Advertisement

Platelets as therapeutic targets to prevent atherosclerosis

  • Author Footnotes
    1 These authors contributed equally.
    Henry Nording
    Footnotes
    1 These authors contributed equally.
    Affiliations
    University Hospital, Medical Clinic II, University Heart Center, Lübeck, 23538, Germany

    DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Lübeck, Germany
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally.
    Lasse Baron
    Footnotes
    1 These authors contributed equally.
    Affiliations
    University Hospital, Medical Clinic II, University Heart Center, Lübeck, 23538, Germany
    Search for articles by this author
  • Harald F. Langer
    Correspondence
    Corresponding author. University Hospital, Medical Clinic II, University Heart Center Lübeck, 23538, Lübeck, Germany.
    Affiliations
    University Hospital, Medical Clinic II, University Heart Center, Lübeck, 23538, Germany

    DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, 23562, Lübeck, Germany
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally.

      Highlights

      • Currently, antiplatelet therapy is not indicated for primary prevention of atherosclerosis due to its entailed bleeding risk.
      • However, platelets impact on the initiation as well as progression of atherosclerosis in various ways.
      • In the future, new drugs may target only inflammatory roles of platelets without affecting primary hemostasis. Then the role of antiplatelets therapy for primary prevention of atherosclerosis would have to be reconsidered.

      Abstract

      Cardiovascular disease remains the main cause of death worldwide. For this reason, strategies for the primary prevention of atherosclerosis and atherosclerosis-related pathologies like stroke or myocardial infarction are needed.
      Platelets are key players of atherosclerosis-related vascular thrombotic pathologies and their role as targets in secondary prevention of atherosclerosis-related complications is uncontested. However, platelets also play an important role in the initiation and progression of atherosclerosis. Currently, though, there is no generally valid recommendation for the use of antiplatelet therapy in primary prevention of cardiovascular disease. Recent clinical studies have shown that the benefit from antiplatelet therapy in primary prevention is counteracted by the entailed bleeding risk.
      This review addresses the important role platelets play in initiating and sustaining vascular inflammation, which drives atherosclerosis. Specifically, platelet-lipid interactions as well as platelet-endothelium interactions in the context of atherosclerosis are illustrated. We also depict how platelets help recruit immune cells like monocytes, neutrophils or dendritic cells to the subendothelial space. Finally, we portray the role of complement and platelets in atherosclerosis. Platelets appear to act as mediators of tissue homeostasis and may also modulate the microenvironment of the atherosclerotic plaque.
      Overall, this review addresses the role of platelets in atherosclerosis with particular focus on potential targets for pharmacological interventions into platelet functions distinct from aggregation. By eliminating the bleeding risk of antiplatelet therapy, platelets are likely to regain a role in primary prevention of cardiovascular disease.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roth G.A.
        • Johnson C.
        • Abajobir A.
        • Abd-Allah F.
        • Abera S.F.
        • Abyu G.
        • et al.
        Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015.
        J. Am. Coll. Cardiol. 2017 Jul 4; 70: 1-25
        • Benjamin E.J.
        • Muntner P.
        • Alonso A.
        • Bittencourt M.S.
        • Callaway C.W.
        • Carson A.P.
        • et al.
        Heart disease and stroke statistics-2019 update: a report from the American heart association.
        Circulation. 2019 05; 139: e56-528
        • Piepoli M.F.
        • Hoes A.W.
        • Agewall S.
        • Albus C.
        • Brotons C.
        • Catapano A.L.
        • et al.
        European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European society of cardiology and other Societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European association for cardiovascular prevention & rehabilitation (EACPR).
        Atherosclerosis. 2016; 2016: 207-274
        • Arnett D.K.
        • Blumenthal R.S.
        • Albert M.A.
        • Buroker A.B.
        • Goldberger Z.D.
        • Hahn E.J.
        • et al.
        2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines.
        J. Am. Coll. Cardiol. 2019 Sep 10; 74: 1376-1414
        • Italiano J.E.
        • Patel-Hett S.
        • Hartwig J.H.
        Mechanics of proplatelet elaboration.
        J. Thromb. Haemostasis JTH. 2007 Jul; 5: 18-23
        • Badimon L.
        • Vilahur G.
        Thrombosis formation on atherosclerotic lesions and plaque rupture.
        J. Intern. Med. 2014 Dec; 276: 618-632
        • Gawaz M.
        • Langer H.
        • May A.E.
        Platelets in inflammation and atherogenesis.
        J. Clin. Invest. 2005 Dec; 115: 3378-3384
        • Nording H.M.
        • Seizer P.
        • Langer H.F.
        Platelets in inflammation and atherogenesis.
        Front. Immunol. 2015; 6: 98
        • Massberg S.
        • Brand K.
        • Grüner S.
        • Page S.
        • Müller E.
        • Müller I.
        • et al.
        A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation.
        J. Exp. Med. 2002 Oct 7; 196: 887-896
        • Huo Y.
        • Schober A.
        • Forlow S.B.
        • Smith D.F.
        • Hyman M.C.
        • Jung S.
        • et al.
        Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E.
        Nat. Med. 2003 Jan; 9: 61-67
        • Ross R.
        Atherosclerosis--an inflammatory disease.
        N. Engl. J. Med. 1999 Jan 14; 340: 115-126
        • Hansson G.K.
        Inflammation, atherosclerosis, and coronary artery disease.
        N. Engl. J. Med. 2005 Apr 21; 352: 1685-1695
        • Libby P.
        • Ridker P.M.
        • Hansson G.K.
        Inflammation in atherosclerosis: from pathophysiology to practice.
        J. Am. Coll. Cardiol. 2009 Dec 1; 54: 2129-2138
        • Hadi H.A.R.
        • Carr C.S.
        • Al Suwaidi J.
        Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome.
        Vasc. Health Risk Manag. 2005; 1: 183-198
        • Bornfeldt K.E.
        • Tabas I.
        Insulin resistance, hyperglycemia, and atherosclerosis.
        Cell Metabol. 2011 Nov 2; 14: 575-585
        • Gimbrone M.A.
        • García-Cardeña G.
        Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis.
        Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2013 Feb; 22: 9-15
        • Tabas I.
        • Williams K.J.
        • Borén J.
        Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications.
        Circulation. 2007 Oct 16; 116: 1832-1844
        • Charo I.F.
        • Ransohoff R.M.
        The many roles of chemokines and chemokine receptors in inflammation.
        N. Engl. J. Med. 2006 Feb 9; 354: 610-621
        • Mestas J.
        • Ley K.
        Monocyte-endothelial cell interactions in the development of atherosclerosis.
        Trends Cardiovasc. Med. 2008 Aug; 18: 228-232
        • Galkina E.
        • Ley K.
        Immune and inflammatory mechanisms of atherosclerosis (*).
        Annu. Rev. Immunol. 2009; 27: 165-197
        • Jackson S.P.
        Arterial thrombosis--insidious, unpredictable and deadly.
        Nat. Med. 2011 Nov 7; 17: 1423-1436
        • Varga-Szabo D.
        • Pleines I.
        • Nieswandt B.
        Cell adhesion mechanisms in platelets.
