Advertisement

New insights into endogenous mechanisms of protection against arterial calcification

      Highlights

      • Pyrophosphate deficiency plays a key role in vascular calcification.
      • Loss of function in the enzymes and transporters involved in the extracellular pyrophosphate metabolism leads to vascular calcification.
      • Administration of exogenous pyrophosphate and TNAP inhibitors is currently the only effective treatment to prevent calcification in murine models.

      Abstract

      Cardiovascular complications due to accelerated atherosclerosis and arterial stiffening are the leading cause of morbidity and mortality in the Western society. Both pathologies are frequently associated with vascular calcification. Deposits of calcium phosphate salts, mainly in form of hydroxyapatite, is the hallmark of vascular calcification. Calcification is frequently observed in atherosclerotic lesions (intimal calcification) associated with vascular smooth muscle cells (VSMCs) and macrophages. By contrast, medial calcification, occurring in the elastic region of the arteries, is almost exclusively associated with VSMCs, and is common in arteriosclerosis related to aging, diabetes, and chronic kidney disease. In extracellular fluids, a range of endogenous low- and high-molecular weight calcification inhibitors are present, including osteopontin, matrix-Gla proteins and Fetuin A. Moreover, pyrophosphate deficiency plays a key role in vascular calcification. Pyrophosphate is produced by extracellular hydrolysis of ATP and is degraded to phosphate by tissue non-specific alkaline phosphatase. Loss of function in the enzymes and transporters involved in the extracellular pyrophosphate metabolism leads to excessive deposition of calcium-phosphate salts. This review summarizes the current knowledge about endogenous mechanisms of protection against calcification in the aortic wall, focusing on the role of extracellular pyrophosphate metabolism in vascular smooth muscle cells and macrophages.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Joki N.
        • Hase H.
        • Ishikawa H.
        • et al.
        Coronary artery disease as a definitive risk factor of short-term outcome after starting hemodialysis in diabetic renal failure patients.
        Clin. Nephrol. 2001; 55: 109-114
        • London G.M.
        • Drueke T.B.
        Atherosclerosis and arteriosclerosis in chronic renal failure.
        Kidney Int. 1997; 51: 1678-1695https://doi.org/10.1038/ki.1997.233
        • London G.M.
        • Guérin A.P.
        • Marchais S.J.
        • Métivier F.
        • Pannier B.
        • Adda H.
        Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality.
        Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2003; 18: 1731-1740https://doi.org/10.1093/ndt/gfg414
        • Raggi P.
        • Boulay A.
        • Chasan-Taber S.
        • et al.
        Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease?.
        J. Am. Coll. Cardiol. 2002; 39: 695-701https://doi.org/10.1016/s0735-1097(01)01781-8
        • Rutsch F.
        • Nitschke Y.
        • Terkeltaub R.
        Genetics in arterial calcification: pieces of a puzzle and cogs in a wheel.
        Circ. Res. 2011; 109: 578-592https://doi.org/10.1161/CIRCRESAHA.111.247965
        • Shanahan C.M.
        • Crouthamel M.H.
        • Kapustin A.
        • Giachelli C.M.
        Arterial calcification in chronic kidney disease: key roles for calcium and phosphate.
        Circ. Res. 2011; 109: 697-711https://doi.org/10.1161/CIRCRESAHA.110.234914
        • Hunt J.L.
        • Fairman R.
        • Mitchell M.E.
        • et al.
        Bone formation in carotid plaques: a clinicopathological study.
        Stroke. 2002; 33: 1214-1219https://doi.org/10.1161/01.str.0000013741.41309.67
        • Trion A.
        • van der Laarse A.
        Vascular smooth muscle cells and calcification in atherosclerosis.
        Am. Heart J. 2004; 147: 808-814https://doi.org/10.1016/j.ahj.2003.10.047
        • Edmonds M.E.
        • Morrison N.
        • Laws J.W.
        • Watkins P.J.
