Advertisement

Platelet “-omics” in health and cardiovascular disease

      Highlights

      • “-omics” technologies have enabled characterization of the platelet proteome, transcriptome, metabolome and lipidome.
      • Inter-lab differences in mass-spectrometry quantification or inability to analyze platelet subpopulations are limitations.
      • Future breakthroughs will likely be enabled by novel “-omics” technologies capable of studying single cells.

      Abstract

      The importance of platelets for cardiovascular disease was established as early as the 19th century. Their therapeutic inhibition stands alongside the biggest achievements in medicine. Still, certain aspects of platelet pathophysiology remain unclear. This includes platelet resistance to antiplatelet therapy and the contribution of platelets to vascular remodelling and extends beyond cardiovascular disease to haematological disorders and cancer. To address these gaps in our knowledge, a better understanding of the underlying molecular processes is needed. This will be enabled by technologies that capture dysregulated molecular processes and can integrate them into a broader network of biological systems. The advent of -omics technologies, such as mass spectrometry proteomics, metabolomics and lipidomics; highly multiplexed affinity-based proteomics; microarray- or RNA-sequencing-(RNA-seq)-based transcriptomics, and most recently ribosome footprint-based translatomics, has enabled a more holistic understanding of platelet biology. Most of these methods have already been applied to platelets, and this review will summarise this information and discuss future developments in this area of research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bizzozero G.
        Su di un nuovo elemento morfologico del sangue dei mammiferi e della sua importanza nella trombosi e nella coagulazi- one.
        L’Osservatore. 1881; 17: 785-787
        • Wright J.H.
        The origin and nature of the blood plates.
        Boston Med. Surg. J. 1906; 154: 643-645https://doi.org/10.1056/NEJM190606071542301
        • Lefrançais E.
        • Ortiz-Muñoz G.
        • Caudrillier A.
        • Mallavia B.
        • Liu F.
        • Sayah D.M.
        • Thornton E.E.
        • Headley M.B.
        • David T.
        • Coughlin S.R.
        • Krummel M.F.
        • Leavitt A.D.
        • Passegué E.
        • Looney M.R.
        The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors.
        Nature. 2017; 544: 105-109https://doi.org/10.1038/nature21706
        • Warshaw A.L.
        • Laster L.
        • Shulman N.R.
        The stimulation by thrombin of glucose oxidation in human platelets.
        J. Clin. Invest. 1966; 45: 1923-1934https://doi.org/10.1172/JCI105497
        • Weyrich A.S.
        • Schwertz H.
        • Kraiss L.W.
        • Zimmerman G.A.
        Protein synthesis by platelets: historical and new perspectives.
        J. Thromb. Haemostasis. 2009; 7: 241-246https://doi.org/10.1111/j.1538-7836.2008.03211.x
        • Burkhart J.M.
        • Vaudel M.
        • Gambaryan S.
        • Radau S.
        • Walter U.
        • Martens L.
        • Geiger J.
        • Sickmann A.
        • Zahedi R.P.
        The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways.
        Blood. 2012; 120: e73-e82https://doi.org/10.1182/blood-2012-04-416594
        • Rowley J.W.
        • Weyrich A.S.
        Coordinate expression of transcripts and proteins in platelets.
        Blood. 2013; 121: 5255-5256https://doi.org/10.1182/blood-2013-03-487991
        • Geiger J.
        • Burkhart J.M.
        • Gambaryan S.
        • Walter U.
        • Sickmann A.
        • Zahedi R.P.
        Response: platelet transcriptome and proteome--relation rather than correlation.
