Advertisement

High density lipoprotein functionality and cardiovascular events and mortality: A systematic review and meta-analysis

  • Maria T Soria-Florido
    Affiliations
    Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain

    PhD Program in Food Sciences and Nutrition, Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Science, Campus de l'Alimentació Torribera, University of Barcelona, Barcelona, Spain

    Department of Behavioural Science and Health, University College London, London, United Kingdom
    Search for articles by this author
  • Helmut Schröder
    Affiliations
    Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain

    CIBER of Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
    Search for articles by this author
  • María Grau
    Affiliations
    Registre Gironí del COR. Group, Cardiovascular, Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain

    CIBER of Cardiovascular Diseases (CIBERCV), Institute of Health Carlos III, Madrid, Spain

    Department of Medicine, University of Barcelona, Barcelona, Spain
    Search for articles by this author
  • Montserrat Fitó
    Correspondence
    Corresponding author.Hospital del Mar Medical Research Institute, Carrer Doctor Aiguader 88, 08003, Barcelona, Spain.
    Affiliations
    Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain

    CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
    Search for articles by this author
  • Camille Lassale
    Correspondence
    Corresponding author.Hospital del Mar Medical Research Institute, Carrer Doctor Aiguader 88, 08003, Barcelona, Spain.
    Affiliations
    Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain

    Department of Behavioural Science and Health, University College London, London, United Kingdom

    CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
    Search for articles by this author

      Highlights

      • First meta-analysis on the association between a wide range of HDL functions and the risk of cardiovascular disease and all-cause mortality
      • Higher cholesterol efflux and antioxidant/anti-inflammatory capacities promoted by HDL are associated with lower cardiovascular disease risk.
      • Higher cholesterol efflux capacity and antioxidant activity are associated with lower risk of all-cause mortality
      • Heterogeneity between studies and evidence of publication bias warrants caution and highlights the need for larger prospective studies

      Abstract

      Background and aims

      The aim of this systematic review and meta-analysis is to synthesize studies assessing the associations between high-density lipoprotein functionality and risk of cardiovascular disease and mortality.

      Methods

      We searched Medline and Embase for the identification of observational studies meeting the inclusion criteria. This meta-analysis was conducted following the PRISMA statement and was registered in PROSPERO (CRD42017065857). We pooled risk estimates with a random-effect model separately for cardiovascular disease (fatal and non-fatal) and all-cause mortality.

      Results

      Out of 29 manuscripts, 20 articles investigated cholesterol efflux capacity (13 prospective and 7 cross-sectional), 10 antioxidant capacity (7 prospective and 3 cross-sectional) and two anti-inflammatory capacity of high-density lipoprotein (1 prospective and 1 cross-sectional). A greater cholesterol efflux capacity was associated with lower risk of cardiovascular disease in 8 studies (RR for 1SD increase: 0.86; 95% CI: 0.76–0.98) and of mortality in 5 studies (RR for 1SD increase: 0,77; 0.60–1.00). Better antioxidant capacity was non-significantly associated with lower cardiovascular disease risk in 2 studies (RR for 1SD increase 0.70; 0.32–1.53) and significantly with mortality in 3 studies (RR for 1SD increase 0.48; 0.28–0.81). High-density lipoprotein anti-inflammatory ability was associated with a lower cardiovascular disease risk in the only prospective study.