        Arterioscler. Thromb. Vasc. Biol. 2008 Mar; 28: 403-412
        • Li R.
        • Emsley J.
        The organizing principle of the platelet glycoprotein Ib-IX-V complex.
        J. Thromb. Haemostasis JTH. 2013 Apr; 11: 605-614
        • Moroi M.
        • Jung S.M.
        Platelet glycoprotein VI: its structure and function.
        Thromb. Res. 2004; 114: 221-233
        • Offermanns S.
        Activation of platelet function through G protein-coupled receptors.
        Circ. Res. 2006 Dec 8; 99: 1293-1304
        • Nieswandt B.
        • Varga-Szabo D.
        • Elvers M.
        Integrins in platelet activation.
        J. Thromb. Haemostasis JTH. 2009 Jul; 7: 206-209
        • McFadyen J.D.
        • Schaff M.
        • Peter K.
        Current and future antiplatelet therapies: emphasis on preserving haemostasis.
        Nat. Rev. Cardiol. 2018; 15: 181-191
        • Antithrombotic Trialists’ (Att) Collaboration
        • Baigent C.
        • Blackwell L.
        • Collins R.
        • Emberson J.
        • Godwin J.
        • et al.
        Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials.
        Lancet (Lond. Engl.). 2009 May 30; 373: 1849-1860
        • Antithrombotic Trialists’ Collaboration
        Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients.
        BMJ. 2002 Jan 12; 324: 71-86
        • Knuuti J.
        • Wijns W.
        • Saraste A.
        • Capodanno D.
        • Barbato E.
        • Funck-Brentano C.
        • et al.
        2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes.
        Eur. Heart J. 2019 Aug 31;
        • Zheng S.L.
        • Roddick A.J.
        Association of aspirin use for primary prevention with cardiovascular events and bleeding events: a systematic review and meta-analysis.
        J. Am. Med. Assoc. 2019 Jan 22; 321: 277-287
        • Ascend Study Collaborative Group
        • Bowman L.
        • Mafham M.
        • Wallendszus K.
        • Stevens W.
        • Buck G.
        • et al.
        Effects of aspirin for primary prevention in persons with diabetes mellitus.
        N. Engl. J. Med. 2018 18; 379: 1529-1539
        • Emerging Risk Factors Collaboration
        • Sarwar N.
        • Gao P.
        • Seshasai S.R.K.
        • Gobin R.
        • Kaptoge S.
        • et al.
        Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies.
        Lancet (Lond. Engl.). 2010 Jun 26; 375: 2215-2222
        • Gaziano J.M.
        • Brotons C.
        • Coppolecchia R.
        • Cricelli C.
        • Darius H.
        • Gorelick P.B.
        • et al.
        Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial.
        Lancet (Lond. Engl.). 2018 22; 392: 1036-1046
        • McNeil J.J.
        • Wolfe R.
        • Woods R.L.
        • Tonkin A.M.
        • Donnan G.A.
        • Nelson M.R.
        • et al.
        Effect of aspirin on cardiovascular events and bleeding in the healthy elderly.
        N. Engl. J. Med. 2018 18; 379: 1509-1518
        • Cyrus T.
        • Sung S.
        • Zhao L.
        • Funk C.D.
        • Tang S.
        • Praticò D.
        Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice.
        Circulation. 2002 Sep 3; 106: 1282-1287
        • Tous M.
        • Ferré N.
        • Vilella E.
        • Riu F.
        • Camps J.
        • Joven J.
        Aspirin attenuates the initiation but not the progression of atherosclerosis in apolipoprotein E-deficient mice fed a high-fat, high-cholesterol diet.
        Basic Clin. Pharmacol. Toxicol. 2004 Jul; 95: 15-19
        • Afek A.
        • Kogan E.
        • Maysel-Auslender S.
        • Mor A.
        • Regev E.
        • Rubinstein A.
        • et al.
        Clopidogrel attenuates atheroma formation and induces a stable plaque phenotype in apolipoprotein E knockout mice.
        Microvasc. Res. 2009 May; 77: 364-369
        • Li M.
        • Zhang Y.
        • Ren H.
        • Zhang Y.
        • Zhu X.
        Effect of clopidogrel on the inflammatory progression of early atherosclerosis in rabbits model.
        Atherosclerosis. 2007 Oct; 194: 348-356
        • Yamamoto Y.
        • Yamashita T.
        • Kitagawa F.
        • Sakamoto K.
        • Giddings J.C.
        • Yamamoto J.
        The effect of the long term aspirin administration on the progress of atherosclerosis in apoE-/- LDLR-/- double knockout mouse.
        Thromb. Res. 2010 Mar; 125: 246-252
        • Heim C.
        • Gebhardt J.
        • Ramsperger-Gleixner M.
        • Jacobi J.
        • Weyand M.
        • Ensminger S.M.
        Clopidogrel significantly lowers the development of atherosclerosis in ApoE-deficient mice in vivo.
        Heart Ves. 2016 May; 31: 783-794
        • Valkonen S.
        • Holopainen M.
        • Colas R.A.
        • Impola U.
        • Dalli J.
        • Käkelä R.
        • et al.
        Lipid mediators in platelet concentrate and extracellular vesicles: molecular mechanisms from membrane glycerophospholipids to bioactive molecules.
        Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2019; 1864: 1168-1182
        • Dona M.
        • Fredman G.
        • Schwab J.M.
        • Chiang N.
        • Arita M.
        • Goodarzi A.
        • et al.
        Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets.
        Blood. 2008 Aug 1; 112: 848-855
        • Manson J.E.
        • Cook N.R.
        • Lee I.-M.
        • Christen W.
        • Bassuk S.S.
        • Mora S.
        • et al.
        Marine n-3 fatty acids and prevention of cardiovascular disease and cancer.
        N. Engl. J. Med. 2019 03; 380: 23-32
        • Chen K.
        • Febbraio M.
        • Li W.
        • Silverstein R.L.
        A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein.
        Circ. Res. 2008 Jun 20; 102: 1512-1519
        • Korporaal S.J.A.
        • Van Eck M.
        • Adelmeijer J.
        • Ijsseldijk M.
        • Out R.
        • Lisman T.
        • et al.
        Platelet activation by oxidized low density lipoprotein is mediated by CD36 and scavenger receptor-A.
        Arterioscler. Thromb. Vasc. Biol. 2007 Nov; 27: 2476-2483
        • Podrez E.A.
        • Byzova T.V.
        • Febbraio M.
        • Salomon R.G.
        • Ma Y.
        • Valiyaveettil M.
        • et al.
        Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype.
        Nat. Med. 2007 Sep; 13: 1086-1095
        • Nording H.
        • Giesser A.
        • Patzelt J.
        • Sauter R.
        • Emschermann F.
        • Stellos K.
        • et al.
        Platelet bound oxLDL shows an inverse correlation with plasma anaphylatoxin C5a in patients with coronary artery disease.
        Platelets. 2016 Sep; 27: 593-597
        • Badrnya S.
        • Schrottmaier W.C.
        • Kral J.B.
        • Yaiw K.-C.
        • Volf I.
        • Schabbauer G.
        • et al.
        Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation.