        Medial arterial calcification and diabetic neuropathy.
        Br Med J Clin Res Ed. 1982; 284: 928-930https://doi.org/10.1136/bmj.284.6320.928
        • Giachelli C.M.
        The emerging role of phosphate in vascular calcification.
        Kidney Int. 2009; 75: 890-897https://doi.org/10.1038/ki.2008.644
        • Block G.A.
        • Hulbert-Shearon T.E.
        • Levin N.W.
        • Port F.K.
        Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study.
        Am J Kidney Dis Off J Natl Kidney Found. 1998; 31: 607-617
        • Villa-Bellosta R.
        Vascular calcification revisited: a new perspective for phosphate transport.
        Curr. Cardiol. Rev. 2015; 11: 341-351https://doi.org/10.2174/1573403X11666150805120505
        • Villa-Bellosta R.
        • Egido J.
        Phosphate, pyrophosphate, and vascular calcification: a question of balance.
        Eur. Heart J. 2017; 38: 1801-1804https://doi.org/10.1093/eurheartj/ehv605
        • Villa-Bellosta R.
        • Millan A.
        • Sorribas V.
        Role of calcium-phosphate deposition in vascular smooth muscle cell calcification.
        Am. J. Physiol. Cell Physiol. 2011; 300: C210-C220https://doi.org/10.1152/ajpcell.00229.2010
        • Urry D.W.
        Neutral sites for calcium ion binding to elastin and collagen: a charge neutralization theory for calcification and its relationship to atherosclerosis.
        Proc. Natl. Acad. Sci. U. S. A. 1971; 68: 810-814
        • Jono S.
        • McKee M.D.
        • Murry C.E.
        • et al.
        Phosphate regulation of vascular smooth muscle cell calcification.
        Circ. Res. 2000; 87: E10-E17
        • Patel J.J.
        • Bourne L.E.
        • Davies B.K.
        • et al.
        Differing calcification processes in cultured vascular smooth muscle cells and osteoblasts.
        Exp. Cell Res. 2019; 380: 100-113https://doi.org/10.1016/j.yexcr.2019.04.020
        • Villa-Bellosta R.
        Synthesis of extracellular pyrophosphate increases in vascular smooth muscle cells during phosphate-induced calcification.
        Arterioscler. Thromb. Vasc. Biol. 2018; 38: 2137-2147https://doi.org/10.1161/ATVBAHA.118.311444
        • Price P.A.
        • Urist M.R.
        • Otawara Y.
        Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone.
        Biochem. Biophys. Res. Commun. 1983; 117: 765-771https://doi.org/10.1016/0006-291x(83)91663-7
        • Luo G.
        • Ducy P.
        • McKee M.D.
        • et al.
        Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein.
        Nature. 1997; 386: 78-81https://doi.org/10.1038/386078a0
        • Munroe P.B.
        • Olgunturk R.O.
        • Fryns J.P.
        • et al.
        Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome.
        Nat. Genet. 1999; 21: 142-144https://doi.org/10.1038/5102
        • Roumeliotis S.
        • Dounousi E.
        • Eleftheriadis T.
        • Liakopoulos V.
        Association of the inactive circulating matrix Gla protein with vitamin K intake, calcification, mortality, and cardiovascular disease: a review.
        Int. J. Mol. Sci. 2019; 20https://doi.org/10.3390/ijms20030628
        • Cozzolino M.
        • Fusaro M.
        • Ciceri P.
        • Gasperoni L.
        • Cianciolo G.
        The role of vitamin K in vascular calcification.
        Adv. Chron. Kidney Dis. 2019; 26: 437-444https://doi.org/10.1053/j.ackd.2019.10.005
        • Franzén A.
        • Heinegård D.
        Isolation and characterization of two sialoproteins present only in bone calcified matrix.
        Biochem. J. 1985; 232: 715-724https://doi.org/10.1042/bj2320715
        • Ikeda T.