        Blood. 2013; 121: 5257-5258https://doi.org/10.1182/blood-2013-04-493403
        • Benjamin E.J.
        • Muntner P.
        • Alonso A.
        • Bittencourt M.S.
        • Callaway C.W.
        • Carson A.P.
        • Chamberlain A.M.
        • Chang A.R.
        • Cheng S.
        • Das S.R.
        • Delling F.N.
        • Djousse L.
        • Elkind M.S.V.
        • Ferguson J.F.
        • Fornage M.
        • Jordan L.C.
        • Khan S.S.
        • Kissela B.M.
        • Knutson K.L.
        • Kwan T.W.
        • Lackland D.T.
        • Lewis T.T.
        • Lichtman J.H.
        • Longenecker C.T.
        • Loop M.S.
        • Lutsey P.L.
        • Martin S.S.
        • Matsushita K.
        • Moran A.E.
        • Mussolino M.E.
        • O'Flaherty M.
        • Pandey A.
        • Perak A.M.
        • Rosamond W.D.
        • Roth G.A.
        • Sampson U.K.A.
        • Satou G.M.
        • Schroeder E.B.
        • Shah S.H.
        • Spartano N.L.
        • Stokes A.
        • Tirschwell D.L.
        • Tsao C.W.
        • Turakhia M.P.
        • VanWagner L.B.
        • Wilkins J.T.
        • Wong S.S.
        • Virani S.S.
        American heart association council on epidemiology and prevention statistics committee and stroke statistics subcommittee, heart disease and stroke statistics—2019 update: a report from the American heart association.
        Circulation. 2019; 139: e56-e528https://doi.org/10.1161/CIR.0000000000000659
        • Elwood P.C.
        • Cochrane A.L.
        • Burr M.L.
        • Sweetnam P.M.
        • Williams G.
        • Welsby E.
        • Hughes S.J.
        • Renton R.
        A randomized controlled trial of acetyl salicylic acid in the secondary prevention of mortality from myocardial infarction.
        BMJ. 1974; 1: 436-440https://doi.org/10.1136/bmj.1.5905.436
        • Landry P.
        • Plante I.
        • Ouellet D.L.
        • Perron M.P.
        • Rousseau G.
        • Provost P.
        Existence of a microRNA pathway in anucleate platelets.
        Nat. Struct. Mol. Biol. 2009; 16: 961-966https://doi.org/10.1038/nsmb.1651
        • Rowley J.W.
        • Oler A.J.
        • Tolley N.D.
        • Hunter B.N.
        • Low E.N.
        • Nix D.A.
        • Yost C.C.
        • Zimmerman G.A.
        • Weyrich A.S.
        Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes.
        Blood. 2011; 118: e101-e111https://doi.org/10.1182/blood-2011-03-339705
        • Mills E.W.
        • Green R.
        • Ingolia N.T.
        Slowed decay of mRNAs enhances platelet specific translation.
        Blood. 2017; 129: e38-e48https://doi.org/10.1182/blood-2016-08-736108
        • Peng B.
        • Geue S.
        • Coman C.
        • Münzer P.
        • Kopczynski D.
        • Has C.
        • Hoffmann N.
        • Manke M.-C.
        • Lang F.
        • Sickmann A.
        • Gawaz M.
        • Borst O.
        • Ahrends R.
        Identification of key lipids critical for platelet activation by comprehensive analysis of the platelet lipidome.
        Blood. 2018; 132: e1-e12https://doi.org/10.1182/blood-2017-12-822890
        • Davizon-Castillo P.
        • Jones K.L.
        • Trahan G.D.
        • Di Paola J.
        Single-cell RNA-seq analysis of native murine megakaryocytes from young and old mice reveals significant metabolic and mitochondrial differences throughout megakaryocyte development.
        Blood. 2018; 132 (1286–1286)https://doi.org/10.1182/blood-2018-99-120006
        • Clemetson K.J.
        • Capitanio A.
        • Lüscher E.F.
        High resolution two-dimensional gel electrophoresis of the proteins and glycoproteins of human blood platelets and platelet membranes.
        Biochim. Biophys. Acta. 1979; 553: 11-24https://doi.org/10.1016/0005-2736(79)90027-0
        • O’Neill E.E.
