Advertisement

The ketogenic diet: Pros and cons

  • Blair O'Neill
    Affiliations
    Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada

    Department of Medicine, University of Alberta, Edmonton, AB, Canada

    Division of Cardiology, University of Alberta, Edmonton, AB, Canada
    Search for articles by this author
  • Paolo Raggi
    Correspondence
    Corresponding author. 11220 83rd Avenue, Suite 5A9-014, Edmonton, AB, T6G 2B7, Canada.
    Affiliations
    Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada

    Department of Medicine, University of Alberta, Edmonton, AB, Canada

    Division of Cardiology, University of Alberta, Edmonton, AB, Canada
    Search for articles by this author

      Highlights

      • Most diets are supported by little rigorous scientific evidence.
      • The ketogenic diet requires a firm restriction of carbohydrates and allows liberal ingestion of fats.
      • The ketogenic diet induces a rapid weight loss and reduction in hemoglobin A1c, but raises LDL cholesterol.
      • Other diets are as effective, more sustainable and safer.

      Abstract

      Diets have been at the center of animated debates for decades and many claims have been made in one direction or the other by supporters of opposite camps, often with limited evidence. At times emphasis has been put on a single new aspect that the previous diets had overlooked and the new one was to embrace in order to improve weight loss and well-being. Unfortunately, very few randomized clinical trials involving diets have addressed the combined question of weight loss and cardiovascular outcomes. The recently introduced ketogenic diet requires a rigorous limitation of carbohydrates while allowing a liberal ingestion of fats (including saturated fats) and has generated a flurry of interest with many taking the pro position and as many taking the cons position. The ketogenic diet causes a rapid and sensible weight loss along with favourable biomarker changes, such as a reduction in serum hemoglobin A1c in patients with diabetes mellitus type 2. However, it also causes a substantial rise in low density lipoprotein cholesterol levels and many physicians are therefore hesitant to endorse it. In view of the popular uptake of the keto diet even among subjects not in need of weight loss, there is some preoccupation with the potential long-term consequences of a wide embrace of this diet by large segments of the population. On the contrary, numerous lines of evidence show that plant-based diets are associated with reduction in oncological and cardiovascular diseases and a prolonged life span. The debate reproduced in this article took place during a continuous medical education program between two cardiologists with largely differing views on the matter of effectiveness, sustainability, and safety of the ketogenic diet compared to alternative options.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Toffler Alvin
        Future Shock.
        Random House, New York1970
        • Aurora S.
        • Stouffer G.A.
        • Kucharska-Newton A.M.
        • Qamar A.
        • Vaduganathan M.
        • Pandey A.
        • Caughey M.C.
        Twenty-year trends and sex differences in young adults hospitalized with acute myocardial infarction: the ARIC community surveillance study.
        Circulation. 2018; 139: 1047-1056https://doi.org/10.1161/CIRCULATIONAHA.118.037137
        • Cohen E.
        • Cragg M.
        • deFonseka J.
        • et al.
        Statistical review of US macronutrient consumption data, 1965-2011: Americans have been following dietary guidelines, coincident with the rise in obesity.
        Nutrition. 2015; 31: 727-732
        • Keys A.
        Diet and the epidemiology of coronary heart disease.
        J. Am. Med. Assoc. 1957; 164: 1912-1919https://doi.org/10.1001/jama.1957.62980170024007e
        • Harcombe Z.
        • Baker J.S.
        • Cooper S.M.
        • Davies B.