        Arterioscler. Thromb. Vasc. Biol. 2014 Mar; 34: 571-580
        • Daub K.
        • Seizer P.
        • Stellos K.
        • Krämer B.F.
        • Bigalke B.
        • Schaller M.
        • et al.
        Oxidized LDL-activated platelets induce vascular inflammation.
        Semin. Thromb. Hemost. 2010 Mar; 36: 146-156
        • Febbraio M.
        • Podrez E.A.
        • Smith J.D.
        • Hajjar D.P.
        • Hazen S.L.
        • Hoff H.F.
        • et al.
        Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice.
        J. Clin. Invest. 2000 Apr; 105: 1049-1056
        • Kunjathoor V.V.
        • Febbraio M.
        • Podrez E.A.
        • Moore K.J.
        • Andersson L.
        • Koehn S.
        • et al.
        Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages.
        J. Biol. Chem. 2002 Dec 20; 277: 49982-49988
        • Carnevale R.
        • Bartimoccia S.
        • Nocella C.
        • Di Santo S.
        • Loffredo L.
        • Illuminati G.
        • et al.
        LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism.
        Atherosclerosis. 2014 Nov; 237: 108-116
        • Pignatelli P.
        • Sanguigni V.
        • Lenti L.
        • Loffredo L.
        • Carnevale R.
        • Sorge R.
        • et al.
        Oxidative stress-mediated platelet CD40 ligand upregulation in patients with hypercholesterolemia: effect of atorvastatin.
        J. Thromb. Haemostasis JTH. 2007 Jun; 5: 1170-1178
        • Sachais B.S.
        • Kuo A.
        • Nassar T.
        • Morgan J.
        • Kariko K.
        • Williams K.J.
        • et al.
        Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic machinery, resulting in retention of low-density lipoprotein on the cell surface.
        Blood. 2002 May 15; 99: 3613-3622
        • Nassar T.
        • Sachais B.S.
        • Akkawi S.
        • Kowalska M.A.
        • Bdeir K.
        • Leitersdorf E.
        • et al.
        Platelet factor 4 enhances the binding of oxidized low-density lipoprotein to vascular wall cells.
        J. Biol. Chem. 2003 Feb 21; 278: 6187-6193
        • Ridker P.M.
        • Everett B.M.
        • Thuren T.
        • MacFadyen J.G.
        • Chang W.H.
        • Ballantyne C.
        • et al.
        Antiinflammatory therapy with Canakinumab for atherosclerotic disease.
        N. Engl. J. Med. 2017 21; 377: 1119-1131
        • Kirii H.
        • Niwa T.
        • Yamada Y.
        • Wada H.
        • Saito K.
        • Iwakura Y.
        • et al.
        Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2003 Apr 1; 23: 656-660
        • Ridker P.M.
        • Everett B.M.
        • Pradhan A.
        • MacFadyen J.G.
        • Solomon D.H.
        • Zaharris E.
        • et al.
        Low-dose methotrexate for the prevention of atherosclerotic events.
        N. Engl. J. Med. 2019 21; 380: 752-762
        • Tardif J.-C.
        • Kouz S.
        • Waters D.D.
        • Bertrand O.F.
        • Diaz R.
        • Maggioni A.P.
        • et al.
        Efficacy and safety of low-dose colchicine after myocardial infarction.
        N. Engl. J. Med. 2019 Dec 26; 381: 2497-2505
        • Arazi H.C.
        • Badimon J.J.
        Anti-inflammatory effects of anti-platelet treatment in atherosclerosis.
        Curr. Pharmaceut. Des. 2012; 18: 4311-4325
        • Müller K.A.L.
        • Chatterjee M.
        • Rath D.
        • Geisler T.
        Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD.
        Thromb. Haemostasis. 2015 Aug 31; 114: 498-518
        • Steinhubl S.R.
        • Badimon J.J.
        • Bhatt D.L.
        • Herbert J.-M.
        • Lüscher T.F.
        Clinical evidence for anti-inflammatory effects of antiplatelet therapy in patients with atherothrombotic disease.
        Vasc. Med. (Lond. Engl.). 2007 May; 12: 113-122
        • Muhlestein J.B.
        Effect of antiplatelet therapy on inflammatory markers in atherothrombotic patients.
        Thromb. Haemostasis. 2010 Jan; 103: 71-82
        • Semple J.W.
        • Italiano J.E.
        • Freedman J.
        Platelets and the immune continuum.
        Nat. Rev. Immunol. 2011 Apr; 11: 264-274
        • Ikonomidis I.
        • Andreotti F.
        • Economou E.
        • Stefanadis C.
        • Toutouzas P.
        • Nihoyannopoulos P.
        Increased proinflammatory cytokines in patients with chronic stable angina and their reduction by aspirin.
        Circulation. 1999 Aug 24; 100: 793-798
        • Husain S.
        • Andrews N.P.
        • Mulcahy D.
        • Panza J.A.
        • Quyyumi A.A.
        Aspirin improves endothelial dysfunction in atherosclerosis.
        Circulation. 1998 Mar 3; 97: 716-720
        • Quinn M.J.
        • Bhatt D.L.
        • Zidar F.
        • Vivekananthan D.
        • Chew D.P.
        • Ellis S.G.
        • et al.
        Effect of clopidogrel pretreatment on inflammatory marker expression in patients undergoing percutaneous coronary intervention.
        Am. J. Cardiol. 2004 Mar 15; 93: 679-684
        • Harding S.A.
        • Sarma J.
        • Din J.N.
        • Maciocia P.M.
        • Newby D.E.
        • Fox K.A.A.
        Clopidogrel reduces platelet–leucocyte aggregation, monocyte activation and RANTES secretion in type 2 diabetes mellitus.
        Heart. 2006 Sep; 92: 1335-1337
        • Harding S.A.
        • Sommerfield A.J.
        • Sarma J.
        • Twomey P.J.
        • Newby D.E.
        • Frier B.M.
        • et al.
        Increased CD40 ligand and platelet-monocyte aggregates in patients with type 1 diabetes mellitus.
        Atherosclerosis. 2004 Oct; 176: 321-325
        • Klinkhardt U.
        • Bauersachs R.
        • Adams J.
        • Graff J.
        • Lindhoff-Last E.
        • Harder S.
        Clopidogrel but not aspirin reduces P-selectin expression and formation of platelet-leukocyte aggregates in patients with atherosclerotic vascular disease.
        Clin. Pharmacol. Ther. 2003 Mar; 73: 232-241
        • Xiao Z.
        • Théroux P.
        Clopidogrel inhibits platelet-leukocyte interactions and thrombin receptor agonist peptide-induced platelet activation in patients with an acute coronary syndrome.
        J. Am. Coll. Cardiol. 2004 Jun 2; 43: 1982-1988
        • Ramadan R.
        • Dhawan S.S.
        • Syed H.
        • Pohlel F.K.
        • Binongo J.N.G.
        • Ghazzal Z.B.
        • et al.
        Effects of clopidogrel therapy on oxidative stress, inflammation, vascular function, and progenitor cells in stable coronary artery disease.
        J. Cardiovasc. Pharmacol. 2014 Apr; 63: 369-374
        • Azar R.R.