        • Shirasawa T.
        • Esaki Y.
        • Yoshiki S.
        • Hirokawa K.
        Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta.
        J. Clin. Invest. 1993; 92: 2814-2820https://doi.org/10.1172/JCI116901
        • O'Brien E.R.
        • Garvin M.R.
        • Stewart D.K.
        • et al.
        Osteopontin is synthesized by macrophage, smooth muscle, and endothelial cells in primary and restenotic human coronary atherosclerotic plaques.
        Arterioscler Thromb J Vasc Biol. 1994; 14: 1648-1656
        • Jono S.
        • Peinado C.
        • Giachelli C.M.
        Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification.
        J. Biol. Chem. 2000; 275: 20197-20203https://doi.org/10.1074/jbc.M909174199
        • Oldberg A.
        • Franzén A.
        • Heinegård D.
        Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence.
        Proc. Natl. Acad. Sci. U. S. A. 1986; 83: 8819-8823https://doi.org/10.1073/pnas.83.23.8819
        • Price P.A.
        • Fraser J.D.
        • Metz-Virca G.
        Molecular cloning of matrix Gla protein: implications for substrate recognition by the vitamin K-dependent gamma-carboxylase.
        Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 8335-8339https://doi.org/10.1073/pnas.84.23.8335
        • Shanahan C.M.
        • Cary N.R.
        • Metcalfe J.C.
        • Weissberg P.L.
        High expression of genes for calcification-regulating proteins in human atherosclerotic plaques.
        J. Clin. Invest. 1994; 93: 2393-2402https://doi.org/10.1172/JCI117246
        • Shanahan C.M.
        • Weissberg P.L.
        • Metcalfe J.C.
        Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells.
        Circ. Res. 1993; 73: 193-204https://doi.org/10.1161/01.res.73.1.193
        • Proudfoot D.
        • Skepper J.N.
        • Shanahan C.M.
        • Weissberg P.L.
        Calcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression.
        Arterioscler. Thromb. Vasc. Biol. 1998; 18: 379-388https://doi.org/10.1161/01.atv.18.3.379
        • Lomashvili K.A.
        • Cobbs S.
        • Hennigar R.A.
        • Hardcastle K.I.
        • O'Neill W.C.
        Phosphate-induced vascular calcification: role of pyrophosphate and osteopontin.
        J Am Soc Nephrol JASN. 2004; 15: 1392-1401https://doi.org/10.1097/01.asn.0000128955.83129.9c
        • Lomashvili K.A.
        • Garg P.
        • Narisawa S.
        • Millan J.L.
        • O'Neill W.C.
        Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification.
        Kidney Int. 2008; 73: 1024-1030https://doi.org/10.1038/ki.2008.26
        • Triffitt J.T.
        • Gebauer U.
        • Ashton B.A.
        • Owen M.E.
        • Reynolds J.J.
        Origin of plasma alpha2HS-glycoprotein and its accumulation in bone.
        Nature. 1976; 262: 226-227https://doi.org/10.1038/262226a0
        • Schinke T.
        • Amendt C.
        • Trindl A.
        • Pöschke O.
        • Müller-Esterl W.
        • Jahnen-Dechent W.
        The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis.
        J. Biol. Chem. 1996; 271: 20789-20796https://doi.org/10.1074/jbc.271.34.20789
        • Reynolds J.L.
        • Skepper J.N.
        • McNair R.
        • et al.
        Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification.
        J Am Soc Nephrol JASN. 2005; 16: 2920-2930https://doi.org/10.1681/ASN.2004100895
        • Jahnen-Dechent W.
        • Schinke T.
        • Trindl A.
        • et al.
        Cloning and targeted deletion of the mouse fetuin gene.
        J. Biol. Chem. 1997; 272: 31496-31503https://doi.org/10.1074/jbc.272.50.31496
        • Schafer C.
        • Heiss A.
        • Schwarz A.
        • et al.
        The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification.