      Conclusions

      Greater high-density lipoprotein cholesterol efflux capacity and antioxidant/anti-inflammatory capacities were associated with lower risk of cardiovascular disease. However, the heterogeneity between studies and evidence of publication bias warrants caution and highlights the need for larger prospective studies with standardized assays and specific outcomes.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Voight B.F.
        • Peloso G.M.
        • Orho-Melander M.
        • et al.
        Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study.
        Lancet. 2012; 380: 572-580https://doi.org/10.1016/S0140-6736(12)60312-2
        • Holmes M.V.
        • Asselbergs F.W.
        • Palmer T.M.
        • et al.
        Mendelian randomization of blood lipids for coronary heart disease.
        Eur. Heart J. 2015; 36: 539-550https://doi.org/10.1093/eurheartj/eht571
        • Camont L.
        • Chapman J.
        • Kontush A.
        Functionality of HDL particles: heterogeneity and relationships to cardiovascular disease.
        Arch. Cardiovasc. Dis. Suppl. 2011; 3: 258-266https://doi.org/10.1016/S1878-6480(11)70784-4
        • Rader D.J.
        • Alexander E.T.
        • Weibel G.L.
        • Billheimer J.
        • Rothblat G.H.
        The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis.
        J. Lipid Res. 2009; 50: S189-S194https://doi.org/10.1194/jlr.R800088-JLR200
        • Nakagawa K.
        • Nakashima Y.
        Pathologic intimal thickening in human atherosclerosis is formed by extracellular accumulation of plasma-derived lipids and dispersion of intimal smooth muscle cells.
        Atherosclerosis. 2018; 274: 235-242https://doi.org/10.1016/j.atherosclerosis.2018.03.039
        • Movva R.
        • Rader D.J.
        Laboratory assessment of HDL heterogeneity and function.
        Clin. Chem. 2008; 54: 788-800https://doi.org/10.1373/clinchem.2007.101923
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6e1000097https://doi.org/10.1371/journal.pmed.1000097
        • Stang A.
        Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses.
        Eur. J. Epidemiol. 2010; 25: 603-605https://doi.org/10.1007/s10654-010-9491-z
        • Borenstein M.
        • Hedges L.V.
        • Higgins J.P.T.
        • Rothstein H.R.
        Introduction to Meta-Analysis.
        2009
        • Higgins J.P.T.
        • Thompson S.G.
        • Deeks J.J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        BMJ. 2003; 327 (557 LP - 560)
        • Collaboration T.C.
        Higgins J.P.T.G.S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. 2011
        • Egger M.
        • Smith G.D.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315 (629 LP - 634)
        • Schrutka L.
        • Goliasch G.
        • Meyer B.
        • Wurm R.
        • Koller L.
        • Kriechbaumer L.
        • Heinz G.
        • Pacher R.
        • Lang I.M.
        • Distelmaier K.
        • Hülsmann M.
        Impaired high-density lipoprotein antioxidant function predicts poor outcome in critically ill patients.
        PloS One. 2016; 11: 1-12https://doi.org/10.1371/journal.pone.0151706
        • Li X.M.
        • Tang W.H.W.
        • Mosior M.K.
        • Huang Y.
        • Wu Y.
        • Matter W.
        • Gao V.
        • Schmitt D.
        • DiDonato J.A.
        • Fisher E.A.
        • Smith J.D.
        • Hazen S.L.
        Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1696-1705https://doi.org/10.1161/ATVBAHA.113.301373
        • Potočnjak I.
        • Degoricija V.
        • Trbušić M.
        • Terešak S.D.
        • Radulović B.
        • Pregartner G.
        • Berghold A.
        • Tiran B.
        • Marsche G.
        • Frank S.