        • Kassab R.
        • Zoghbi A.
        • Aboujaoudé S.
        • El-Osta H.
        • Ghorra P.
        • et al.
        Effects of clopidogrel on soluble CD40 ligand and on high-sensitivity C-reactive protein in patients with stable coronary artery disease.
        Am. Heart J. 2006 Feb; 151: 521.e1-521.e4
        • Angiolillo D.J.
        • Fernandez-Ortiz A.
        • Bernardo E.
        • Ramírez C.
        • Sabaté M.
        • Jimenez-Quevedo P.
        • et al.
        Clopidogrel withdrawal is associated with proinflammatory and prothrombotic effects in patients with diabetes and coronary artery disease.
        Diabetes. 2006 Mar; 55: 780-784
        • Behan M.W.H.
        • Fox S.C.
        • Heptinstall S.
        • Storey R.F.
        Inhibitory effects of P2Y12 receptor antagonists on TRAP-induced platelet aggregation, procoagulant activity, microparticle formation and intracellular calcium responses in patients with acute coronary syndromes.
        Platelets. 2005 Mar; 16: 73-80
        • Gasecka A.
        • Nieuwland R.
        • van der Pol E.
        • Hajji N.
        • Ćwiek A.
        • Pluta K.
        • et al.
        P2Y12 antagonist ticagrelor inhibits the release of procoagulant extracellular vesicles from activated platelets: preliminary results.
        Cardiol. J. 2018 Apr 19;
        • Zarbock A.
        • Polanowska-Grabowska R.K.
        • Ley K.
        Platelet-neutrophil-interactions: linking hemostasis and inflammation.
        Blood Rev. 2007 Mar; 21: 99-111
        • Coenen D.M.
        • Mastenbroek T.G.
        • Cosemans J.M.E.M.
        Platelet interaction with activated endothelium: mechanistic insights from microfluidics.
        Blood. 2017 28; 130: 2819-2828
        • Hamilos M.
        • Petousis S.
        • Parthenakis F.
        Interaction between platelets and endothelium: from pathophysiology to new therapeutic options.
        Cardiovasc. Diagn. Ther. 2018 Oct; 8: 568-580
        • Strassel C.
        • Hechler B.
        • Bull A.
        • Gachet C.
        • Lanza F.
        Studies of mice lacking the GPIb-V-IX complex question the role of this receptor in atherosclerosis.
        J. Thromb. Haemostasis JTH. 2009 Nov; 7: 1935-1938
        • Bombeli T.
        • Schwartz B.R.
        • Harlan J.M.
        Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha.
        J. Exp. Med. 1998 Feb 2; 187: 329-339
        • Schmitt-Sody M.
        • Metz P.
        • Gottschalk O.
        • Zysk S.
        • Birkenmaier C.
        • Goebl M.
        • et al.
        Selective inhibition of platelets by the GPIIb/IIIa receptor antagonist Tirofiban reduces leukocyte-endothelial cell interaction in murine antigen-induced arthritis.
        Inflamm. Res. Off. J. Eur. Histamine Res. Soc. A. 2007 Oct; 56: 414-420
        • Shpilberg O.
        • Rabi I.
        • Schiller K.
        • Walden R.
        • Harats D.
        • Tyrrell K.S.
        • et al.
        Patients with Glanzmann thrombasthenia lacking platelet glycoprotein alpha(IIb)beta(3) (GPIIb/IIIa) and alpha(v)beta(3) receptors are not protected from atherosclerosis.
        Circulation. 2002 Mar 5; 105: 1044-1048
        • Gawaz M.
        • Neumann F.J.
        • Dickfeld T.
        • Reininger A.
        • Adelsberger H.
        • Gebhardt A.
        • et al.
        Vitronectin receptor (alpha(v)beta3) mediates platelet adhesion to the luminal aspect of endothelial cells: implications for reperfusion in acute myocardial infarction.
        Circulation. 1997 Sep 16; 96: 1809-1818
        • Cox D.
        • Aoki T.
        • Seki J.
        • Motoyama Y.
        • Yoshida K.
        The pharmacology of the integrins.
        Med. Res. Rev. 1994 Mar; 14: 195-228
        • Gray C.
        • Craig A.
        Fibrinogen binding to intercellular adhesion molecule 1: implications for Plasmodium falciparum adhesion.
        Infect. Immun. 2002 Jul; 70: 3962-3964
        • Patzelt J.
        • Langer H.F.
        Platelets in angiogenesis.
        Curr. Vasc. Pharmacol. 2012 Sep; 10: 570-577
        • Rowley J.W.
        • Schwertz H.
        • Weyrich A.S.
        Platelet mRNA: the meaning behind the message.
        Curr. Opin. Hematol. 2012 Sep; 19: 385-391
        • Nassa G.
        • Giurato G.
        • Cimmino G.
        • Rizzo F.
        • Ravo M.
        • Salvati A.
        • et al.
        Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications.
        Sci. Rep. 2018 Jan 11; 8: 1-12
        • Schwertz H.
        • Tolley N.D.
        • Foulks J.M.
        • Denis M.M.
        • Risenmay B.W.
        • Buerke M.
        • et al.
        Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets.
        J. Exp. Med. 2006 Oct 30; 203: 2433-2440
        • Heger L.A.
        • Hortmann M.
        • Albrecht M.
        • Colberg C.
        • Peter K.
        • Witsch T.
        • et al.
        Inflammation in acute coronary syndrome: expression of TLR2 mRNA is increased in platelets of patients with ACS.
        PloS One. 2019; 14e0224181
        • McManus D.D.
        • Beaulieu L.M.
        • Mick E.
        • Tanriverdi K.
        • Larson M.G.
        • Keaney J.F.
        • et al.
        Relationship among circulating inflammatory proteins, platelet gene expression, and cardiovascular risk.
        Arterioscler. Thromb. Vasc. Biol. 2013 Nov; 33: 2666-2673
        • Lu Y.
        • Thavarajah T.
        • Gu W.
        • Cai J.
        • Xu Q.
        Impact of miRNA in atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2018; 38: e159-e170
        • Pienimaeki-Roemer A.
        • Konovalova T.
        • Musri M.M.
        • Sigruener A.
        • Boettcher A.
        • Meister G.
        • et al.
        Transcriptomic profiling of platelet senescence and platelet extracellular vesicles.
        Transfusion (Paris). 2017; 57: 144-156
        • Hottz E.D.
        • Monteiro A.P.T.
        • Bozza F.A.
        • Bozza P.T.
        Inflammasome in platelets: allying coagulation and inflammation in infectious and sterile diseases?.
        Mediat. Inflamm. 2015; 2015: 435783
        • Denis M.M.
        • Tolley N.D.
        • Bunting M.
        • Schwertz H.
        • Jiang H.
        • Lindemann S.
        • et al.
        Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets.
        Cell. 2005 Aug 12; 122: 379-391
        • Hawrylowicz C.M.
        • Howells G.L.
        • Feldmann M.
        Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production.
        J. Exp. Med. 1991 Oct 1; 174: 785-790
        • Kaplanski G.
        • Porat R.
        • Aiura K.
        • Erban J.K.
        • Gelfand J.A.
