Advertisement

Insights into the regulatory role of circRNA in angiogenesis and clinical implications

  • Author Footnotes
    2 These authors contributed equally to this work.
    Yan Liu
    Footnotes
    2 These authors contributed equally to this work.
    Affiliations
    Institute for Translational Medicine, School of Basic Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China

    Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
    Search for articles by this author
  • Author Footnotes
    2 These authors contributed equally to this work.
    Yanyan Yang
    Footnotes
    2 These authors contributed equally to this work.
    Affiliations
    Institute for Translational Medicine, School of Basic Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China
    Search for articles by this author
  • Zhibin Wang
    Affiliations
    Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
    Search for articles by this author
  • Xiuxiu Fu
    Affiliations
    Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
    Search for articles by this author
  • Xian-ming Chu
    Affiliations
    Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
    Search for articles by this author
  • Yonghong Li
    Affiliations
    Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
    Search for articles by this author
  • Qi Wang
    Affiliations
    Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
    Search for articles by this author
  • Xingqiang He
    Affiliations
    Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
    Search for articles by this author
  • Min Li
    Affiliations
    Institute for Translational Medicine, School of Basic Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China
    Search for articles by this author
  • Kun Wang
    Affiliations
    Institute for Translational Medicine, School of Basic Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China
    Search for articles by this author
  • Jian-xun Wang
    Affiliations
    Institute for Translational Medicine, School of Basic Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China
    Search for articles by this author
  • Pei-feng Li
    Affiliations
    Institute for Translational Medicine, School of Basic Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China
    Search for articles by this author
  • Author Footnotes
    1 Center for Regenerative Medicine, Institute for translational medicine, Qingdao University, 38 Deng Zhou Road, Qingdao 266021, China.
    Tao Yu
    Correspondence
    Corresponding author. Institute for Translational Medicine, School of Basic Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China.
    Footnotes
    1 Center for Regenerative Medicine, Institute for translational medicine, Qingdao University, 38 Deng Zhou Road, Qingdao 266021, China.
    Affiliations
    Institute for Translational Medicine, School of Basic Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, China

    Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
    Search for articles by this author
  • Author Footnotes
    1 Center for Regenerative Medicine, Institute for translational medicine, Qingdao University, 38 Deng Zhou Road, Qingdao 266021, China.
    2 These authors contributed equally to this work.

      Highlights

      • circRNAs are critically involved in angiogenesis, angiocardiopathy and cancer.
      • circRNAs are stable and abundantly distributed indicating a potential role in diseases.
      • circRNA might target miRNA as a sponge and are an emerging therapeutic target for angiogenesis-related diseases.
      • The research of coding potential of circRNA suggests the possible effective treatment of related diseases in the future.

      Abstract

      Angiogenesis is the physiological process of new blood vessel formation from existing capillary vessels or posterior capillary veins. Its dysfunction could result in a number of diseases, such as cardiovascular diseases and cancer, contributing to death and disability worldwide. Circular RNAs (circRNAs) are a class of novel identified RNA molecules with a special covalent loop structure without a 5′ cap and 3’ tail, which can lead to novel back-splicing or skipping events from precursor mRNAs. Accumulating evidence suggests that circRNA play critical roles in diseases; in particular, they are abundantly and abnormally expressed in angiogenesis-related diseases. In this review, we describe the role of circRNA under pathological conditions, discuss the association between circRNA and angiogenesis, classify the regulatory mechanisms and suggest that circRNA can be used as potential therapeutic targets for angiogenesis-related diseases under clinical evaluation.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sun L.L.
        • Li W.D.
        • Lei F.R.
        • et al.
        The regulatory role of microRNAs in angiogenesis-related diseases.
        J. Cell Mol. Med. 2018; 22: 4568-4587
        • Hellings W.E.
        • Peeters W.
        • Moll F.L.
        • et al.
        Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study.
        Circulation. 2010; 121: 1941-1950
        • Moran A.
        • Forouzanfar M.
        • Sampson U.
        • et al.
        The epidemiology of cardiovascular diseases in sub-saharan africa: the global burden of diseases, injuries and risk factors 2010 study.
        Prog. Cardiovasc. Dis. 2013; 56: 234-239
        • Writing Group M.