        Metrics of high-density lipoprotein function and hospital mortality in acute heart failure patients.
        PloS One. 2016; 11: 1-11https://doi.org/10.1371/journal.pone.0157507
        • Liu C.
        • Zhang Y.
        • Ding D.
        • Li X.
        • Yang Y.
        • Li Q.
        • Zheng Y.
        • Wang D.
        • Ling W.
        Cholesterol efflux capacity is an independent predictor of all-cause and cardiovascular mortality in patients with coronary artery disease: a prospective cohort study.
        Atherosclerosis. 2016; 249: 116-124https://doi.org/10.1016/j.atherosclerosis.2015.10.111
        • Zhang J.
        • Xu J.
        • Wang J.
        • Wu C.
        • Xu Y.
        • Wang Y.
        • Deng F.
        • Wang Z.
        • Chen X.
        • Wu M.
        • Chen Y.
        Prognostic usefulness of serum cholesterol efflux capacity in patients with coronary artery disease.
        Am. J. Cardiol. 2016; 117: 508-514https://doi.org/10.1016/j.amjcard.2015.11.033
        • Annema W.
        • Dikkers A.
        • de Boer J.F.
        • Dullaart R.P.F.
        • Sanders J.-S.F.
        • Bakker S.J.L.
        • Tietge U.J.F.
        HDL cholesterol efflux predicts graft failure in renal transplant recipients.
        J. Am. Soc. Nephrol. 2016; 27: 595-603https://doi.org/10.1681/ASN.2014090857
        • Bauer L.
        • Kern S.
        • Rogacev K.S.
        • Emrich I.E.
        • Zawada A.
        • Fliser D.
        • Heinemann A.
        • Heine G.H.
        • Marsche G.
        HDL cholesterol efflux capacity and cardiovascular events in patients with chronic kidney disease.
        J. Am. Coll. Cardiol. 2017; 69: 246-247https://doi.org/10.1016/j.jacc.2016.10.054
        • Rohatgi A.
        • Khera A.
        • Berry J.D.
        • Givens E.G.
        • Ayers C.R.
        • Wedin K.E.
        • Neeland I.J.
        • Yuhanna I.S.
        • Rader D.R.
        • de Lemos J.A.
        • Shaul P.W.
        HDL cholesterol efflux capacity and incident cardiovascular events.
        N. Engl. J. Med. 2014; 371: 2383-2393https://doi.org/10.1056/NEJMoa1409065
        • Chindhy S.
        • Joshi P.
        • Khera A.
        • Ayers C.R.
        • Hedayati S.S.
        • Rohatgi A.
        Impaired renal function on cholesterol ef fl ux capacity , HDL particle number , and.
        J. Am. Coll. Cardiol. 2018; 72: 698-700https://doi.org/10.1016/j.jacc.2018.05.043
        • Mody P.
        • Joshi P.H.
        • Khera A.
        • Ayersa C.R.
        • Rohatgi A.
        Beyond coronary calcification, family history, and C-reactive protein: cholesterol efflux capacity and cardiovascular risk prediction purav.
        J. Am. Coll. Cardiol. 2016; 2: 147-185https://doi.org/10.1515/jci-2013-0007.Targeted
        • Javaheri A.
        • Molina M.
        • Zamani P.
        • et al.
        Cholesterol efflux capacity of high-density lipoprotein correlates with survival and allograft vasculopathy in cardiac transplant recipients.
        J. Heart Lung Transplant. 2016; 35: 1295-1302https://doi.org/10.1016/j.healun.2016.06.022
        • Kopecky C.
        • Ebtehaj S.
        • Genser B.
        • Drechsler C.
        • Krane V.
        • Antlanger M.
        • Kovarik J.J.
        • Kaltenecker C.C.
        • Parvizi M.
        • Wanner C.
        • Weichhart T.
        • Säemann M.D.
        • Tietge U.J.F.
        HDL cholesterol efflux does not predict cardiovascular risk in hemodialysis patients.
        J. Am. Soc. Nephrol. 2017; 28: 769-775https://doi.org/10.1681/ASN.2016030262
        • Saleheen D.
        • Scott R.
        • Javad S.
        • Zhao W.
        • Rodrigues A.
        • Picataggi A.
        • Lukmanova D.
        • Mucksavage M.L.
        • Luben R.
        • Billheimer J.