        J. Clin. Invest. 2003; 112: 357-366https://doi.org/10.1172/JCI17202
        • Muzasti R.A.
        • Loesnihari R.
        High fetuin-A level as a protective factor to abdominal aortic calcification in Indonesian regular hemodialysis patients.
        Open Access Maced J Med Sci. 2019; 7: 721-725https://doi.org/10.3889/oamjms.2019.167
        • Kocyigit I.
        • Unal A.
        • Elcik D.
        • et al.
        Association between cardiac valvular calcification and serum fetuin-A levels in renal transplant recipients.
        Transplant. Proc. 2015; 47: 1398-1401https://doi.org/10.1016/j.transproceed.2015.04.008
        • Mutluay R.
        • Konca Değertekin C.
        • Işıktaş Sayılar E.
        • et al.
        Serum fetuin-A is associated with the components of MIAC(malnutrition, inflammation, atherosclerosis, calcification) syndrome in different stages of chronic kidney disease.
        Turk. J. Med. Sci. 2019; 49: 327-335https://doi.org/10.3906/sag-1809-43
        • Demiryurek B.E.
        • Gundogdu A.A.
        Serum fetuin-A levels in patients with bilateral basal ganglia calcification.
        Neurosci. Lett. 2018; 666: 148-152https://doi.org/10.1016/j.neulet.2017.12.050
        • Ulutas O.
        • Taskapan M.C.
        • Dogan A.
        • Baysal T.
        • Taskapan H.
        Vascular calcification is not related to serum fetuin-A and osteopontin levels in hemodialysis patients.
        Int. Urol. Nephrol. 2018; 50: 137-142https://doi.org/10.1007/s11255-017-1740-6
        • Koca N.
        • Ersoy A.
        • Şensoy B.
        • et al.
        The association between cardiac valvular calcification and fetuin-A levels in kidney transplant recipients.
        Clin. Exp. Nephrol. 2019; 23: 1250-1256https://doi.org/10.1007/s10157-019-01761-2
        • Schibler D.
        • Russell R.G.
        • Fleisch H.
        Inhibition by pyrophosphate and polyphosphate of aortic calcification induced by vitamin D3 in rats.
        Clin. Sci. 1968; 35: 363-372
        • Lomashvili K.A.
        • Narisawa S.
        • Millán J.L.
        • O'Neill W.C.
        Vascular calcification is dependent on plasma levels of pyrophosphate.
        Kidney Int. 2014; 85: 1351-1356https://doi.org/10.1038/ki.2013.521
        • Villa-Bellosta R.
        • Sorribas V.
        Calcium phosphate deposition with normal phosphate concentration. -Role of pyrophosphate-.
        Circ J Off J Jpn Circ Soc. 2011; 75: 2705-2710
        • Villa-Bellosta R.
        • O'Neill W.C.
        Pyrophosphate deficiency in vascular calcification.
        Kidney Int. 2018; 93: 1293-1297https://doi.org/10.1016/j.kint.2017.11.035
        • Lomashvili K.A.
        • Khawandi W.
        • O'Neill W.C.
        Reduced plasma pyrophosphate levels in hemodialysis patients.
        J Am Soc Nephrol JASN. 2005; 16: 2495-2500https://doi.org/10.1681/ASN.2004080694
        • Villa-Bellosta R.
        • González-Parra E.
        • Egido J.
        Alkalosis and dialytic clearance of phosphate increases phosphatase activity: a hidden consequence of hemodialysis.
        PloS One. 2016; 11e0159858https://doi.org/10.1371/journal.pone.0159858
        • Villa-Bellosta R.
        • Rivera-Torres J.
        • Osorio F.G.
        • et al.
        Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment.
        Circulation. 2013; 127: 2442-2451https://doi.org/10.1161/CIRCULATIONAHA.112.000571
        • Pomozi V.
        • Brampton C.
        • van de Wetering K.
        • et al.