        • Mozaffarian D.
        • Benjamin E.J.
        • et al.
        Heart disease and stroke statistics-2016 update: a report from the American heart association.
        Circulation. 2016; 133: e38-360
        • Carmeliet P.
        • Jain R.K.
        Molecular mechanisms and clinical applications of angiogenesis.
        Nature. 2011; 473: 298-307
        • McCann J.V.
        • Xiao L.
        • Kim D.J.
        • et al.
        Endothelial miR-30c suppresses tumor growth via inhibition of TGF-beta-induced Serpine1.
        J. Clin. Invest. 2019; : 130
        • Zhou Q.
        • Yu B.
        • Anderson C.
        • et al.
        LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus.
        Elife. 2019; 8
        • Li X.
        • Sun Y.
        • Huang S.
        • et al.
        Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway.
        EBioMedicine. 2019; 39: 69-82
        • Yin D.
        • Li Y.
        • Fu C.
        • et al.
        Pro-angiogenic role of LncRNA HULC in microvascular endothelial cells via sequestrating miR-124, cell.
        Physiol. Biochem. 2018; 50: 2188-2202
        • Arnaiz E.
        • Sole C.
        • Manterola L.
        • et al.
        CircRNAs and cancer: biomarkers and master regulators.
        Semin. Canc. Biol. 2019 Oct; 58: 90-99
        • Sanger H.L.
        • Klotz G.
        • Riesner D.
        • et al.
        Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures.
        Proc. Natl. Acad. Sci. U. S. A. 1976; 73: 3852-3856
        • Gross H.J.
        • Domdey H.
        • Lossow C.
        • et al.
        Nucleotide sequence and secondary structure of potato spindle tuber viroid.
        Nature. 1978; 273: 203-208
        • Capel B.
        • Swain A.
        • Nicolis S.
        • et al.
        Circular transcripts of the testis-determining gene Sry in adult mouse testis.
        Cell. 1993; 73: 1019-1030
        • Chen C.Y.
        • Sarnow P.
        Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs.
        Science. 1995; 268: 415-417
        • Chen H.
        • Liu Y.
        • Li P.
        • et al.
        RE: novel role of FBXW7 circular RNA in repressing glioma tumorigenesis.
        J. Natl. Cancer Inst. 2019 Apr 1; 111: 435
        • Zhang M.
        • Huang N.
        • Yang X.
        • et al.
        A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis.
        Oncogene. 2018; 37: 1805-1814
        • Kristensen L.S.
        • Hansen T.B.
        • Veno M.T.
        • et al.
        Circular RNAs in cancer: opportunities and challenges in the field.
        Oncogene. 2018; 37: 555-565
        • Ashwal-Fluss R.
        • Meyer M.
        • Pamudurti N.R.
        • et al.
        circRNA biogenesis competes with pre-mRNA splicing.
        Mol. Cell. 2014; 56: 55-66
        • Carrara M.
        • Fuschi P.
        • Ivan C.
        • et al.
        Circular RNAs: methodological challenges and perspectives in cardiovascular diseases.
        J. Cell Mol. Med. 2018; 22: 5176-5187
        • Lasda E.
        • Parker R.
        • RNAs Circular
        Diversity of form and function.
        RNA. 2014; 20: 1829-1842
        • Qu S.
        • Yang X.
        • Li X.
        • et al.
        Circular RNA: a new star of noncoding RNAs.
        Canc. Lett. 2015; 365: 141-148
        • Holdt L.M.
        • Kohlmaier A.
        • Teupser D.
        Molecular functions and specific roles of circRNAs in the cardiovascular system.
        Noncoding RNA Res. 2018; 3: 75-98
        • Geng Y.
        • Jiang J.
        • Wu C.
        Function and clinical significance of circRNAs in solid tumors.
        J. Hematol. Oncol. 2018; 11: 98
        • Salzman J.
        Circular RNA expression: its potential regulation and function.
        Trends Genet. 2016; 32: 309-316
        • Abudayyeh O.O.
        • Gootenberg J.S.
        • Essletzbichler P.
        • et al.
        RNA targeting with CRISPR-Cas13.