        • Kastelein J.J.P.
        • Boekholdt S.M.
        • Khaw K.T.
        • Wareham N.
        • Rader D.J.
        Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case-control study.
        Lancet Diabetes Endocrinol. 2015; 3: 507-513https://doi.org/10.1016/S2213-8587(15)00126-6
        • Khera A.V.
        • Demler O.V.
        • Adelman S.J.
        • Collins H.L.
        • Glynn R.J.
        • Ridker P.M.
        • Rader D.J.
        • Mora S.
        Cholesterol efflux capacity, high-density lipoprotein particle number, and incident cardiovascular events: an analysis from the JUPITER trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin).
        Circulation. 2017; 135: 2494-2504https://doi.org/10.1161/circulationaha.116.025678
        • Shea S.
        • Stein J.H.
        • Jorgensen N.W.
        • Mcclelland R.L.
        • Tascau L.
        • Shrager S.
        • Heinecke J.W.
        • Yvan-charvet L.
        • Tall A.R.
        Cholesterol mass efflux capacity , incident cardiovascular disease , and progression of carotid plaque the multi-ethnic study of atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2018; 39: 89-96https://doi.org/10.1161/ATVBAHA.118.311366
        • Ishikawa T.
        • Ayaori M.
        • Uto-Kondo H.
        • Nakajima T.
        • Mutoh M.
        • Ikewaki K.
        High-density lipoprotein cholesterol efflux capacity as a relevant predictor of atherosclerotic coronary disease.
        Atherosclerosis. 2015; 242: 318-322https://doi.org/10.1016/j.atherosclerosis.2015.06.028
        • Ogura M.
        • Hori M.
        • Harada-shiba M.
        Association between cholesterol efflux capacity and atherosclerotic cardiovascular disease in patients with familial hypercholesterolemia.
        . 2016; 36: 181-188https://doi.org/10.1161/ATVBAHA.115.306665
        • Annema W.
        • Willemsen H.M.
        • Drp de Bj F.
        • et al.
        HDL function is impaired in acute myocardial infarction independent of plasma HDL cholesterol levels.
        J. Clin. Lipidol. 2016; 10: 1318-1328https://doi.org/10.1016/j.jacl.2016.08.003
        • Khera A.V.
        • Cuchel M.
        • de la Llera-Moya M.
        • Rodrigues A.
        • Burke M.F.
        • Jafri K.
        • French B.C.
        • Phillips J.A.
        • Mucksavage M.L.
        • Wilensky R.L.
        • Mohler E.R.
        • Rothblat G.H.
        • Rader D.J.
        Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis.
        N. Engl. J. Med. 2011; 364: 127-135https://doi.org/10.1056/NEJMoa1001689
        • Patel P.J.
        • Khera A.V.
        • Wilensky R.L.
        • Rader D.J.
        Anti-Oxidative and cholesterol efflux capacities of high-Density lipoprotein are reduced in ischaemic cardiomyopathy.
        Eur. J. Heart Fail. 2013; 15: 1215-1219https://doi.org/10.1093/eurjhf/hft084
        • Sprandel M.C.O.
        • Hueb W.A.
        • Segre A.
        • Ramires J.A.F.
        • Kalil-Filho R.
        • Maranhão R.C.
        Alterations in lipid transfers to HDL associated with the presence of coronary artery disease in patients with type 2 diabetes mellitus.
        Cardiovasc. Diabetol. 2015; 14: 107https://doi.org/10.1186/s12933-015-0270-8
        • Patel P.J.
        • Khera A.V.
        • Jafri K.
        • Wilensky R.L.
        • Rader D.J.
        The anti-oxidative capacity of high-density lipoprotein is reduced in acute coronary syndrome but not in stable coronary artery disease.
        J. Am. Coll. Cardiol. 2011; 58: 2068-2075https://doi.org/10.1016/j.jacc.2011.08.030
        • Distelmaier K.
        • Schrutka L.
        • Seidl V.
        • Winter M.P.
        • Wurm R.
        • Mangold A.
        • Perkmann T.
        • Maurer G.
        • Adlbrecht C.
        • Lang I.M.