        • Dinarello C.A.
        Activated platelets induce endothelial secretion of interleukin-8 in vitro via an interleukin-1-mediated event.
        Blood. 1993 May 15; 81: 2492-2495
        • Gawaz M.
        • Brand K.
        • Dickfeld T.
        • Pogatsa-Murray G.
        • Page S.
        • Bogner C.
        • et al.
        Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis.
        Atherosclerosis. 2000 Jan; 148: 75-85
        • Nhek S.
        • Clancy R.
        • Lee K.A.
        • Allen N.M.
        • Barrett T.J.
        • Marcantoni E.
        • et al.
        Activated platelets induce endothelial cell activation via an interleukin-1β pathway in systemic lupus erythematosus.
        Arterioscler. Thromb. Vasc. Biol. 2017; 37: 707-716
        • Zeller C.B.
        • Appenzeller S.
        Cardiovascular disease in systemic lupus erythematosus: the role of traditional and lupus related risk factors.
        Curr. Cardiol. Rev. 2008 May; 4: 116-122
        • Gu L.
        • Okada Y.
        • Clinton S.K.
        • Gerard C.
        • Sukhova G.K.
        • Libby P.
        • et al.
        Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice.
        Mol. Cell. 1998 Aug; 2: 275-281
        • Gosling J.
        • Slaymaker S.
        • Gu L.
        • Tseng S.
        • Zlot C.H.
        • Young S.G.
        • et al.
        MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B.
        J. Clin. Invest. 1999 Mar; 103: 773-778
        • Michel N.A.
        • Zirlik A.
        • Wolf D.
        CD40L and its receptors in atherothrombosis—an update.
        Front. Cardiovasc. Med. 2017 Jun 20; 4 ([Internet]) ([cited 2020 Jan 1])
        • Henn V.
        • Slupsky J.R.
        • Gräfe M.
        • Anagnostopoulos I.
        • Förster R.
        • Müller-Berghaus G.
        • et al.
        CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells.
        Nature. 1998 Feb 5; 391: 591-594
        • Mach F.
        • Schönbeck U.
        • Sukhova G.K.
        • Atkinson E.
        • Libby P.
        Reduction of atherosclerosis in mice by inhibition of CD40 signalling.
        Nature. 1998 Jul 9; 394: 200-203
        • Lievens D.
        • Zernecke A.
        • Seijkens T.
        • Soehnlein O.
        • Beckers L.
        • Munnix I.C.A.
        • et al.
        Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis.
        Blood. 2010 Nov 18; 116: 4317-4327
        • Lutgens E.
        • Gorelik L.
        • Daemen M.J.
        • de Muinck E.D.
        • Grewal I.S.
        • Koteliansky V.E.
        • et al.
        Requirement for CD154 in the progression of atherosclerosis.
        Nat. Med. 1999 Nov; 5: 1313-1316
        • Lutgens E.
        • Cleutjens K.B.
        • Heeneman S.
        • Koteliansky V.E.
        • Burkly L.C.
        • Daemen M.J.
        Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype.
        Proc. Natl. Acad. Sci. U. S. A. 2000 Jun 20; 97: 7464-7469
        • Schönbeck U.
        • Sukhova G.K.
        • Shimizu K.
        • Mach F.
        • Libby P.
        Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice.
        Proc. Natl. Acad. Sci. U. S. A. 2000 Jun 20; 97: 7458-7463
        • Boumpas D.T.
        • Furie R.
        • Manzi S.
        • Illei G.G.
        • Wallace D.J.
        • Balow J.E.
        • et al.
        A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis.
        Arthritis Rheum. 2003 Mar; 48: 719-727
        • Gerdes N.
        • Seijkens T.
        • Lievens D.
        • Kuijpers M.J.E.
        • Winkels H.
        • Projahn D.
        • et al.
        Platelet CD40 exacerbates atherosclerosis by transcellular activation of endothelial cells and leukocytes.
        Arterioscler. Thromb. Vasc. Biol. 2016 Mar; 36: 482-490
        • Schulz C.
        • Schäfer A.
        • Stolla M.
        • Kerstan S.
        • Lorenz M.
        • von Brühl M.-L.
        • et al.
        Chemokine fractalkine mediates leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role for P-selectin expressed on activated platelets.
        Circulation. 2007 Aug 14; 116: 764-773
        • Seizer P.
        • Gawaz M.
        • May A.E.
        Platelet-monocyte interactions--a dangerous liaison linking thrombosis, inflammation and atherosclerosis.
        Curr. Med. Chem. 2008; 15: 1976-1980
      1. The role of platelets in the recruitment of leukocytes during vascular disease.
        Platelets. 2015 Aug 18; 26: 507-520
        • Zuchtriegel G.
        • Uhl B.
        • Puhr-Westerheide D.
        • Pörnbacher M.
        • Lauber K.
        • Krombach F.
        • et al.
        Platelets guide leukocytes to their sites of extravasation.
        PLoS Biol. 2016; 14e1002459
        • da Costa Martins P.
        • van den Berk N.
        • Ulfman L.H.
        • Koenderman L.
        • Hordijk P.L.
        • Zwaginga J.J.
        Platelet-monocyte complexes support monocyte adhesion to endothelium by enhancing secondary tethering and cluster formation.
        Arterioscler. Thromb. Vasc. Biol. 2004 Jan; 24: 193-199
        • Rayes J.
        • Bourne J.H.
        • Brill A.
        • Watson S.P.
        The dual role of platelet-innate immune cell interactions in thrombo-inflammation.
        (Res. Pract. Thromb. Haemostasis [Internet]. [cited 2020 Jan 1];n/a(n/a). Available from)
        • Furman M.I.
        • Barnard M.R.
        • Krueger L.A.
        • Fox M.L.
        • Shilale E.A.
        • Lessard D.M.
        • et al.
        Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction.
        J. Am. Coll. Cardiol. 2001 Oct; 38: 1002-1006
        • Bournazos S.
        • Rennie J.
        • Hart S.P.
        • Fox K.A.A.
        • Dransfield I.
        Monocyte functional responsiveness after PSGL-1-mediated platelet adhesion is dependent on platelet activation status.
        Arterioscler. Thromb. Vasc. Biol. 2008 Aug; 28: 1491-1498
        • Martins PA. da C.
        • van Gils J.M.
        • Mol A.
        • Hordijk P.L.
        • Zwaginga J.J.
        Platelet binding to monocytes increases the adhesive properties of monocytes by up-regulating the expression and functionality of β1 and β2 integrins.
        J. Leukoc. Biol. 2006 Mar; 79: 499-507
        • Simon D.I.
        • Chen Z.
        • Xu H.
        • Li C.Q.
        • Dong J f
        • McIntire L.V.
        • et al.
        Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18).
        J. Exp. Med. 2000 Jul 17; 192: 193-204
        • Santoso S.
        • Sachs U.J.H.
        • Kroll H.
        • Linder M.
        • Ruf A.
        • Preissner K.T.
        • et al.
        The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1.
        J. Exp. Med. 2002 Sep 2; 196: 679-691
        • Kuijper P.H.
        • Gallardo Torres H.I.
        • Houben L.A.
        • Lammers J.W.