        Nature. 2017; 550: 280-284
        • Kristensen L.S.
        • Andersen M.S.
        • Stagsted L.V.W.
        • et al.
        The biogenesis, biology and characterization of circular RNAs.
        Nat. Rev. Genet. 2019; 20: 675-691
        • Tang N.
        • Jiang S.
        • Yang Y.
        • et al.
        Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus.
        Cardiovasc. Ther. 2018; 36: e12436
        • Beermann J.
        • Piccoli M.T.
        • Viereck J.
        • et al.
        Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches.
        Physiol. Rev. 2016; 96: 1297-1325
        • Zhang M.
        • Zhao K.
        • Xu X.
        • et al.
        A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma.
        Nat. Commun. 2018; 9: 4475
        • Gu C.
        • Zhou N.
        • Wang Z.
        • et al.
        circGprc5a promoted bladder oncogenesis and metastasis through gprc5a-targeting peptide.
        Mol. Ther. Nucleic Acids. 2018; 13: 633-641
        • Rong D.
        • Lu C.
        • Zhang B.
        • et al.
        CircPSMC3 suppresses the proliferation and metastasis of gastric cancer by acting as a competitive endogenous RNA through sponging miR-296-5p.
        Mol. Canc. 2019; 18: 25
        • Li M.
        • Ding W.
        • Tariq M.A.
        • et al.
        A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p.
        Theranostics. 2018; 8: 5855-5869
        • Zhang J.
        • Zhang X.
        • Li C.
        • et al.
        Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells.
        RNA Biol. 2019; 16: 220-232
        • Dong W.
        • Dai Z.H.
        • Liu F.C.
        • et al.
        The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA SCD-circRNA 2 production.
        EBioMedicine. 2019; 45: 155-167
        • Zhu Y.J.
        • Zheng B.
        • Luo G.J.
        • et al.
        Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma.
        Theranostics. 2019; 9: 3526-3540
        • Glazar P.
        • Papavasileiou P.
        • Rajewsky N.
        circBase: a database for circular RNAs.
        RNA. 2014; 20: 1666-1670
        • Wang Y.
        • Lu T.
        • Wang Q.
        • et al.
        Circular RNAs: crucial regulators in the human body (Review).
        Oncol. Rep. 2018; 40: 3119-3135
        • Chen X.
        • Han P.
        • Zhou T.
        • et al.
        circRNADb: a comprehensive database for human circular RNAs with protein-coding annotations.
        Sci. Rep. 2016; 6 (34985)
        • Liu Y.C.
        • Li J.R.
        • Sun C.H.
        • et al.
        CircNet: a database of circular RNAs derived from transcriptome sequencing data.
        Nucleic Acids Res. 2016; 44: D209-D215
        • Li J.H.
        • Liu S.
        • Zhou H.
        • et al.
        starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data.
        Nucleic Acids Res. 2014; 42: D92-D97
        • Dudekula D.B.
        • Panda A.C.
        • Grammatikakis I.
        • et al.
        CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs.
        RNA Biol. 2016; 13: 34-42
        • Ghosal S.
        • Das S.
        • Sen R.
        • et al.
        Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits.
        Front. Genet. 2013; 4: 283
        • Xia S.
        • Feng J.
        • Chen K.
        • et al.
        CSCD: a database for cancer-specific circular RNAs.
        Nucleic Acids Res. 2018; 46: D925-D929
        • Xia S.
        • Feng J.
        • Lei L.
        • et al.
        Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes.
        Briefings Bioinf. 2017; 18: 984-992
        • Liu S.
        • Yang Y.
        • Jiang S.
        • et al.
        MiR-378a-5p regulates proliferation and migration in vascular smooth muscle cell by targeting CDK1.
        Front. Genet. 2019; 10: 22
        • Forouzanfar M.H.
        • Afshin A.
        • Alexander L.T.
        • et al.
        Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015.
        Lancet. 2016; 388: 1659-1724
        • Burd C.E.
        • Jeck W.R.
        • Liu Y.
        • et al.
        Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk.
        PLoS Genet. 2010; 6e1001233
        • Boeckel J.N.
        • Jae N.
        • Heumuller A.W.
        • et al.