        Pro-oxidant HDL predicts poor outcome in patients with ST-elevation acute coronary syndrome.
        Thromb. Haemostasis. 2015; 114: 133-138https://doi.org/10.1160/th14-10-0834
        • Distelmaier K.
        • Wiesbauer F.
        • Blessberge H.
        • Oravec S.
        • Schrutka L.
        • Binder C.
        • Dostal E.
        • Schillinger M.
        • Wojta J.
        • Lang I.M.
        • Maurer G.
        • Huber K.
        • Goliasch G.
        Impaired antioxidant HDL function is associated with premature myocardial infarction.
        Eur. J. Clin. Invest. 2015; 45: 731-738https://doi.org/10.1111/eci.12466
        • Kalantar-Zadeh K.
        • Kopple J.D.
        • Kamranpour N.
        • Fogelman A.M.
        • Navab M.
        HDL-inflammatory index correlates with poor outcome in hemodialysis patients.
        Kidney Int. 2007; 72: 1149-1156https://doi.org/10.1038/sj.ki.5002491
        • Leberkühne L.J.
        • Ebtehaj S.
        • Dimova L.G.
        • Dikkers A.
        • Dullaart R.P.F.
        • Bakker S.J.L.
        • Tietge U.J.F.
        The predictive value of the antioxidative function of HDL for cardiovascular disease and graft failure in renal transplant recipients.
        Atherosclerosis. 2016; 249: 181-185https://doi.org/10.1016/j.atherosclerosis.2016.04.008
        • Schrutka L.
        • Distelmaier K.
        • Hohensinner P.
        • Sulzgruber P.
        • Lang I.M.
        • Maurer G.
        • Wojta J.
        • Hülsmann M.
        • Niessner A.
        • Koller L.
        Impaired high-density lipoprotein anti-oxidative function is associated with outcome in patients with chronic heart failure.
        J. Am. Heart Assoc. 2016; 5https://doi.org/10.1161/JAHA.116.004169
        • Untersteller K.
        • Meissl S.
        • Trieb M.
        • Emrich I.E.
        • Zawada A.M.
        • Holzer M.
        • Knuplez E.
        • Fliser D.
        • Heine G.H.
        • Marsche G.
        HDL functionality and cardiovascular outcome among non-dialysis chronic kidney disease patients.
        J. Lipid Res. 2018; 59: 1256-1265https://doi.org/10.1194/jlr.P085076
        • Dullaart R.P.F.
        • Annema W.
        • Tio R.A.
        • Tietge U.J.F.
        The HDL anti-inflammatory function is impaired in myocardial infarction and may predict new cardiac events independent of HDL cholesterol.
        Clin. Chim. Acta. 2014; 433: 34-38https://doi.org/10.1016/j.cca.2014.02.026
        • Nyyssönen K.
        • Kurl S.
        • Karppi J.
        • Nurmi T.
        • Baldassarre D.
        • Veglia F.
        • Rauramaa R.
        • de Faire U.
        • Hamsten A.
        • Smit A.J.
        • Mannarino E.
        • Humphries S.E.
        • Giral P.
        • Grossi E.
        • Tremoli E.
        LDL oxidative modification and carotid atherosclerosis: results of a multicenter study.
        Atherosclerosis. 2012; 225: 231-236https://doi.org/10.1016/j.atherosclerosis.2012.08.030
        • Ali M.
        • Girgis S.
        • Hassan A.
        • Rudick S.
        • Becker R.C.
        Inflammation and coronary artery disease: from pathophysiology to canakinumab anti-inflammatory thrombosis outcomes study (CANTOS).
        Coron. Artery Dis. 2018; : 1-9https://doi.org/10.1097/mca.0000000000000625
        • von Hodenberg E.
        • Heinen S.
        • Howell K.E.
        • Luley C.
        • Kubler W.
        • Bond H.M.
        Cholesterol efflux from macrophages mediated by high-density lipoprotein subfractions, which differ principally in apolipoprotein A-I and apolipoprotein A-II ratios.
        Biochim. Biophys. Acta. 1991; 1086: 173-184
        • Ohta T.
        • Saku K.
        • Takata K.
        • Nakamura R.
        • Ikeda Y.
        • Matsuda I.