        • Zwaginga J.J.
        • Koenderman L.
        P-selectin and MAC-1 mediate monocyte rolling and adhesion to ECM-bound platelets under flow conditions.
        J. Leukoc. Biol. 1998 Oct; 64: 467-473
        • Weber K.S.C.
        • Alon R.
        • Klickstein L.B.
        Sialylation of ICAM-2 on platelets impairs adhesion of leukocytes via LFA-1 and DC-SIGN.
        Inflammation. 2004 Aug; 28: 177-188
        • Seizer P.
        • Borst O.
        • Langer H.F.
        • Bültmann A.
        • Münch G.
        • Herouy Y.
        • et al.
        EMMPRIN (CD147) is a novel receptor for platelet GPVI and mediates platelet rolling via GPVI-EMMPRIN interaction.
        Thromb. Haemostasis. 2009 Apr; 101: 682-686
        • Schulz C.
        • von Brühl M.-L.
        • Barocke V.
        • Cullen P.
        • Mayer K.
        • Okrojek R.
        • et al.
        EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall.
        J. Thromb. Haemostasis JTH. 2011 May; 9: 1007-1019
        • Passacquale G.
        • Vamadevan P.
        • Pereira L.
        • Hamid C.
        • Corrigall V.
        • Ferro A.
        Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes.
        PloS One. 2011; 6e25595
        • Schmitt C.
        • Abt M.
        • Ciorciaro C.
        • Kling D.
        • Jamois C.
        • Schick E.
        • et al.
        First-in-man study with inclacumab, a human monoclonal antibody against P-selectin.
        J. Cardiovasc. Pharmacol. 2015 Jun; 65: 611-619
        • Tardif J.-C.
        • Tanguay J.-F.
        • Wright S.R.
        • Duchatelle V.
        • Petroni T.
        • Grégoire J.C.
        • et al.
        Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial.
        J. Am. Coll. Cardiol. 2013 May 21; 61: 2048-2055
        • Merten M.
        • Beythien C.
        • Gutensohn K.
        • Kühnl P.
        • Meinertz T.
        • Thiagarajan P.
        Sulfatides activate platelets through P-selectin and enhance platelet and platelet-leukocyte aggregation.
        Arterioscler. Thromb. Vasc. Biol. 2005 Jan; 25: 258-263
        • Subramaniam M.
        • Frenette P.S.
        • Saffaripour S.
        • Johnson R.C.
        • Hynes R.O.
        • Wagner D.D.
        Defects in hemostasis in P-selectin-deficient mice.
        Blood. 1996 Feb 15; 87: 1238-1242
        • Korporaal S.J.A.
        • Molenaar T.J.M.
        • Lutters B.C.H.
        • Meurs I.
        • Drost-Verhoef S.
        • Kuiper J.
        • et al.
        Peptide antagonists for P-selectin discriminate between sulfatide-dependent platelet aggregation and PSGL-1-mediated cell adhesion.
        J. Clin. Med. 2019 Aug 20; 8 ([Internet]) ([cited 2020 Apr 28])
        • Stephen J.
        • Emerson B.
        • Fox K.A.A.
        • Dransfield I.
        The uncoupling of monocyte-platelet interactions from the induction of proinflammatory signaling in monocytes.
        J. Immunol. 2013 Dec 1; 191 (Baltim Md 1950): 5677-5683
        • Weyrich A.S.
        • McIntyre T.M.
        • McEver R.P.
        • Prescott S.M.
        • Zimmerman G.A.
        Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation.
        J. Clin. Invest. 1995 May; 95: 2297-2303
        • Weyrich A.S.
        • Elstad M.R.
        • McEver R.P.
        • McIntyre T.M.
        • Moore K.L.
        • Morrissey J.H.
        • et al.
        Activated platelets signal chemokine synthesis by human monocytes.
        J. Clin. Invest. 1996 Mar 15; 97: 1525-1534
        • Haselmayer P.
        • Grosse-Hovest L.
        • von Landenberg P.
        • Schild H.
        • Radsak M.P.
        TREM-1 ligand expression on platelets enhances neutrophil activation.
        Blood. 2007 Aug 1; 110: 1029-1035
        • Tammaro A.
        • Derive M.
        • Gibot S.
        • Leemans J.C.
        • Florquin S.
        • Dessing M.C.
        TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives.
        Pharmacol. Ther. 2017 Sep; 177: 81-95
        • Kouassi K.T.
        • Gunasekar P.
        • Agrawal D.K.
        • Jadhav G.P.
        TREM-1; is it a pivotal target for cardiovascular diseases?.
        J. Cardiovasc. Dev. Dis. 2018 Sep 7; 5
        • Joffre J.
        • Potteaux S.
        • Zeboudj L.
        • Loyer X.
        • Boufenzer A.
        • Laurans L.
        • et al.
        Genetic and pharmacological inhibition of TREM-1 limits the development of experimental atherosclerosis.
        J. Am. Coll. Cardiol. 2016 Dec 27; 68: 2776-2793
        • Zysset D.
        • Weber B.
        • Rihs S.
        • Brasseit J.
        • Freigang S.
        • Riether C.
        • et al.
        TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis.
        Nat. Commun. 2016 20; 7: 13151
        • Schmidt R.
        • Bültmann A.
        • Fischel S.
        • Gillitzer A.
        • Cullen P.
        • Walch A.
        • et al.
        Extracellular matrix metalloproteinase inducer (CD147) is a novel receptor on platelets, activates platelets, and augments nuclear factor kappaB-dependent inflammation in monocytes.
        Circ. Res. 2008 Feb 15; 102: 302-309
        • Gleissner C.A.
        • von Hundelshausen P.
        • Ley K.
        Platelet chemokines in vascular disease.
        Arterioscler. Thromb. Vasc. Biol. 2008 Nov; 28: 1920-1927
        • von Hundelshausen P.
        • Schmitt M.M.N.
        Platelets and their chemokines in atherosclerosis-clinical applications.
        Front. Physiol. 2014; 5: 294
        • Italiano J.E.
        • Richardson J.L.
        • Patel-Hett S.
        • Battinelli E.
        • Zaslavsky A.
        • Short S.
        • et al.
        Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released.
        Blood. 2008 Feb 1; 111: 1227-1233
        • Chatterjee M.
        • Huang Z.
        • Zhang W.
        • Jiang L.
        • Hultenby K.
        • Zhu L.
        • et al.
        Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli.
        Blood. 2011 Apr 7; 117: 3907-3911
        • Battinelli E.M.
        • Markens B.A.
        • Italiano J.E.
        Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis.
        Blood. 2011 Aug 4; 118: 1359-1369
        • Ma L.
        • Perini R.
        • McKnight W.
        • Dicay M.
        • Klein A.
        • Hollenberg M.D.
        • et al.
        Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets.
        Proc. Natl. Acad. Sci. U. S. A. 2005 Jan 4; 102: 216-220
        • Maione T.E.
        • Gray G.S.
        • Petro J.
        • Hunt A.J.
        • Donner A.L.
        • Bauer S.I.
        • et al.
        Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides.
        Science. 1990 Jan 5; 247: 77-79
        • Mueller A.
        • Meiser A.
