods on lipoprotein subclasses: calculation of particle numbers from lipid levels by gel permeation HPLC using “Spherical Particle Model”.
        J. Oleo Sci. 2016; 65: 265-282https://doi.org/10.5650/jos.ess16020
        • Davidson M.H.
        • Rosenson R.S.
        • Maki K.C.
        • Nicholls S.J.
        • Ballantyne C.M.
        • et al.
        Effects of fenofibric acid on carotid intima-media thickness in patients with mixed dyslipidemia on atorvastatin therapy: randomized, placebo-controlled study (FIRST).
        Arterioscler. Thromb. Vasc. Biol. 2014; 34: 1298-1306https://doi.org/10.1161/ATVBAHA.113.302926
        • Rosenson R.S.
        • Underberg J.A.
        Systematic review: evaluating the effect of lipid-lowering therapy on lipoprotein and lipid values.
        Cardiovasc. Drugs Ther. 2013; 27: 465-479https://doi.org/10.1007/s10557-013-6477-6
        • Rosenson R.S.
        • Wolff D.A.
        • Huskin A.L.
        • Helenowski I.B.
        • Rademaker A.W.
        Fenofibrate therapy ameliorates fasting and postprandial lipoproteinemia, oxidative stress, and the inflammatory response in subjects with hypertriglyceridemia and the metabolic syndrome.
        Diabetes Care. 2007; 30: 1945-1951https://doi.org/10.2337/dc07-0015
        • Dunbar R.L.
        • Nicholls S.J.
        • Maki K.C.
        • Roth E.M.
        • Orloff D.G.
        • et al.
        Effects of omega-3 carboxylic acids on lipoprotein particles and other cardiovascular risk markers in high-risk statin-treated patients with residual hypertriglyceridemia: a randomized, controlled, double-blind trial.
        Lipids Health Dis. 2015; 14: 98https://doi.org/10.1186/s12944-015-0100-8
        • Yamashita S.
        • Okazaki M.
        • Okada T.
        • Masuda D.
        • Arai H.
        • et al.
        Validation of particle numbers of lipoproteins by gel permeation chromatography: comparison with NMR lipoprofile 2 (LipoScience) and Lipoprofile 3 (LabCorp).
        Atherosclerosis. 2018; 32: 14https://doi.org/10.1016/j.atherosclerosissup.2018.04.041
        • Voros S.
        • Joshi P.
        • Qian Z.
        • Rinehart S.
        • Vazquez-Figueroa J.G.
        • et al.
        Apoprotein B, small-dense LDL and impaired HDL remodeling is associated with larger plaque burden and more noncalcified plaque as assessed by coronary CT angiography and intravascular ultrasound with radiofrequency backscatter: results from the ATLANTA I study.
        J Am Heart Assoc. 2013; 2e000344https://doi.org/10.1161/JAHA.113.000344
        • Durrington P.N.
        • Bhatnagar D.
        • Mackness M.I.
        • Morgan J.
        • Julier K.
        • et al.
        An omega-3 polyunsaturated fatty acid concentrate administered for one year decreased triglycerides in simvastatin treated patients with coronary heart disease and persisting hypertriglyceridaemia.
        Heart (British Cardiac Society). 2001; 85: 544-548https://doi.org/10.1136/heart.85.5.544
        • Yokoyama M.
        • Origasa H.
        • Matsuzaki M.
        • Matsuzawa Y.
        • Saito Y.
        • et al.
        Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis.
        Lancet. 2007; 369: 1090-1098https://doi.org/10.1016/s0140-6736(07)60527-3
        • Jacobson T.A.
        • Glickstein S.B.
        • Rowe J.D.
        • PN S.
        Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review.
        J Clin Lipidol. 2012; 6: 5-18https://doi.org/10.1016/j.jacl.2011.10.018
        • Wei M.Y.
        • Jacobson T.A.
        Effects of eicosapentaenoic acid versus docosahexaenoic acid on serum lipids: a systematic review and meta-analysis.
        Curr. Atheroscler. Rep. 2011; 13: 474-483https://doi.org/10.1007/s11883-011-0210-3
        • Bergmann K.
        Non-HDL cholesterol and evaluation of cardiovascular disease risk.
        EJIFCC. 2010; 21: 64-67
        • Japan Atherosclerosis Society (JAS)
        Guidelines for prevention of atherosclerotic cardiovascular diseases 2012.
        ([Web page], Available from:)
        • Masuda D.