        Pyrophosphate supplementation prevents chronic and acute calcification in ABCC6-deficient mice.
        Am. J. Pathol. 2017; 187: 1258-1272https://doi.org/10.1016/j.ajpath.2017.02.009
        • de Oliveira R.B.
        • Louvet L.
        • Riser B.L.
        • et al.
        Peritoneal delivery of sodium pyrophosphate blocks the progression of pre-existing vascular calcification in uremic apolipoprotein-E knockout mice.
        Calcif. Tissue Int. 2015; 97: 179-192https://doi.org/10.1007/s00223-015-0020-7
        • O'Neill W.C.
        • Lomashvili K.A.
        • Malluche H.H.
        • Faugere M.-C.
        • Riser B.L.
        Treatment with pyrophosphate inhibits uremic vascular calcification.
        Kidney Int. 2011; 79: 512-517https://doi.org/10.1038/ki.2010.461
        • Riser B.L.
        • Barreto F.C.
        • Rezg R.
        • et al.
        Daily peritoneal administration of sodium pyrophosphate in a dialysis solution prevents the development of vascular calcification in a mouse model of uraemia.
        Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2011; 26: 3349-3357https://doi.org/10.1093/ndt/gfr039
        • Villa-Bellosta R.
        • Wang X.
        • Millán J.L.
        • Dubyak G.R.
        • O'Neill W.C.
        Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle.
        Am. J. Physiol. Heart Circ. Physiol. 2011; 301: H61-H68https://doi.org/10.1152/ajpheart.01020.2010
        • Narisawa S.
        • Yadav M.C.
        • Millán J.L.
        In vivo overexpression of tissue-nonspecific alkaline phosphatase increases skeletal mineralization and affects the phosphorylation status of osteopontin.
        J Bone Miner Res Off J Am Soc Bone Miner Res. 2013; 28: 1587-1598https://doi.org/10.1002/jbmr.1901
        • Narisawa S.
        • Harmey D.
        • Yadav M.C.
        • O'Neill W.C.
        • Hoylaerts M.F.
        • Millán J.L.
        Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification.
        J Bone Miner Res Off J Am Soc Bone Miner Res. 2007; 22: 1700-1710https://doi.org/10.1359/jbmr.070714
        • Rutsch F.
        • Ruf N.
        • Vaingankar S.
        • et al.
        Mutations in ENPP1 are associated with “idiopathic” infantile arterial calcification.
        Nat. Genet. 2003; 34: 379-381https://doi.org/10.1038/ng1221
        • Johnson K.
        • Polewski M.
        • van Etten D.
        • Terkeltaub R.
        Chondrogenesis mediated by PPi depletion promotes spontaneous aortic calcification in NPP1-/- mice.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 686-691https://doi.org/10.1161/01.ATV.0000154774.71187.f0
        • Albright R.A.
        • Stabach P.
        • Cao W.
        • et al.
        ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy.
        Nat. Commun. 2015; 610006https://doi.org/10.1038/ncomms10006
        • Villa-Bellosta R.
        ATP-based therapy prevents vascular calcification and extends longevity in a mouse model of Hutchinson-Gilford progeria syndrome.
        Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 23698-23704https://doi.org/10.1073/pnas.1910972116
        • St Hilaire C.
        • Ziegler S.G.
        • Markello T.C.
        • et al.
        NT5E mutations and arterial calcifications.
        N. Engl. J. Med. 2011; 364: 432-442https://doi.org/10.1056/NEJMoa0912923
        • Warraich S.
        • Bone D.B.J.
        • Quinonez D.
        • et al.
        Loss of equilibrative nucleoside transporter 1 in mice leads to progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis in humans.
        J Bone Miner Res Off J Am Soc Bone Miner Res. 2013; 28: 1135-1149https://doi.org/10.1002/jbmr.1826
        • Biber J.
        • Hernando N.
        • Forster I.
        Phosphate transporters and their function.