        Identification and characterization of hypoxia-regulated endothelial circular RNA.
        Circ. Res. 2015; 117: 884-890
        • Holdt L.M.
        • Stahringer A.
        • Sass K.
        • et al.
        Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans.
        Nat. Commun. 2016; 7 (12429)
        • Zhang F.
        • Zhang R.
        • Zhang X.
        • et al.
        Comprehensive analysis of circRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of atherosclerosis in rabbits.
        Aging. 2018; 10: 2266-2283
        • Mao Y.Y.
        • Wang J.Q.
        • Guo X.X.
        • et al.
        Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939.
        Biochem. Biophys. Res. Commun. 2018; 505: 119-125
        • Li C.Y.
        • Ma L.
        • Yu B.
        Circular RNA hsa_circ_0003575 regulates oxLDL induced vascular endothelial cells proliferation and angiogenesis.
        Biomed. Pharmacother. 2017; 95: 1514-1519
        • Liu S.
        • Yang Y.
        • Jiang S.
        • et al.
        Understanding the role of non-coding RNA (ncRNA) in stent restenosis.
        Atherosclerosis. 2018; 272: 153-161
        • Wang K.
        • Long B.
        • Liu F.
        • et al.
        A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223.
        Eur. Heart J. 2016; 37: 2602-2611
        • Bao X.
        • Zheng S.
        • Mao S.
        • et al.
        A potential risk factor of essential hypertension in case-control study: circular RNA hsa_circ_0037911.
        Biochem. Biophys. Res. Commun. 2018; 498: 789-794
        • Stitt A.W.
        • Curtis T.M.
        • Chen M.
        • et al.
        The progress in understanding and treatment of diabetic retinopathy.
        Prog. Retin. Eye Res. 2016; 51: 156-186
        • Zhang S.J.
        • Chen X.
        • Li C.P.
        • et al.
        Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy.
        Invest. Ophthalmol. Vis. Sci. 2017; 58: 6500-6509
        • Painuly U.
        • Ramakrishnan V.
        • Kimlinger T.
        • et al.
        Aurora kinase and FGFR3 inhibition results in significant apoptosis in molecular subgroups of multiple myeloma.
        Oncotarget. 2018; 9: 34582-34594
        • Chim H.
        • Armijo B.S.
        • Miller E.
        • et al.
        Propranolol induces regression of hemangioma cells through HIF-1alpha-mediated inhibition of VEGF-A.
        Ann. Surg. 2012; 256: 146-156
        • Fu C.
        • Lv R.
        • Xu G.
        • et al.
        Circular RNA profile of infantile hemangioma by microarray analysis.
        PloS One. 2017; 12e0187581
        • Thompson A.A.R.
        • Lawrie A.
        Targeting vascular remodeling to treat pulmonary arterial hypertension.
        Trends Mol. Med. 2017; 23: 31-45
        • Dai Z.
        • Zhu M.M.
        • Peng Y.
        • et al.
        Therapeutic targeting of vascular remodeling and right heart failure in pulmonary arterial hypertension with a HIF-2alpha inhibitor.
        Am. J. Respir. Crit. Care Med. 2018; 198: 1423-1434
        • Wang J.
        • Zhu M.C.
        • Kalionis B.
        • et al.
        Characteristics of circular RNA expression in lung tissues from mice with hypoxiainduced pulmonary hypertension.
        Int. J. Mol. Med. 2018; 42: 1353-1366
        • Miao R.
        • Wang Y.
        • Wan J.
        • et al.
        Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension.
        Medicine (Baltim.). 2017; 96e7354
        • Zhao Z.
        • Li X.
        • Jian D.
        • et al.
        Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus.
        Acta Diabetol. 2017; 54: 237-245
        • Xu H.
        • Guo S.
        • Li W.
        • et al.
        The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells.
        Sci. Rep. 2015; 5 (12453)
        • Jiang G.
        • Ma Y.
        • An T.
        • et al.
        Relationships of circular RNA with diabetes and depression.
        Sci. Rep. 2017; 7: 7285
        • Chen C.K.
        • Hsu P.Y.
        • Wang T.M.
        • et al.