        • McDonagh E.M.
        • Fox J.M.
        • Petit S.J.
        • Xanthou G.
        • et al.
        CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3.
        J. Leukoc. Biol. 2008 Apr; 83: 875-882
        • Perollet C.
        • Han Z.C.
        • Savona C.
        • Caen J.P.
        • Bikfalvi A.
        Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization.
        Blood. 1998 May 1; 91: 3289-3299
        • Lasagni L.
        • Francalanci M.
        • Annunziato F.
        • Lazzeri E.
        • Giannini S.
        • Cosmi L.
        • et al.
        An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4.
        J. Exp. Med. 2003 Jun 2; 197: 1537-1549
        • Pitsilos S.
        • Hunt J.
        • Mohler E.R.
        • Prabhakar A.M.
        • Poncz M.
        • Dawicki J.
        • et al.
        Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters.
        Thromb. Haemostasis. 2003 Dec; 90: 1112-1120
        • Aidoudi S.
        • Bikfalvi A.
        Interaction of PF4 (CXCL4) with the vasculature: a role in atherosclerosis and angiogenesis.
        Thromb. Haemostasis. 2010 Nov; 104: 941-948
        • Gleissner C.A.
        Macrophage phenotype modulation by CXCL4 in atherosclerosis.
        Front. Physiol. 2012; 3: 1
        • Domschke G.
        • Gleissner C.A.
        CXCL4-induced macrophages in human atherosclerosis.
        Cytokine. 2019 Oct; 122: 154141
        • Sachais B.S.
        • Turrentine T.
        • Dawicki McKenna J.M.
        • Rux A.H.
        • Rader D.
        • Kowalska M.A.
        Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice.
        Thromb. Haemostasis. 2007 Nov; 98: 1108-1113
        • von Hundelshausen P.
        • Weber K.S.
        • Huo Y.
        • Proudfoot A.E.
        • Nelson P.J.
        • Ley K.
        • et al.
        RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium.
        Circulation. 2001 Apr 3; 103: 1772-1777
        • Veillard N.R.
        • Kwak B.
        • Pelli G.
        • Mulhaupt F.
        • James R.W.
        • Proudfoot A.E.I.
        • et al.
        Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice.
        Circ. Res. 2004 Feb 6; 94: 253-261
        • von Hundelshausen P.
        • Koenen R.R.
        • Sack M.
        • Mause S.F.
        • Adriaens W.
        • Proudfoot A.E.I.
        • et al.
        Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium.
        Blood. 2005 Feb 1; 105: 924-930
        • Koenen R.R.
        • von Hundelshausen P.
        • Nesmelova I.V.
        • Zernecke A.
        • Liehn E.A.
        • Sarabi A.
        • et al.
        Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice.
        Nat. Med. 2009 Jan; 15: 97-103
        • Vajen T.
        • Koenen R.R.
        • Werner I.
        • Staudt M.
        • Projahn D.
        • Curaj A.
        • et al.
        Blocking CCL5-CXCL4 heteromerization preserves heart function after myocardial infarction by attenuating leukocyte recruitment and NETosis.
        Sci. Rep. 2018 Jul 13; 8: 10647
        • Fan Y.
        • Xiong X.
        • Zhang Y.
        • Yan D.
        • Jian Z.
        • Xu B.
        • et al.
        MKEY, a peptide inhibitor of CXCL4-CCL5 heterodimer formation, protects against stroke in mice.
        J. Am. Heart Assoc. 2016 15; 5
        • Gao J.-H.
        • Yu X.-H.
        • Tang C.-K.
        CXC chemokine ligand 12 (CXCL12) in atherosclerosis: an underlying therapeutic target.
        Clin. Chim. Acta Int. J. Clin. Chem. 2019 Aug; 495: 538-544
        • Döring Y.
        • Pawig L.
        • Weber C.
        • Noels H.
        The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease.
        Front. Physiol. 2014 Jun 11; 5 ([Internet]) ([cited 2020 Jan 2])
        • Chatterjee M.
        • von Ungern-Sternberg S.N.I.
        • Seizer P.
        • Schlegel F.
        • Büttcher M.
        • Sindhu N.A.
        • et al.
        Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7.
        Cell Death Dis. 2015 Nov 19; 6e1989
        • Mehrpouri M.
        • Bashash D.
        • Mohammadi M.H.
        • Gheydari M.E.
        • Satlsar E.S.
        • Hamidpour M.
        Co-culture of platelets with monocytes induced M2 macrophage polarization and formation of foam cells: shedding light on the crucial role of platelets in monocyte differentiation.
        Turk. J. Hematol. 2019 Jun; 36: 97-105
        • Ray P.
        • Lewin S.A.
        • Mihalko L.A.
        • Lesher-Perez S.-C.
        • Takayama S.
        • Luker K.E.
        • et al.
        Secreted CXCL12 (SDF-1) forms dimers under physiological conditions.
        Biochem. J. 2012 Mar 1; 442: 433-442
        • Hamesch K.
        • Subramanian P.
        • Li X.
        • Dembowsky K.
        • Chevalier E.
        • Weber C.
        • et al.
        The CXCR4 antagonist POL5551 is equally effective as sirolimus in reducing neointima formation without impairing re-endothelialisation.
        Thromb. Haemostasis. 2012 Feb; 107: 356-368
        • Karshovska E.
        • Zagorac D.
        • Zernecke A.
        • Weber C.
        • Schober A.
        A small molecule CXCR4 antagonist inhibits neointima formation and smooth muscle progenitor cell mobilization after arterial injury.
        J. Thromb. Haemostasis JTH. 2008 Oct; 6: 1812-1815
        • Wirtz T.H.
        • Tillmann S.
        • Strüßmann T.
        • Kraemer S.
        • Heemskerk J.W.M.
        • Grottke O.
        • et al.
        Platelet-derived MIF: a novel platelet chemokine with distinct recruitment properties.
        Atherosclerosis. 2015 Mar; 239: 1-10
        • Strüßmann T.
        • Tillmann S.
        • Wirtz T.
        • Bucala R.
        • von Hundelshausen P.
        • Bernhagen J.
        Platelets are a previously unrecognised source of MIF.
        Thromb. Haemostasis. 2013 Nov; 110: 1004-1013
        • Schober A.
        • Bernhagen J.
        • Thiele M.
        • Zeiffer U.
        • Knarren S.
        • Roller M.
        • et al.
        Stabilization of atherosclerotic plaques by blockade of macrophage migration inhibitory factor after vascular injury in apolipoprotein E-deficient mice.
        Circulation. 2004 Jan 27; 109: 380-385
        • Lisman T.
        Platelet–neutrophil interactions as drivers of inflammatory and thrombotic disease.
        Cell Tissue Res. 2018; 371: 567-576
        • Soehnlein O.
        Multiple roles for neutrophils in atherosclerosis.
        Circ. Res. 2012 Mar 16; 110: 875-888
        • Döring Y.
        • Drechsler M.
        • Soehnlein O.
        • Weber C.
        Neutrophils in atherosclerosis: from mice to man.
        Arterioscler. Thromb. Vasc. Biol. 2015 Feb; 35: 288-295
        • Warnatsch A.
