Advertisement

Exploring the relationship between biomechanical stresses and coronary atherosclerosis

      Highlights

      • Biomechanical factors can promote growth and destabilisation of plaques.
      • Our ability to accurately predict vulnerable plaques remains underdeveloped.
      • Endothelial Shear Stress is the biological manifestation of wall shear stress.
      • Plaque Structural Stress is stress within the atherosclerotic plaque.
      • Axial Plaque Stress is the internal stress which resists changes in vessel length.

      Abstract

      The pathophysiology of coronary atherosclerosis is multifaceted. Plaque initiation and progression are governed by a complex interplay between genetic and environmental factors acting through processes such as lipid accumulation, altered haemodynamics and inflammation. There is increasing recognition that biomechanical stresses play an important role in atherogenesis, and integration of these metrics with clinical imaging has potential to significantly improve cardiovascular risk prediction. In this review, we present the calculation of coronary biomechanical stresses from first principles and computational methods, including endothelial shear stress (ESS), plaque structural stress (PSS) and axial plaque stress (APS). We discuss the current experimental and human data linking these stresses to the natural history of coronary artery disease and explore the future potential for refining treatment options and predicting future ischaemic events.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Go A.S.
        • et al.
        Heart disease and stroke statistics--2013 update: a report from the American Heart Association.
        Circulation. Jan 1 2013; 127: e6-e245
        • Brown A.J.
        • Teng Z.
        • Evans P.C.
        • Gillard J.H.
        • Samady H.
        • Bennett M.R.
        Role of biomechanical forces in the natural history of coronary atherosclerosis.
        Nature Reviews Cardiology, Review. 2016; 13: 210-220
        • Celermajer D.S.
        • Chow C.K.
        • Marijon E.
        • Anstey N.M.
        • Woo K.S.
        Cardiovascular disease in the developing world: prevalences, patterns, and the potential of early disease detection.
        J. Am. Coll. Cardiol. Oct 2 2012; 60: 1207-1216
        • Glaser R.
        • et al.
        Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention.
        Circulation. Jan 18 2005; 111: 143-149
        • Stone G.W.
        • et al.
        A prospective natural-history study of coronary atherosclerosis.
        N. Engl. J. Med. Jan 20 2011; 364: 226-235
        • Caro C.G.
        • Fitz-Gerald J.M.
        • Schroter R.C.
        Arterial wall shear and distribution of early atheroma in man.
        Nature. Sep 13 1969; 223: 1159-1160
        • Munson B.R.
        • Okiishi T.H.
        • Huebsch W.W.
        • Rothmayer A.P.
        Fundamentals of Fluid Mechanics.
        seventh ed. 2012
        • Meairs S.
        • Hennerici M.
        Four-Dimensional ultrasonographic characterization of plaque surface motion in patients with symptomatic and asymptomatic carotid artery stenosis.
        Stroke. 1999; 30: 1807-1813
        • Li Z.Y.
        • et al.
        The mechanical triggers of plaque rupture: shear stress vs pressure gradient.
        Br. J. Radiol. 2009; 82: S39-S45
        • Doriot P.
        Estimation of the supplementary axial wall stress generated at peak flow by an arterial stenosis.
        Phys. Med. Biol. 2003; 48: 127-138
        • Slager C.J.
        • et al.
        The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications.
        Nat. Clin. Pract. Cardiovasc. Med. 2005; 2: 456-464
        • Huang Y.
        • Teng Z.
        • Sadat U.
        • Graves M.J.
        • Bennett M.R.
        • Gillard J.H.
        The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses.
        J. Biomech. 2014; 47: 1465-1471
        • Calvert P.A.
        • et al.
        Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study.
        JACC Cardiovasc. Imag. 2011; 4: 894-901
        • Burke A.P.
        • Farb A.
        • Malcom G.T.
        • Liang Y.
        • Smialek J.E.