        Annu. Rev. Physiol. 2013; 75: 535-550https://doi.org/10.1146/annurev-physiol-030212-183748
        • Crouthamel M.H.
        • Lau W.L.
        • Leaf E.M.
        • et al.
        Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: redundant roles for PiT-1 and PiT-2.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 2625-2632https://doi.org/10.1161/ATVBAHA.113.302249
        • Wang C.
        • Li Y.
        • Shi L.
        • et al.
        Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis.
        Nat. Genet. 2012; 44: 254-256https://doi.org/10.1038/ng.1077
        • Jensen N.
        • Schrøder H.D.
        • Hejbøl E.K.
        • Füchtbauer E.-M.
        • de Oliveira J.R.M.
        • Pedersen L.
        Loss of function of Slc20a2 associated with familial idiopathic Basal Ganglia calcification in humans causes brain calcifications in mice.
        J Mol Neurosci MN. 2013; 51: 994-999https://doi.org/10.1007/s12031-013-0085-6
        • Jansen R.S.
        • Duijst S.
        • Mahakena S.
        • et al.
        ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report.
        Arterioscler. Thromb. Vasc. Biol. 2014; 34: 1985-1989https://doi.org/10.1161/ATVBAHA.114.304017
        • Jansen R.S.
        • Küçükosmanoglu A.
        • de Haas M.
        • et al.
        ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 20206-20211https://doi.org/10.1073/pnas.1319582110
        • Le Saux O.
        • Urban Z.
        • Tschuch C.
        • et al.
        Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum.
        Nat. Genet. 2000; 25: 223-227https://doi.org/10.1038/76102
        • Bergen A.A.
        • Plomp A.S.
        • Schuurman E.J.
        • et al.
        Mutations in ABCC6 cause pseudoxanthoma elasticum.
        Nat. Genet. 2000; 25: 228-231https://doi.org/10.1038/76109
        • Ho A.M.
        • Johnson M.D.
        • Kingsley D.M.
        Role of the mouse ank gene in control of tissue calcification and arthritis.
        Science. 2000; 289: 265-270
        • Villa-Bellosta R.
        Vascular calcification revisited: a new perspective for phosphate transport.
        Curr. Cardiol. Rev. Nov 6 2015; 11: 341-351https://doi.org/10.2174/1573403X11666150805120505
        • Nürnberg P.
        • Thiele H.
        • Chandler D.
        • et al.
        Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia.
        Nat. Genet. 2001; 28: 37-41https://doi.org/10.1038/88236
        • Reichenberger E.
        • Tiziani V.
        • Watanabe S.
        • et al.
        Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK.
        Am. J. Hum. Genet. 2001; 68: 1321-1326https://doi.org/10.1086/320612
        • Pendleton A.
        • Johnson M.D.
        • Hughes A.
        • et al.
        Mutations in ANKH cause chondrocalcinosis.
        Am. J. Hum. Genet. 2002; 71: 933-940https://doi.org/10.1086/343054
        • Williams C.J.
        • Zhang Y.
        • Timms A.
        • et al.
        Autosomal dominant familial calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembrane protein ANKH.
        Am. J. Hum. Genet. 2002; 71: 985-991https://doi.org/10.1086/343053
        • Williams C.J.
        • Pendleton A.
        • Bonavita G.
        • et al.
        Mutations in the amino terminus of ANKH in two US families with calcium pyrophosphate dihydrate crystal deposition disease.
        Arthritis Rheum. 2003; 48: 2627-2631https://doi.org/10.1002/art.11133
        • De Paoli F.
        • Staels B.
        • Chinetti-Gbaguidi G.
        Macrophage phenotypes and their modulation in atherosclerosis.
        Circ J Off J Jpn Circ Soc. 2014; 78: 1775-1781https://doi.org/10.1253/circj.cj-14-0621
        • Chinetti-Gbaguidi G.
        • Colin S.
        • Staels B.
        Macrophage subsets in atherosclerosis.