        • Sculthorpe N.
        • DiNicolantonio J.J.
        • Grace F.
        Evidence from randomised controlled trials did not support the introduction of dietary fat guidelines in 1977 and 1983: a systematic review and meta-analysis.
        Open Heart. 2015; 2 (e000196)https://doi.org/10.1136/openhrt-2014-000196
        • Siri-Tarino P.W.
        • Sun Q.
        • Hu F.B.
        • Krauss R.M.
        Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease.
        Am. J. Clin. Nutr. 2010; 91: 535-546https://doi.org/10.3945/ajcn.2009.27725
        • Ascherio I.
        • Katan M.B.
        • Zock P.L.
        • Stampfer M.J.
        • Willett W.C.
        Trans fatty acids and coronary heart disease.
        N. Engl. J. Med. 1999; 340: 1994-1998https://doi.org/10.1056/NEJM199906243402511
        • Kabir Z.
        • Connolly G.N.
        • Clancy L.
        • Koh H.K.
        • Capewell S.
        Coronary heart disease death and decreased smoking prevalence in Massachusetts,1993–2003.
        Am. J. Public Health. 2008; 98: 1468-1469https://doi.org/10.2105/AJPH.2007.129924
        • Ramsden C.E.
        • Zamora D.
        • Majchrzak-Hong S.
        • Faurot K.R.
        • Broste S.K.
        • Frantz R.P.
        • Hibbeln J.R.
        Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968-73).
        BMJ. 2016; 353: i1246https://doi.org/10.1136/bmj.i1246
        • Gómez-Hernández A.
        • Beneit N.
        • Díaz-Castroverde S.
        • Escribano Ó.
        Differential role of adipose tissues in obesity and related metabolic and vascular complications.
        Internet J. Endocrinol. 2016; 2016: 1216783https://doi.org/10.1155/2016/1216783
        • Tahara N.
        • Kai H.
        • Yamagishi S.
        • Mizoguchi M.
        • Nakaura H.
        • Ishibashi M.
        • Kaida H.
        • Baba K.
        • Hayabuchi N.
        • Imaizumi T.
        Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome.
        J. Am. Coll. Cardiol. 2007; 49: 1533-1539https://doi.org/10.1016/j.jacc.2006.11.046
        • Pyörälä M.
        • Miettinen H.
        • Laakso M.
        • Pyörälä K.
        Hyperinsulinemia predicts coronary heart disease risk in healthy middle-aged men: the 22-year follow-up results of the Helsinki Policemen Study.
        Circulation. 1998; 98: 398-404https://doi.org/10.1161/01.cir.98.5.398
        • Penson P.E.
        • Long D.L.
        • Howard G.
        • Toth P.P.
        • Muntner P.
        • Howard V.J.
        • Safford M.M.
        • Jones S.R.
        • Martin S.S.
        • Mazidi M.
        • Catapano A.L.
        • Banach M.
        Associations between very low concentrations of low density lipoprotein cholesterol, high sensitivity C-reactive protein, and health outcomes in the Reasons for Geographical and Racial Differences in Stroke (REGARDS) study.
        Eur. Heart J. 2018; 39: 3641-3653https://doi.org/10.1093/eurheartj/ehy533
        • Yang J.S.
        • Gerber J.N.
        • You H.J.
        Association between fasting insulin and high-sensitivity C reactive protein in Korean adults.
        BMJ Open Sport & Exerc Med. 2017; 3 (e000236)https://doi.org/10.1136/bmjsem-2017-000236
        • Otvos J.D.
        • Mora S.
        • Shalaurova I.
        • Greenland P.
        • Mackey R.H.
        • Goff Jr., D.C.
        Clinical implications of discordance between low-density lipoprotein cholesterol and particle number.
        J Clin Lipidol. 2011; 5: 105-113https://doi.org/10.1016/j.jacl.2011.02.001
        • Toth P.P.
        • Grabner M.
        • Punekar R.S.
        • Quimbo R.A.
        • Cziraky M.J.
        • Jacobson T.A.
        Cardiovascular risk in patients achieving low-density lipoprotein cholesterol and particle targets.
        Atherosclerosis. 2014; 23: 585-591https://doi.org/10.1016/j.atherosclerosis.2014.05.914
        • Manickam P.
        • Rathod A.
        • Panaich S.
        • Hari P.
        • Veeranna V.