        • Virmani R.
        Plaque rupture and sudden death related to exertion in men with coronary artery disease.
        J. Am. Med. Assoc. 1991; 281: 921-926
        • Gertz S.D.
        • Roberts W.C.
        Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques.
        Am. J. Cardiol. 1990; 66: 1368-1372
        • Cunningham K.S.
        • Gotlieb A.I.
        The role of shear stress in the pathogenesis of atherosclerosis.
        Lab. Invest. 2005; 85: 9-23
        • Garcia-Cardena G.
        • Comander J.
        • Anderson K.R.
        • Blackman B.R.
        • Gimbrone M.A.
        Biomechanical activation of vascular endothelium as a determinant of its functional phenotype.
        Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 4478-4485
        • Gimbrone M.A.
        • Topper J.N.
        • Nagel T.
        • Anderson K.R.
        • Garcia-Cardena G.
        Endothelial dysfunction, hemodynamic forces, and atherogenesis.
        Ann. N.Y. Acad. Sci. 2000; 902: 230-240
        • Malek A.M.
        • Alper S.L.
        • Izumo S.
        Hemodynamic shear stress and its role in atherosclerosis.
        J. Am. Med. Assoc. 1999; 282: 2035-2042
        • Son D.J.
        • et al.
        The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis.
        Nat. Commun. 2013; 4
        • Thondapu V.
        • Bourantas C.V.
        • Foin N.
        • Jang I.-K.
        • Serruys P.W.
        • Barlis P.
        Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling.
        Eur. Heart J. Rev. 2017; 38: 81-92
        • Zhou J.
        • et al.
        MicroRNA-21 targets peroxisome proliferators-activated receptor-alpha in an autoregulatory loop to modulate flow-induced endothelial inflammation.
        Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 10355-10360
        • Ku D.N.
        • Giddens D.P.
        • Zarins C.K.
        • Glagov S.
        Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress.
        Arteriosclerosis. May-Jun 1985; 5: 293-302
        • Corban M.T.
        • et al.
        Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability.
        Atherosclerosis. 2014; 232: 271-276
        • Samady H.
        • et al.
        Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease.
        Circulation. 2011; 124: 779-788
        • Gijsen F.J.
        • et al.
        Strain distribution over plaques in human coronary arteries relates to shear stress.
        Am. J. Physiol. Heart Circ. Physiol. 2008; 295: H1608-H1614
        • Gijsen F.J.
        • et al.
        High shear stress induces a strain increase in human coronary plaques over a 6-month period.
        EuroIntervention. 2011; 7: 121-127
        • Fukumoto Y.
        • et al.
        Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution.
        JACC (J. Am. Coll. Cardiol.). 2008; 51: 645-650
        • Bourantas C.V.
        • et al.
        Fusion of optical coherence tomography and coronary angiography – in vivo assessment of shear stress in plaque rupture.
        Int. J. Cardiol. 2012; 155: e24-e26
        • Stone P.H.
        • et al.
        Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study.
        Circulation. Jul 10 2012; 126: 172-181
        • Stone P.H.
        • et al.
        Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study.
        Circulation. Jul 29 2003; 108: 438-444
        • Stone P.H.
        • et al.
        Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study.
        Eur. Heart J. Mar 2007; 28: 705-710
        • Asakura T.
        • Karino T.
        Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries.
        Circ. Res. Apr 1990; 66: 1045-1066
        • Krams R.
        • et al.
        Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 2061-2065
        • Giannoglou G.D.
        • Soulis J.V.
        • Farmakis T.M.
        • Farmakis D.M.
        • Louridas G.E.
        Haemodynamic factors and the important role of local low static pressure in coronary wall thickening.
        Int. J. Cardiol. 2002; 86: 27-40
        • Zarins C.K.
        • Giddens D.P.
        • Bharadvaj B.K.
        • Sottiurai V.S.
        • Mabon R.F.