        Nat. Rev. Cardiol. 2015; 12: 10-17https://doi.org/10.1038/nrcardio.2014.173
        • Tintut Y.
        • Patel J.
        • Territo M.
        • Saini T.
        • Parhami F.
        • Demer L.L.
        Monocyte/macrophage regulation of vascular calcification in vitro.
        Circulation. 2002; 105: 650-655https://doi.org/10.1161/hc0502.102969
        • Li X.
        • Speer M.Y.
        • Yang H.
        • Bergen J.
        • Giachelli C.M.
        Vitamin D receptor activators induce an anticalcific paracrine program in macrophages: requirement of osteopontin.
        Arterioscler. Thromb. Vasc. Biol. 2010; 30: 321-326https://doi.org/10.1161/ATVBAHA.109.196576
        • Villa-Bellosta R.
        • Hamczyk M.R.
        • Andrés V.
        Alternatively activated macrophages exhibit an anticalcifying activity dependent on extracellular ATP/pyrophosphate metabolism.
        Am. J. Physiol. Cell Physiol. 2016; 310: C788-C799https://doi.org/10.1152/ajpcell.00370.2015
        • Libby P.
        • Ridker P.M.
        • Hansson G.K.
        Progress and challenges in translating the biology of atherosclerosis.
        Nature. 2011; 473: 317-325https://doi.org/10.1038/nature10146
        • Mantovani A.
        • Garlanda C.
        • Locati M.
        Macrophage diversity and polarization in atherosclerosis: a question of balance.
        Arterioscler. Thromb. Vasc. Biol. 2009; 29: 1419-1423https://doi.org/10.1161/ATVBAHA.108.180497
        • Valledor A.F.
        • Comalada M.
        • Santamaría-Babi L.F.
        • Lloberas J.
        • Celada A.
        Macrophage proinflammatory activation and deactivation: a question of balance.
        Adv. Immunol. 2010; 108: 1-20https://doi.org/10.1016/B978-0-12-380995-7.00001-X
        • Mosser D.M.
        • Edwards J.P.
        Exploring the full spectrum of macrophage activation.
        Nat. Rev. Immunol. 2008; 8: 958-969https://doi.org/10.1038/nri2448
        • Murray P.J.
        • Allen J.E.
        • Biswas S.K.
        • et al.
        Macrophage activation and polarization: nomenclature and experimental guidelines.
        Immunity. 2014; 41: 14-20https://doi.org/10.1016/j.immuni.2014.06.008
        • Martinez F.O.
        • Gordon S.
        The M1 and M2 paradigm of macrophage activation: time for reassessment.
        F1000prime Rep. 2014; 6: 13https://doi.org/10.12703/P6-13
        • Villa-Bellosta R.
        • Hamczyk M.R.
        • Andrés V.
        Novel phosphate-activated macrophages prevent ectopic calcification by increasing extracellular ATP and pyrophosphate.
        PloS One. 2017; 12e0174998https://doi.org/10.1371/journal.pone.0174998
        • Tani T.
        • Fujiwara M.
        • Orimo H.
        • et al.
        Inhibition of tissue-nonspecific alkaline phosphatase protects against medial arterial calcification and improved survival probability in the CKD-MBD mouse model.
        J Pathol. September. 2019; https://doi.org/10.1002/path.5346
        • Ziegler S.G.
        • Ferreira C.R.
        • MacFarlane E.G.
        • et al.
        Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase.
        Sci. Transl. Med. 2017; 9https://doi.org/10.1126/scitranslmed.aal1669
        • Li Q.
        • Huang J.
        • Pinkerton A.B.
        • et al.
        Inhibition of tissue-nonspecific alkaline phosphatase attenuates ectopic mineralization in the Abcc6-/- mouse model of PXE but not in the Enpp1 mutant mouse models of GACI.
        J. Invest. Dermatol. 2019; 139: 360-368https://doi.org/10.1016/j.jid.2018.07.030