        • Badheka A.
        • Jacob S.
        • Afonso L.
        Comparative prognostic utility of conventional and novel lipid parameters for cardiovascular disease risk prediction: do novel lipid parameters offer an advantage?.
        J Clin Lipidol. 2011; 5: 82-90https://doi.org/10.1016/j.jacl.2010.12.001
        • Hulthe J.
        • Bokemark L.
        • Wikstrand J.
        • Fagerberg B.
        The metabolic syndrome, LDL particle size, and atherosclerosis: the Atherosclerosis and Insulin Resistance (AIR) study.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 2140-2147https://doi.org/10.1161/01.ATV.20.9.2140
        • Krauss R.M.
        • Blanche P.J.
        • Rawlings R.S.
        • Fernstrom H.S.
        • Williams P.T.
        Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia.
        Am. J. Clin. Nutr. 2006; 83: 1025-1031https://doi.org/10.1093/ajcn/83.5.1025
        • Maiolino G.
        • Rossitto G.
        • Caielli P.
        • Bisogni V.
        • Rossi G.P.
        • Calò L.A.
        The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts.
        Mediat. Inflamm. 2013; 2013: 714653https://doi.org/10.1155/2013/714653
        • Ali W.
        • Kushwaha U.P.
        • Wamique M.
        • Vishwakarma P.
        • Tasleem M.
        • et al.
        Oxidized LDL as a biomarker in metabolic syndrome.
        J Diabetes Metab. 2017; 8: 764https://doi.org/10.4172/2155-6156.1000764
        • King G.L.
        • Park K.
        • Li Q.
        Selective insulin resistance and the development of cardiovascular diseases in diabetes: the 2015 Edwin Bierman Award Lecture.
        Diabetes. 2016; 65: 1462-1471https://doi.org/10.2337/db16-0152
        • Sackner-Bernstein J.
        • Kanter D.
        • Kaul S.
        Dietary intervention for overweight and obese adults: comparison of low-carbohydrate and low-fat diets. A Meta-Analysis.
        PLoS One. 2015; https://doi.org/10.1371/journal.pone.0139817
        • Schauer P.R.
        • Bhatt D.L.
        • Kirwan J.P.
        • et al.
        Bariatric surgery versus intensive medical therapy for diabetes — 5-year outcomes.
        N. Engl. J. Med. 2017; 376: 641-651https://doi.org/10.1056/NEJMoa1600869
        • Sarah J.
        • Hallberg S.J.
        • McKenzie A.L.
        • Williams P.T.
        • et al.
        Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: an open-label, non-randomized, controlled study.
        Diabetes Ther. 2018; 9: 583https://doi.org/10.1007/s13300-018-0373-9
        • Bhanpuri N.H.
        • Hallberg S.J.
        • Williams P.T.
        • et al.
        Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at 1 year: an open label, non-randomized, controlled study.
        Cardiovasc. Diabetol. 2018; 17: 56https://doi.org/10.1186/s12933-018-0698-8
        • Banting William
        Letter on Corpulence, Addressed to the Public.
        University Library of San Francisco, 1865
        • Keys A.
        • Menotti A.
        • Karvonen M.J.
        • Aravanis C.
        • Blackburn H.
        • Buzina R.
        • Djordjevic B.S.
        • Dontas A.S.
        • Fidanza F.
        • Keys M.H.
        • et al.
        The diet and 15-year death rate in the seven countries study.
        Am. J. Epidemiol. 1986; 124: 903-915https://doi.org/10.1093/oxfordjournals.aje.a114480
        • Pett K.D.
        • Willett W.C.
        • Vartiainen E.
        • Katz D.L.
        The seven countries study.
        Eur. Heart J. 2017; 38: 3119-3121https://doi.org/10.1093/eurheartj/ehx603
        • Bueno N.B.
        • de Melo I.S.
        • de Oliveira S.L.
        • da Rocha Ataide T.
        Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials.
        Br. J. Nutr. 2013; 110: 1178-1187https://doi.org/10.1017/S0007114513000548
        • Hall K.D.
        • Chen K.Y.
        • Guo J.
        • Lam Y.Y.
        • Leibel R.L.
        • Mayer L.E.
        • Reitman M.L.
        • Rosenbaum M.
        • Smith S.R.