        • Glagov S.
        Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
        Circ. Res. Oct 1983; 53: 502-514
        • Moore Jr., J.E.
        • Xu C.
        • Glagov S.
        • Zarins C.K.
        • Ku D.N.
        Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis.
        Atherosclerosis. Oct 1994; 110: 225-240
        • Levesque M.J.
        • Nerem R.M.
        The elongation and orientation of cultured endothelial cells in response to shear stress.
        J. Biomech. Eng. Nov 1985; 107: 341-347
        • Wentzel J.J.
        • Chatzizisis Y.S.
        • Gijsen F.J.
        • Giannoglou G.D.
        • Feldman C.L.
        • Stone P.H.
        Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions.
        Cardiovasc. Res. Nov 1 2012; 96: 234-243
        • Nam D.
        • et al.
        Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis.
        Am. J. Physiol. Heart Circ. Physiol. Oct 2009; 297: H1535-H1543
        • Fuster V.
        Elucidation of the role of plaque instability and rupture in acute coronary events.
        Am. J. Cardiol. Sep 28 1995; 76: 24C-33C
        • Burke A.P.
        • Farb A.
        • Malcom G.T.
        • Liang Y.H.
        • Smialek J.
        • Virmani R.
        Coronary risk factors and plaque morphology in men with coronary disease who died suddenly.
        N. Engl. J. Med. May 1 1997; 336: 1276-1282
        • Teng Z.
        • et al.
        Coronary plaque structural stress is associated with plaque composition and subtype and higher in acute coronary syndrome: the BEACON I (Biomechanical Evaluation of Atheromatous Coronary Arteries) study.
        Circulation: Cardiovasc. Imag. 2014; 7: 461-470
        • Brown A.J.
        • et al.
        Plaque structural stress estimations improve prediction of future major adverse cardiovascular events after intracoronary imaging.
        Circulation: Cardiovasc. Imag. 2016; 9
        • Cheng J.M.
        • et al.
        In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study.
        Eur. Heart J. 2014; 35: 639-647
        • Koskinas K.C.
        • Ughi G.J.
        • Windecker S.
        • Tearney G.J.
        • Raber L.
        Intracoronary imaging of coronary atherosclerosis: validation for diagnosis, prognosis and treatment.
        Eur. Heart J. 2016; 37: 524-535
        • Costopoulos C.
        • et al.
        Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress.
        JACC Cardiovasc. Imag. 2017; 10: 1472-1483
        • Hallow K.M.
        • Taylor W.R.
        • Rachev A.
        • Vito R.P.
        Markers of inflammation collocate with increased wall stress in human coronary arterial plaque.
        Biomech. Model. Mechanobiol. 2009; 8: 473-486
        • Huang H.
        • Virmani R.
        • Younis H.
        • Burke A.P.
        • Kamm R.D.
        • Lee R.T.
        The impact of calcification on the biomechanical stability of atherosclerotic plaques.
        Circulation. 2001; 103: 1051-1056
        • Lee R.T.
        • Schoen F.J.
        • Loree H.M.
        • Lark M.W.
        • Libby P.
        Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Implications for plaque rupture.
        Arterioscler. Thromb. Vasc. Biol. 1996; 16: 1070-1073
        • Kelly-Arnold A.
        • Maldonado N.
        • Laudier D.
        • Aikawa E.
        • Cardoso L.
        • Weinbaum S.
        Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 10741-10746
        • Vengrenyuk Y.
        • et al.
        A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps.
        Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 14678-14683
        • Imoto K.
        • et al.
        Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging.
        J. Am. Coll. Cardiol. 2005; 46: 1507-1515
        • Tang D.
        • Yang C.
        • Kobayashi S.
        • Ku D.N.
        Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models.
        J. Biomech. Eng. 2004; 126: 363-370
        • Van Loon P.
        • Klip W.
        • Bradley E.L.
        Length-force and volume-pressure relationships of arteries.