        • Ioannou M.
        • Wang Q.
        • Papayannopoulos V.
        Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis.
        Science. 2015 Jul 17; 349: 316-320
        • Patzelt J.
        • Verschoor A.
        • Langer H.F.
        Platelets and the complement cascade in atherosclerosis.
        Front. Physiol. 2015; 6 ([Internet]) (Mar 2 [cited 2020 Jan 2])
        • Nording H.
        • Langer H.F.
        Complement links platelets to innate immunity.
        Semin. Immunol. 2018; 37: 43-52
        • Ricklin D.
        • Hajishengallis G.
        • Yang K.
        • Lambris J.D.
        Complement: a key system for immune surveillance and homeostasis.
        Nat. Immunol. 2010 Sep; 11: 785-797
        • Speidl W.S.
        • Kastl S.P.
        • Huber K.
        • Wojta J.
        Complement in atherosclerosis: friend or foe?.
        J. Thromb. Haemostasis JTH. 2011 Mar; 9: 428-440
        • Verschoor A.
        • Langer H.F.
        Crosstalk between platelets and the complement system in immune protection and disease.
        Thromb. Haemostasis. 2013 Nov; 110: 910-919
        • Kostner K.M.
        • Fahti R.B.
        • Case C.
        • Hobson P.
        • Tate J.
        • Marwick T.H.
        Inflammation, complement activation and endothelial function in stable and unstable coronary artery disease.
        Clin. Chim. Acta Int. J. Clin. Chem. 2006 Mar; 365: 129-134
        • Lindberg S.
        • Pedersen S.H.
        • Mogelvang R.
        • Galatius S.
        • Flyvbjerg A.
        • Jensen J.S.
        • et al.
        Soluble form of membrane attack complex independently predicts mortality and cardiovascular events in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention.
        Am. Heart J. 2012 Nov; 164: 786-792
        • Patzelt J.
        • Mueller K.a.L.
        • Breuning S.
        • Karathanos A.
        • Schleicher R.
        • Seizer P.
        • et al.
        Expression of anaphylatoxin receptors on platelets in patients with coronary heart disease.
        Atherosclerosis. 2015 Feb; 238: 289-295
        • Sauter R.J.
        • Sauter M.
        • Reis E.S.
        • Emschermann F.N.
        • Nording H.
        • Ebenhöch S.
        • et al.
        Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis.
        Circulation. 2018 16; 138: 1720-1735
        • Sauter R.J.
        • Sauter M.
        • Obrich M.
        • Emschermann F.N.
        • Nording H.
        • Patzelt J.
        • et al.
        Anaphylatoxin receptor C3aR contributes to platelet function, thrombus formation and in vivo haemostasis.
        Thromb. Haemostasis. 2019 Jan; 119: 179-182
        • Manthey H.D.
        • Thomas A.C.
        • Shiels I.A.
        • Zernecke A.
        • Woodruff T.M.
        • Rolfe B.
        • et al.
        Complement C5a inhibition reduces atherosclerosis in ApoE-/- mice.
        FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2011 Jul; 25: 2447-2455
        • Ruef J.
        • Kuehnl P.
        • Meinertz T.
        • Merten M.
        The complement factor properdin induces formation of platelet-leukocyte aggregates via leukocyte activation.
        Platelets. 2008 Aug; 19: 359-364
        • Blatt A.Z.
        • Pathan S.
        • Ferreira V.P.
        Properdin: a tightly regulated critical inflammatory modulator.
        Immunol. Rev. 2016; 274: 172-190
        • Ricklin D.
        • Mastellos D.C.
        • Reis E.S.
        • Lambris J.D.
        The renaissance of complement therapeutics.
        Nat. Rev. Nephrol. 2018 Jan; 14: 26-47
        • Kurosawa S.
        • Stearns-Kurosawa D.J.
        Complement, thrombotic microangiopathy and disseminated intravascular coagulation.
        J. Intensive Care. 2014 Dec; 2: 61
        • Eisinger F.
        • Patzelt J.
        • Langer H.F.
        The platelet response to tissue injury.
        Front. Med. 2018 Nov 13; 5 ([Internet]) ([cited 2020 Jan 4])
        • Mezger M.
        • Nording H.
        • Sauter R.
        • Graf T.
        • Heim C.
        • von Bubnoff N.
        • et al.
        Platelets and immune responses during thromboinflammation.
        Front. Immunol. 2019 Jul 26; 10 ([Internet]) ([cited 2020 Jan 4])
        • Hussain N.
        • Johal H.
        • Bhandari M.
        An evidence-based evaluation on the use of platelet rich plasma in orthopedics – a review of the literature.
        (SICOT-J [Internet]. [cited 2020 Jan 4];3)
        • Chicharro-Alcántara D.
        • Rubio-Zaragoza M.
        • Damiá-Giménez E.
        • Carrillo-Poveda J.M.
        • Cuervo-Serrato B.
        • Peláez-Gorrea P.
        • et al.
        Platelet rich plasma: new insights for cutaneous wound healing management.
        J. Funct. Biomater. 2018 Jan 18; 9
        • Camaré C.
        • Pucelle M.
        • Nègre-Salvayre A.
        • Salvayre R.
        Angiogenesis in the atherosclerotic plaque.
        Redox Biol. 2017 Feb 1; 12: 18-34
        • Van der Veken B.
        • De Meyer G.R.Y.
        • Martinet W.
        Axitinib attenuates intraplaque angiogenesis, haemorrhages and plaque destabilization in mice.
        Vasc. Pharmacol. 2018; 100: 34-40
        • Perrotta P.
        • Emini Veseli B.
        • Van der Veken B.
        • Roth L.
        • Martinet W.
        • De Meyer G.R.Y.
        Pharmacological strategies to inhibit intra-plaque angiogenesis in atherosclerosis.
        Vasc. Pharmacol. 2019; 112: 72-78
        • Wasserstrum Y.
        • Kornowski R.
        • Raanani P.
        • Leader A.
        • Pasvolsky O.
        • Iakobishvili Z.
        Hypertension in cancer patients treated with anti-angiogenic based regimens.
        Cardio-Oncol. 2015 Dec 7; 1: 6
        • Schleicher R.I.
        • Reichenbach F.
        • Kraft P.
        • Kumar A.
        • Lescan M.
        • Todt F.
        • et al.
        Platelets induce apoptosis via membrane-bound FasL.
        Blood. 2015 Sep 17; 126: 1483-1493
        • Linke B.
        • Schreiber Y.
        • Picard-Willems B.
        • Slattery P.
        • Nüsing R.M.
        • Harder S.
        • et al.
        Activated platelets induce an anti-inflammatory response of monocytes/macrophages through cross-regulation of PGE2 and cytokines.
        Mediat. Inflamm. 2017; 2017: 1463216
        • Gudbrandsdottir S.
        • Hasselbalch H.C.
        • Nielsen C.H.
        Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes.
        J. Immunol. 2013 Oct 15; 191 (Baltim Md 1950): 4059-4067
        • Van Vré E.A.
        • Ait-Oufella H.
        • Tedgui A.
        • Mallat Z.
        Apoptotic cell death and efferocytosis in atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2012 Apr; 32: 887-893