        TRPV4 activation contributes functional recovery from ischemic stroke via angiogenesis and neurogenesis.
        Mol. Neurobiol. 2018; 55: 4127-4135
        • Dong Z.
        • Deng L.
        • Peng Q.
        • et al.
        CircRNA expression profiles and function prediction in peripheral blood mononuclear cells of patients with acute ischemic stroke.
        J. Cell. Physiol. 2020 Mar; 235: 2609-2618
        • Wu F.
        • Han B.
        • Wu S.
        • et al.
        Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP.
        J. Neurosci. 2019; 39: 7369-7393
        • Ma Q.
        • Li L.
        • Yu B.
        • et al.
        Circular RNA profiling of neutrophil transcriptome provides insights into asymptomatic Moyamoya disease.
        Brain Res. 2019; 1719: 104-112
        • Zhao M.
        • Gao F.
        • Zhang D.
        • et al.
        Altered expression of circular RNAs in Moyamoya disease.
        J. Neurol. Sci. 2017; 381: 25-31
        • Barbagallo D.
        • Caponnetto A.
        • Brex D.
        • et al.
        CircSMARCA5 regulates VEGFA mRNA splicing and angiogenesis in glioblastoma multiforme through the binding of SRSF1.
        Cancers. 2019; 11
        • He Q.
        • Zhao L.
        • Liu X.
        • et al.
        MOV10 binding circ-DICER1 regulates the angiogenesis of glioma via miR-103a-3p/miR-382-5p mediated ZIC4 expression change.
        J. Exp. Clin. Canc. Res. 2019; 38: 9
        • Chen L.
        • Nan A.
        • Zhang N.
        • et al.
        Circular RNA 100146 functions as an oncogene through direct binding to miR-361-3p and miR-615-5p in non-small cell lung cancer.
        Mol. Canc. 2019; 18: 13
        • Qiu B.Q.
        • Zhang P.F.
        • Xiong D.
        • et al.
        CircRNA fibroblast growth factor receptor 3 promotes tumor progression in non-small cell lung cancer by regulating Galectin-1-AKT/ERK1/2 signaling.
        J. Cell. Physiol. 2019 Jul; 234: 11256-11264
        • Tian X.
        • Zhang L.
        • Jiao Y.
        • et al.
        CircABCB10 promotes nonsmall cell lung cancer cell proliferation and migration by regulating the miR-1252/FOXR2 axis.
        J. Cell. Biochem. 2019; 120: 3765-3772
        • Wang L.
        • Tong X.
        • Zhou Z.
        • et al.
        Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-beta-induced epithelial-mesenchymal transition and metastasis by controlling TIF1gamma in non-small cell lung cancer.
        Mol. Canc. 2018; 17: 140
        • Tan S.
        • Sun D.
        • Pu W.
        • et al.
        Circular RNA F-circEA-2a derived from EML4-ALK fusion gene promotes cell migration and invasion in non-small cell lung cancer.
        Mol. Canc. 2018; 17: 138
        • Qu D.
        • Yan B.
        • Xin R.
        • et al.
        A novel circular RNA hsa_circ_0020123 exerts oncogenic properties through suppression of miR-144 in non-small cell lung cancer.
        Am. J. Cancer Res. 2018; 8: 1387-1402
        • Yao Q.
        • Gu A.
        • Wang Z.
        • et al.
        MicroRNA-144 functions as a tumor suppressor in gastric cancer by targeting cyclooxygenase-2.
        Exp. Ther. Med. 2018; 15: 3088-3095
        • Nan A.
        • Chen L.
        • Zhang N.
        • et al.
        Circular RNA circNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional regulation of the humanin polypeptide family.
        Adv. Sci. 2019; 6 (1800654)
        • Zhang H.D.
        • Jiang L.H.
        • Hou J.C.
        • et al.
        Circular RNA hsa_circ_0052112 promotes cell migration and invasion by acting as sponge for miR-125a-5p in breast cancer.
        Biomed. Pharmacother. 2018; 107: 1342-1353
        • Xu Y.
        • Yao Y.
        • Leng K.
        • et al.
        Increased expression of circular RNA circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/CBX8 signal pathway.