        • Walsh B.T.
        • Ravussin E.
        Energy expenditure and body composition changes after an isocaloric ketogenic diet in overweight and obese men.
        Am. J. Clin. Nutr. 2016; 104: 324-333https://doi.org/10.3945/ajcn.116.133561
        • Imamura F.
        • Micha R.
        • Wu J.H.
        • de Oliveira Otto M.C.
        • Otite F.O.
        • Abioye A.I.
        • Mozaffarian D.
        Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials.
        PLoS Med. 2016; 13 (e1002087)https://doi.org/10.1371/journal.pmed.1002087
        • Nordmann A.J.
        • Nordmann A.
        • Briel M.
        • Keller U.
        • Yancy Jr., W.S.
        • Brehm B.J.
        • Bucher H.C.
        Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials.
        Arch. Intern. Med. 2006; 166: 285-293https://doi.org/10.1001/archinte.166.3.285
        • Mansoor N.
        • Vinknes K.J.
        • Veierød M.B.
        • Retterstøl K.
        Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomised controlled trials.
        Br. J. Nutr. 2016; 115: 466-479https://doi.org/10.1017/S0007114515004699
        • Retterstøl K.
        • Svendsen M.
        • Narverud I.
        • Holven K.B.
        Effect of low carbohydrate high fat diet on LDL cholesterol and gene expression in normal-weight, young adults: a randomized controlled study.
        Atherosclerosis. 2018; 279: 52-61https://doi.org/10.1016/j.atherosclerosis.2018.10.013
        • Kwiterovich Jr., P.O.
        • Vining E.P.
        • Pyzik P.
        • Skolasky Jr., R.
        • Freeman J.M.
        Effect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children.
        J. Am. Med. Assoc. 2003; 290: 912-920https://doi.org/10.1001/jama.290.7.912
        • Ference B.A.
        • Ginsberg H.N.
        • Graham I.
        • Ray K.K.
        • Packard C.J.
        • Bruckert E.
        • Hegele R.A.
        • Krauss R.M.
        • Raal F.J.
        • Schunkert H.
        • Watts G.F.
        • Borén J.
        • Fazio S.
        • Horton J.D.
        • Masana L.
        • Nicholls S.J.
        • Nordestgaard B.G.
        • van de Sluis B.
        • Taskinen M.R.
        • Tokgözoglu L.
        • Landmesser U.
        • Laufs U.
        • Wiklund O.
        • Stock J.K.
        • Chapman M.J.
        • Catapano A.L.
        Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel.
        Eur. Heart J. 2017; 38: 2459-2472https://doi.org/10.1093/eurheartj/ehx144
        • Ip S.
        • Lichtenstein A.H.
        • Chung M.
        • Lau J.
        • Balk E.M.
        Systematic review: association of low-density lipoprotein subfractions with cardiovascular outcomes.
        Ann. Intern. Med. 2009; 150: 474-484https://doi.org/10.7326/0003-4819-150-7-200904070-00007
        • Toth P.P.
        • Grabner M.
        • Punekar R.S.
        • Quimbo R.A.
        • Cziraky M.J.
        • Jacobson T.A.
        Cardiovascular risk in patients achieving low-density lipoprotein cholesterol and particle targets.
        Atherosclerosis. 2014; 235: 585-591https://doi.org/10.1016/j.atherosclerosis.2014.05.914
        • Cole T.G.
        • Contois J.H.
        • Csako G.
        • McConnell J.P.
        • Remaley A.T.
        • Devaraj S.
        • Hoefner D.M.
        • Mallory T.
        • Sethi A.A.
        • Warnick G.R.
        • AACC Lipoproteins and Vascular Diseases Division Working Group on Best Practices
        Association of apolipoprotein B and nuclear magnetic resonance spectroscopy-derived LDL particle number with outcomes in 25 clinical studies: assessment by the AACC Lipoprotein and Vascular Diseases Division Working Group on Best Practices.
        Clin. Chem. 2013 May; 59: 752-770https://doi.org/10.1373/clinchem.2012.196733
        • Mora S.
        • Szklo M.
        • Otvos J.D.
        • Greenland P.
        • Psaty B.M.
        • Goff Jr., D.C.
        • O'Leary D.H.
        • Saad M.F.
        • Tsai M.Y.
        • Sharrett A.R.
        LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA).
        Atherosclerosis. 2007; 192: 211-217https://doi.org/10.1016/j.atherosclerosis.2006.05.007
        • Pokharel Y.
        • Tang Y.
        • Bhardwaj B.
        • Patel K.K.
        • Qintar M.
        • O'Keefe Jr., J.H.
        • Kulkarni K.R.
        • Jones P.H.
        • Martin S.S.
        • Virani S.S.
        • Spertus J.A.
        Association of low-density lipoprotein pattern with mortality after myocardial infarction: insights from the TRIUMPH study.
        J Clin Lipidol. 2017; 11 (e4): 1458-1470https://doi.org/10.1016/j.jacl.2017.09.002
        • Song M.
        • Fung T.T.
        • Hu F.B.
        • Willett W.C.
        • Longo V.D.
        • Chan A.T.
        • Giovannucci E.L.
        Association of animal and plant protein intake with all-cause and cause-specific mortality.
        JAMA Intern Med. 2016; 176: 1453-1463https://doi.org/10.1001/jamainternmed.2016.4182
        • Budhathoki S.
        • Sawada N.
        • Iwasaki M.
        • Yamaji T.
        • Goto A.
        • Kotemori A.
        • Ishihara J.
        • Takachi R.
        • Charvat H.
        • Mizoue T.
        • Iso H.
        • Tsugane S.
        Japan Public Health Center–based Prospective Study Group. association of animal and plant protein intake with all-cause and cause-specific mortality.
        JAMA Intern Med. 2019 Aug 26; https://doi.org/10.1001/jamainternmed.2019.2806
        • Campbell T.C.
        • Parpia B.
        • Chen J.
        Diet, lifestyle, and the etiology of coronary artery disease: the Cornell China study.
        Am. J. Cardiol. 1998; 82: 18T-21Thttps://doi.org/10.1016/s0002-9149(98)00718-8
        • de Lorgeril M.
        • Renaud S.
        • Mamelle N.
        • Salen P.
        • Martin J.L.
        • Monjaud I.
        • Guidollet J.
        • Touboul P.
        • Delaye J.
        Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease.
        Lancet. 1994; 343: 1454-1459https://doi.org/10.1016/s0140-6736(94)92580-1
        • de Lorgeril M.
        • Salen P.
        • Martin J.L.
        • Monjaud I.
        • Delaye J.
        • Mamelle N.
        Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study.
        Circulation. 1999; 99: 779-785https://doi.org/10.1161/01.cir.99.6.779
        • Estruch R.
        • Ros E.
        • Salas-Salvadó J.
        • et al.
        Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra virgin olive oil or nuts.
        N. Engl. J. Med. 2018; 378: e34https://doi.org/10.1056/NEJMoa1800389
        • Martínez-González M.A.
        • García-Arellano A.
        • Toledo E.
        • Salas-Salvadó J.
        • Buil-Cosiales P.
        • Corella D.
        • Covas M.I.
        • Schröder H.
        • Arós F.
        • Gómez-Gracia E.
        • Fiol M.
        • Ruiz-Gutiérrez V.
        • Lapetra J.
        • Lamuela-Raventos R.M.
        • Serra-Majem L.
        • Pintó X.
        • Muñoz M.A.
        • Wärnberg J.
        • Ros E.
        • Estruch R.
        • PREDIMED Study Investigators
        A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: the PREDIMED trial.
        PLoS One. 2012; 7 (e43134)https://doi.org/10.1371/journal.pone.0043134
        • Babio N.
        • Sorlí M.
        • Bulló M.
        • Basora J.
        • Ibarrola-Jurado N.
        • Fernández-Ballart J.
        • Martínez-González M.A.
        • Serra-Majem L.
        • González-Pérez R.
        • Salas-Salvadó J.
        • Nureta-PREDIMED Investigators
        Association between red meat consumption and metabolic syndrome in a Mediterranean population at high cardiovascular risk: cross-sectional and 1-year follow-up assessment.
        Nutr. Metab. Cardiovasc. Dis. 2012; 22: 200-207https://doi.org/10.1016/j.numecd.2010.06.011
        • Estruch R.
        • Martínez-González M.A.
        • Corella D.
        • Salas-Salvadó J.
        • Fitó M.
        • Chiva-Blanch G.
        • et al.