        • Yamashita S.
        Postprandial hyperlipidemia and remnant lipoproteins.
        J. Atheroscler. Thromb. 2017; 24: 95-109https://doi.org/10.5551/jat.RV16003
        • Miyauchi K.
        • Kayahara N.
        • Ishigami M.
        • Kuwata H.
        • Mori H.
        • et al.
        Development of a homogeneous assay to measure remnant lipoprotein cholesterol.
        Clin. Chem. 2007; 53: 2128-2135https://doi.org/10.1373/clinchem.2007.092296
        • Matsuo N.
        • Matsuoka T.
        • Onishi S.
        • Yamamoto H.
        • Kato A.
        • et al.
        Impact of remnant lipoprotein on coronary plaque components.
        J. Atheroscler. Thromb. 2015; 22: 783-795https://doi.org/10.5551/jat.26328
        • Nagata T.
        • Sugiyama D.
        • Kise T.
        • Tsuji S.
        • Ohira H.
        • et al.
        Fasting remnant lipoproteins can predict postprandial hyperlipidemia.
        Lipids Health Dis. 2012; 11: 146https://doi.org/10.1186/1476-511x-11-146
        • Bhatt D.
        • Steg G.
        • Miller M.
        • Brinton E.
        • Jacobson T.
        • et al.
        Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia.
        N. Engl. J. Med. 2019; 380: 11-22https://doi.org/10.1056/NEJMoa1812792
        • Da Boit M.
        • Sibson R.
        • Sivasubramaniam S.
        • Meakin J.R.
        • Greig C.A.
        • et al.
        Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: a randomized controlled trial.
        Am. J. Clin. Nutr. 2017; 105: 151-158https://doi.org/10.3945/ajcn.116.140780
        • Hanada H.
        • Mugii S.
        • Okubo M.
        • Maeda I.
        • Kuwayama K.
        • et al.
        Establishment of chemiluminescence enzyme immunoassay for apolipoprotein B-48 and its clinical applications for evaluation of impaired chylomicron remnant metabolism.
        Clin. Chim. Acta. 2012; 413: 160-165https://doi.org/10.1016/j.cca.2011.09.013
        • Nakatani K.
        • Sugimoto T.
        • Masuda D.
        • Okano R.
        • Oya T.
        • et al.
        Serum apolipoprotein B-48 levels are correlated with carotid intima-media thickness in subjects with normal serum triglyceride levels.
        Atherosclerosis. 2011; 218: 226-232https://doi.org/10.1016/j.atherosclerosis.2011.05.009
        • Masuda D.
        • Sugimoto T.
        • Tsujii K.
        • Inagaki M.
        • Nakatani K.
        • et al.
        Correlation of fasting serum apolipoprotein B-48 with coronary artery disease prevalence.
        Eur. J. Clin. Investig. 2012; 42: 992-999https://doi.org/10.1111/j.1365-2362.2012.02687.x
        • Mori K.
        • Ishida T.
        • Yasuda T.
        • Monguchi T.
        • Sasaki M.
        • et al.
        Fasting serum concentration of apolipoprotein B48 represents residual risks in patients with new-onset and chronic coronary artery disease.
        Clin. Chim. Acta. 2013; 421: 51-56https://doi.org/10.1016/j.cca.2013.02.005
        • Backes J.
        • Anzalone D.
        • Hilleman D.
        • Catini J.
        The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia.
        Lipids Health Dis. 2016; 15: 118https://doi.org/10.1186/s12944-016-0286-4
        • Adiels M.
        • Olofsson S.O.
        • Taskinen M.R.
        • Boren J.
        Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome.
        Arterioscler. Thromb. Vasc. Biol. 2008; 28: 1225-1236https://doi.org/10.1161/ATVBAHA.107.160192
        • Harris W.S.
        • Bulchandani D.
        Why do omega-3 fatty acids lower serum triglycerides?.
        Curr. Opin. Lipidol. 2006; 17: 387-393https://doi.org/10.1097/01.mol.0000236363.63840.16
        • Ikeda I.
        • Cha J.Y.
        • Yanagita T.
        • Nakatani N.
        • Oogami K.
        • et al.
        Effects of dietary alpha-linolenic, eicosapentaenoic and docosahexaenoic acids on hepatic lipogenesis and beta-oxidation in rats.
        Biosci. Biotechnol. Biochem. 1998; 62: 675-680https://doi.org/10.1271/bbb.62.675