        Cell. Physiol. Biochem. 2018; 51: 1710-1722
        • Song L.
        • Xiao Y.
        Downregulation of hsa_circ_0007534 suppresses breast cancer cell proliferation and invasion by targeting miR-593/MUC19 signal pathway.
        Biochem. Biophys. Res. Commun. 2018; 503: 2603-2610
        • Liu Y.
        • Lu C.
        • Zhou Y.
        • et al.
        Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis.
        Biochem. Biophys. Res. Commun. 2018; 502: 358-363
        • Tang Y.Y.
        • Zhao P.
        • Zou T.N.
        • et al.
        Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143.
        DNA Cell Biol. 2017; 36: 901-908
        • Zhang X.
        • Wang S.
        • Wang H.
        • et al.
        Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway.
        Mol. Canc. 2019; 18: 20
        • Wei J.
        • Wei W.
        • Xu H.
        • et al.
        Circular RNA hsa_circRNA_102958 may serve as a diagnostic marker for gastric cancer.
        Canc. Biomarkers. 2020; 27: 139-145
        • Zhang J.
        • Liu H.
        • Hou L.
        • et al.
        Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression.
        Mol. Canc. 2017; 16: 151
        • Chen J.
        • Li Y.
        • Zheng Q.
        • et al.
        Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer.
        Canc. Lett. 2017; 388: 208-219
        • Zhang Y.
        • Liu H.
        • Li W.
        • et al.
        CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630.
        Aging. 2017; 9: 1585-1594
        • Wang Z.
        • Ma K.
        • Pitts S.
        • et al.
        Novel circular RNA NF1 acts as a molecular sponge, promoting gastric cancer by absorbing miR-16.
        Endocr. Relat. Canc. 2019 Mar; 26: 265-277
        • Sun H.
        • Xi P.
        • Sun Z.
        • et al.
        Circ-SFMBT2 promotes the proliferation of gastric cancer cells through sponging miR-182-5p to enhance CREB1 expression.
        Canc. Manag. Res. 2018; 10: 5725-5734
        • Li X.N.
        • Wang Z.J.
        • Ye C.X.
        • et al.
        Circular RNA circVAPA is up-regulated and exerts oncogenic properties by sponging miR-101 in colorectal cancer.
        Biomed. Pharmacother. 2019; 112 (108611)
        • Cai X.
        • Zhao Z.
        • Dong J.
        • et al.
        Circular RNA circBACH2 plays a role in papillary thyroid carcinoma by sponging miR-139-5p and regulating LMO4 expression.
        Cell Death Dis. 2019; 10: 184
        • Xu L.
        • Feng X.
        • Hao X.
        • et al.
        CircSETD3 (Hsa_circ_0000567) acts as a sponge for microRNA-421 inhibiting hepatocellular carcinoma growth.
        J. Exp. Clin. Canc. Res. 2019; 38: 98
        • Liu W.
        • Zhao J.
        • Jin M.
        • et al.
        circRAPGEF5 contributes to papillary thyroid proliferation and metastatis by regulation miR-198/FGFR1.
        Mol. Ther. Nucleic Acids. 2019; 14: 609-616
        • Wang S.
        • Zhang X.
        • Li Z.
        • et al.
        Circular RNA profile identifies circOSBPL10 as an oncogenic factor and prognostic marker in gastric cancer.
        Oncogene. 2019 Oct; 38: 6985-7001
        • Wang K.
        • Gan T.Y.
        • Li N.
        • et al.
        Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression.
        Cell Death Differ. 2017; 24: 1111-1120
        • Li H.
        • Xu J.D.
        • Fang X.H.
        • et al.
        Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR26b-5p and miR-140-3p binding to Gata4.
        Cardiovasc. Res. 2019 Aug 9; (pii: cvz215)https://doi.org/10.1093/cvr/cvz215
        • Zhang M.
        • Xin Y.
        • RNAs Circular
        A new frontier for cancer diagnosis and therapy.
        J. Hematol. Oncol. 2018; 11: 21
        • Altesha M.A.
        • Ni T.
        • Khan A.
        • et al.
        Circular RNA in cardiovascular disease.
        J. Cell. Physiol. 2019; 234: 5588-5600