        PREDIMED Study Investigators. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: a prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial.
        Lancet Diabetes Endocrinol. 2019; 7: e6-e17
        • Temple N.J.
        Fat, sugar, whole grains and heart disease: 50 years of confusion.
        Nutrients. 2018; 10 (pii): E39https://doi.org/10.3390/nu10010039
        • Dehghan M.
        • Mente A.
        • Zhang X.
        • Swaminathan S.
        • Li W.
        • Mohan V.
        • et al.
        Prospective Urban Rural Epidemiology (PURE) study investigators. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study.
        Lancet. 2017; 390: 2050-2062https://doi.org/10.1016/S0140-6736(17)32252-3
        • Dehghan M.
        • Mente A.
        • Rangarajan S.
        • Sheridan P.
        • Mohan V.
        • Iqbal R.
        • et al.
        Prospective Urban Rural Epidemiology (PURE) study investigators. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study.
        Lancet. 2018; 392: 2288-2297https://doi.org/10.1016/S0140-6736(18)31812-9
        • Mente A.
        • Dehghan M.
        • Rangarajan S.
        • McQueen M.
        • Dagenais G.
        • Wielgosz A.
        • et al.
        Prospective Urban Rural Epidemiology (PURE) study investigators. Association of dietary nutrients with blood lipids and blood pressure in 18 countries: a cross-sectional analysis from the PURE study.
        Lancet Diabetes Endocrinol. 2017; 5: 774-787https://doi.org/10.1016/S2213-8587(17)30283-8
        • Miller V.
        • Mente A.
        • Dehghan M.
        • Rangarajan S.
        • Zhang X.
        • Swaminathan S.
        • et al.
        Prospective Urban Rural Epidemiology (PURE) study investigators. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study.
        Lancet. 2017; 390: 2037-2049https://doi.org/10.1016/S0140-6736(17)32253-5
        • Miller V.
        • Yusuf S.
        • Chow C.K.
        • Dehghan M.
        • Corsi D.J.
        • Lock K.
        • et al.
        Availability, affordability, and consumption of fruits and vegetables in 18 countries across income levels: findings from the Prospective Urban Rural Epidemiology (PURE) study.
        Lancet Glob Health. 2016; 4: e695-703https://doi.org/10.1016/S2214-109X(16)30186-3
        • Teo K.
        • Lear S.
        • Islam S.
        • Mony P.
        • Dehghan M.
        • Li W.
        • et al.
        PURE Investigators. Prevalence of a healthy lifestyle among individuals with cardiovascular disease in high-, middle- and low-income countries: the Prospective Urban Rural Epidemiology (PURE) study.
        J. Am. Med. Assoc. 2013; 309: 1613-1621https://doi.org/10.1001/jama.2013.3519
        • Salas-Salvadó J.
        • Díaz-López A.
        • Ruiz-Canela M.
        • Basora J.
        • Fitó M.
        • Corella D.
        • et al.
        PREDIMED-Plus investigators. Effect of a lifestyle intervention program with energy-restricted mediterranean diet and exercise on weight loss and cardiovascular risk factors: one-year results of the PREDIMED-Plus Trial.
        Diabetes Care. 2019; 42: 777-788https://doi.org/10.2337/dc18-0836
        • Hyde P.N.
        • Sapper T.N.
        • Crabtree C.D.
        • LaFountain R.A.
        • Bowling M.L.
        • Buga A.
        • et al.
        Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss.
        JCI Insight. 2019; 4 (pii): 128308https://doi.org/10.1172/jci.insight.128308
        • Kaholokula J.K.
        • Mabellos T.M.
        • Choi S.Y.
        • Seto T.B.
        • Wills T.
        • de Silva M.
        • Dillard A.
        • Gonsalves J.
        • Seabury A.A.A.
        • Vegas J.K.
        • Haumea S.J.
        • Palakiko D.M.
        • Look M.A.
        A cultural dance program proves efficacious for hypertension control: a randomized controlled trial.
        Hypertension. 2019; 74: AP3054https://doi.org/10.1161/hyp.74.suppl_1.P3054

      Linked Article