        Different effects of subclasses of HDL containing ApoA-I but not ApoA-II (LpA-I) on cholesterol esterification in plasma and net cholesterol efflux from foam cells.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15 (956 LP - 962)
      1. The AIM-HIGH investigators. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy.
        N. Engl. J. Med. 2011; 365: 2255-2267https://doi.org/10.1056/NEJMoa1107579
      2. Collaborators of heart protection study 2–treatment of HDL to reduce the incidence of vascular events (HPS2-THRIVE). Effects of extended-release niacin with laropiprant in high-risk patients.
        N. Engl. J. Med. 2014; 371: 203-212https://doi.org/10.1056/NEJMoa1300955
        • Barter P.J.
        • Caulfield M.
        • Eriksson M.
        • et al.
        Effects of torcetrapib in patients at high risk for coronary events.
        N. Engl. J. Med. 2007; 357: 2109-2122https://doi.org/10.1056/NEJMoa0706628
        • Rosenson R.S.
        • Brewer H.B.J.
        • Davidson W.S.
        • Fayad Z.A.
        • Fuster V.
        • Goldstein J.
        • Hellerstein M.
        • Jiang X.C.
        • Phillips M.C.
        • Rader D.J.
        • Remaley A.T.
        • Rothblat G.H.
        • Tall A.R.
        • Yvan-Charvet L.
        Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport.
        Circulation. 2012; 125: 1905-1919https://doi.org/10.1161/CIRCULATIONAHA.111.066589
        • Melchior J.T.
        • Street S.E.
        • Andrasske A.B.
        • Furtado J.D.
        • Sacks F.M.
        • Shute R.L.
        • Greve E.I.
        • Swertfeger D.K.
        • Li H.
        • Amy S.
        • Lu L.J.
        • Davidson W.S.
        Apolipoprotein A-II alters the proteome of human lipoproteins and enhances cholesterol efflux from ABCA1.
        J. Lipid Res. 2017; 513: 1-44
        • Lee C.J.
        • Choi S.
        • Cheon D.H.
        • Kim K.Y.
        • Cheon E.J.
        • Ann S.-J.
        • Noh H.-M.
        • Park S.
        • Kang S.-M.
        • Choi D.
        • Lee J.E.
        • Lee S.-H.
        Effect of two lipid-lowering strategies on high-density lipoprotein function and some HDL-related proteins: a randomized clinical trial.
        Lipids Health Dis. 2017; 16: 49https://doi.org/10.1186/s12944-017-0433-6
        • Chen X.
        • Wu Y.
        • Liu L.
        • Su Y.
        • Peng Y.
        • Jiang L.
        • Liu X.
        • Huang D.
        Relationship between high density lipoprotein antioxidant activity and carotid arterial intima-media thickness in patients with essential hypertension.
        Clin. Exp. Hypertens. 2010; 32: 13-20https://doi.org/10.3109/10641960902929487
        • McMahon M.
        • Grossman J.
        • Skaggs B.
        • FitzGerald J.
        • Sahakian L.
        • Ragavendra N.
        • Charles-Schoeman C.
        • Watson K.
        • Wong W.K.
        • Chen W.
        • Gorn A.
        • Karpouzas G.
        • Weisman M.
        • Wallace D.J.
        • Hahn B.H.
        Dysfunctional pro-inflammatory high density lipoproteins confer increased risk for atherosclerosis in women with systemic lupus erythematosus.
        Arthritis Rheum. 2009; 60: 2428-2437https://doi.org/10.1002/art.24677
        • Nagano Y.
        • Arai H.
        • Kita T.
        High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cells after oxidative modification.
        Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 6457-6461
        • Vaisar T.
        • Tang C.
        • Babenko I.
        • Hutchins P.
        • Wimberger J.
        • Suffredini A.F.
        • Heinecke J.W.
        Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity.
        J. Lipid Res. 2015; 56: 1519-1530https://doi.org/10.1194/jlr.M059089