        Biorheology. 1977; 14: 181-201
        • Weizsacker H.W.
        • Lambert H.
        • Pascale K.
        Analysis of the passive mechanical properties of rat carotid arteries.
        J. Biomech. 1983; 16: 703-715
        • Brossollet L.J.
        • Vito R.P.
        An alternate formulation of blood vessel mechanics and the meaning of the in vivo property.
        J. Biomech. 1995; 28: 679-687
        • Jackson Z.S.
        • Gotlieb A.I.
        • Langille B.L.
        Wall tissue remodeling regulates longitudinal tension in arteries.
        Circulation. 2002; 90: 918-925
        • Lee M.Y.
        Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics.
        JACC: Cardiovascular Imaging. 2018
        • Humphrey J.D.
        • Eberth J.F.
        • Dye W.W.
        • Gleason R.L.
        Fundamental role of axial stress in compensatory adaptations by arteries.
        J. Biomech. 2009 January 5 2009; 42: 1-8
        • Bellini C.
        • Ferruzzi J.
        • Roccabianca S.
        • Di Martino E.S.
        • Humphrey J.D.
        A microstructurally motivated model of arterial wall mechanics with mechanobiological implications.
        Ann. Biomed. Eng. 2014; 42: 488-502
        • Cox R.H.
        Anisotropic properties of the canine carotid artery in vitro.
        J. Biomech. 1975; 8: 293-300
        • Dobrin P.B.
        Biaxial anisotropy of dog carotid artery: estimation of circumferential elastic modulus.
        J. Biomech. 1986; 19: 351-358
        • Costopoulos C.
        • et al.
        Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition.
        Eur. Heart J. 2019; 40: 1411-1422
        • Taddei S.
        • Virdis A.
        • Ghiadoni L.
        • Sudano I.
        • Salvetti A.
        Endothelial dysfunction in hypertension.
        J. Cardiovasc. Pharmacol. 2001; 38
        • Salt I.P.
        • Morrow V.A.
        • Brandie F.M.
        • Connell J.M.
        • Petrie J.R.
        High glucose inhibits insulin-stimulated nitric oxide production without reducing endothelial nitric-oxide synthase Ser1177 phosphorylation in human aortic endothelial cells.
        J. Biol. Chem. 2003; 278: 18791-18797
        • Lüscher T.F.
        • Tanner F.C.
        • Noll G.
        Lipids and endothelial function: effects of lipid-lowering and other therapeutic interventions.
        Curr. Opin. Lipidol. 1996; 7: 234-240
        • Barua R.S.
        • Ambrose J.A.
        • Srivastava S.
        • DeVoe M.C.
        • Eales-Reynolds L.J.
        Reactive oxygen species are involved in smoking-induced dysfunction of nitric oxide biosynthesis and upregulation of endothelial nitric oxide synthase: an in vitro demonstration in human coronary artery endothelial cells.
        Circulation. 2003; 107: 2343-2347
        • Loftus I.
        Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists.
        University of Adelaide Press, Adelaide (AU)2011
        • Gimbrone Jr., M.A.
        • Resnick N.
        • Nagel T.
        • Khachigian L.M.
        • Collins T.
        • Topper J.N.
        Hemodynamics, endothelial gene expression, and atherogenesis.
        Annals of the new york academy of sciences, Apr 15 1997
        • Nadaud S.
        • Philippe M.
        • Arnal J.F.
        • Michel J.B.
        • Soubrier F.
        Sustained increase in aortic endothelial nitric oxide synthase expression in vivo in a model of chronic high blood flow.
        Circ. Res. Oct 1996; 79: 857-863
        • De Keulenaer G.W.
        • Chappell D.C.
        • Ishizaka N.
        • Nerem R.M.
        • Alexander R.W.
        • Kk G.
        Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase.
        Circ. Res. June 1 1998; 82: 1094-1101