        • McGillicuddy F.C.
        • de la Llera Moya M.
        • Hinkle C.C.
        • Joshi M.R.
        • Chiquoine E.H.
        • Billheimer J.T.
        • Rothblat G.H.
        • Reilly M.P.
        Inflammation impairs reverse cholesterol transport in vivo.
        Circulation. 2009; 119: 1135-1145https://doi.org/10.1161/CIRCULATIONAHA.108.810721
        • Charles-Schoeman C.
        • Lee Y.Y.
        • Grijalva V.
        • Amjadi S.
        • FitzGerald J.
        • Ranganath V.K.
        • Taylor M.
        • McMahon M.
        • Paulus H.E.
        • Reddy S.T.
        Cholesterol efflux by high density lipoproteins is impaired in patients with active rheumatoid arthritis.
        Ann. Rheum. Dis. 2012; 71: 1157-1162https://doi.org/10.1136/annrheumdis-2011-200493
        • Wiedermann C.J.
        Anti-inflammatory activity of albumin.
        Crit. Care Med. 2007; 35: 981-983
        • Hafiane A.
        • Genest J.
        HDL-mediated cellular cholesterol efflux assay method.
        Ann. Clin. Lab. Sci. 2015; 45: 659-668
        • Davidson W.S.
        • Heink A.
        • Sexmith H.
        • Melchior J.T.
        • Gordon S.M.
        • Kuklenyik Z.
        • Woollett L.
        • Barr J.R.
        • Jones J.I.
        • Toth C.A.
        • Shah A.S.
        The effects of apolipoprotein B depletion on HDL subspecies composition and function.
        J. Lipid Res. 2016; 57: 674-686https://doi.org/10.1194/jlr.M066613
        • Shah A.S.
        • Heink A.
        • Davidson W.
        The impact of apolipoprotein B depletion methods on HDL subspecies*.
        J. Clin. Lipidol. 2015; 9: 430https://doi.org/10.1016/j.jacl.2015.03.037
        • Rohatgi A.
        High-density lipoprotein function measurement in human studies: focus on cholesterol efflux capacity.
        Prog. Cardiovasc. Dis. 2015; 58: 32-40https://doi.org/10.1016/j.pcad.2015.05.004
        • Zanotti I.
        • Favari E.
        • Bernini F.
        Cellular cholesterol efflux pathways: impact on intracellular lipid trafficking and methodological considerations.
        Curr. Pharmaceut. Biotechnol. 2012; 13: 292-302https://doi.org/10.2174/138920112799095383
        • Sankaranarayanan S.
        • Kellner-Weibel G.
        • de la Llera-Moya M.
        • Phillips M.C.
        • Asztalos B.F.
        • Bittman R.
        • Rothblat G.H.
        A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY-cholesterol.
        J. Lipid Res. 2011; 52: 2332-2340https://doi.org/10.1194/jlr.D018051
        • Holtta-Vuori M.
        • Uronen R.-L.
        • Repakova J.
        • Salonen E.
        • Vattulainen I.
        • Panula P.
        • Li Z.
        • Bittman R.
        • Ikonen E.
        BODIPY-cholesterol: a new tool to visualize sterol trafficking in living cells and organisms.
        Traffic. 2008; 9: 1839-1849https://doi.org/10.1111/j.1600-0854.2008.00801.x
        • Yano K.
        • Ohkawa R.
        • Sato M.
        • Yoshimoto A.
        • Ichimura N.
        • Kameda T.
        • Kubota T.
        • Tozuka M.
        Cholesterol efflux capacity of apolipoprotein A-I varies with the extent of differentiation and foam cell formation of THP-1 cells.
        J. Lipids. 2016; 2016: 9891316https://doi.org/10.1155/2016/9891316
        • Low H.
        • Hoang A.
        • Sviridov D.
        Cholesterol efflux assay.
        JoVE. 2012; 61: 3810https://doi.org/10.3791/3810
        • Kuusisto S.
        • Holmes M.V.
        • Ohukainen P.
        • Kangas A.J.
        • Karsikas M.
        • Tiainen M.
        • Perola M.
        • Salomaa V.
        • Kettunen J.
        • Ala-Korpela M.
        Direct estimation of HDL-mediated cholesterol efflux capacity from serum.
        Clin. Chem. 2018; 65https://doi.org/10.1101/396929