        • Brock C.J.
        • von Kriegsheim A.F.
        • Pearce A.C.
        • Dwek R.A.
        • Watson S.P.
        • Hebestreit H.F.
        Towards complete analysis of the platelet proteome.
        Proteomics. 2002; 2 (accessed August 15, 2019): 288-305https://doi.org/10.1002/1615-9861(200203)2:3<288::AID-PROT288>3.0.CO;2-0
        • Garcia A.
        • Prabhakar S.
        • Hughan S.
        • Anderson T.W.
        • Brock C.J.
        • Pearce A.C.
        • Dwek R.A.
        • Watson S.P.
        • Hebestreit H.F.
        • Zitzmann N.
        Differential proteome analysis of TRAP-activated platelets: involvement of DOK-2 and phosphorylation of RGS proteins.
        Blood. 2004; 103: 2088-2095https://doi.org/10.1182/blood-2003-07-2392
        • Moebius J.
        • Zahedi R.P.
        • Lewandrowski U.
        • Berger C.
        • Walter U.
        • Sickmann A.
        The human platelet membrane proteome reveals several new potential membrane proteins.
        Mol. Cell. Proteomics. 2005; 4: 1754-1761https://doi.org/10.1074/mcp.M500209-MCP200
        • Coppinger J.A.
        • Cagney G.
        • Toomey S.
        • Kislinger T.
        • Belton O.
        • McRedmond J.P.
        • Cahill D.J.
        • Emili A.
        • Fitzgerald D.J.
        • Maguire P.B.
        Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions.
        Blood. 2004; 103: 2096-2104https://doi.org/10.1182/blood-2003-08-2804
        • Garcia B.A.
        • Smalley D.M.
        • Cho H.
        • Shabanowitz J.
        • Ley K.
        • Hunt D.F.
        The platelet microparticle proteome.
        J. Proteome Res. 2005; 4: 1516-1521https://doi.org/10.1021/pr0500760
        • Maynard D.M.
        • Heijnen H.F.G.
        • Horne M.K.
        • White J.G.
        • Gahl W.A.
        Proteomic analysis of platelet α-granules using mass spectrometry.
        J. Thromb. Haemostasis. 2007; 5: 1945-1955https://doi.org/10.1111/j.1538-7836.2007.02690.x
        • Hernández-Ruiz L.
        • Valverde F.
        • Jimenez-Nuñez M.D.
        • Ocaña E.
        • Sáez-Benito A.
        • Rodríguez-Martorell J.
        • Bohórquez J.-C.
        • Serrano A.
        • Ruiz F.A.
        Organellar proteomics of human platelet dense granules reveals that 14-3-3ζ is a granule protein related to atherosclerosis.
        J. Proteome Res. 2007; 6: 4449-4457https://doi.org/10.1021/pr070380o
        • Fong K.P.
        • Barry C.
        • Tran A.N.
        • Traxler E.A.
        • Wannemacher K.M.
        • Tang H.-Y.
        • Speicher K.D.
        • Blair I.A.
        • Speicher D.W.
        • Grosser T.
        • Brass L.F.
        Deciphering the human platelet sheddome.
        Blood. 2011; 117: e15-e26https://doi.org/10.1182/blood-2010-05-283838
        • Wijten P.
        • van Holten T.
        • Woo L.L.
        • Bleijerveld O.B.
        • Roest M.
        • Heck A.J.R.
        • Scholten A.
        High precision platelet releasate definition by quantitative reversed protein profiling—brief report.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1635-1638https://doi.org/10.1161/ATVBAHA.113.301147
        • Denis M.M.
        • Tolley N.D.
        • Bunting M.
        • Schwertz H.
        • Jiang H.
        • Lindemann S.
        • Yost C.C.
        • Rubner F.J.
        • Albertine K.H.
        • Swoboda K.J.
        • Fratto C.M.
        • Tolley E.
        • Kraiss L.W.
        • McIntyre T.M.
        • Zimmerman G.A.
        • Weyrich A.S.
        Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets.
        Cell. 2005; 122: 379-391https://doi.org/10.1016/j.cell.2005.06.015
        • Schwertz H.
        • Tolley N.D.
        • Foulks J.M.
        • Denis M.M.
        • Risenmay B.W.
        • Buerke M.
        • Tilley R.E.
        • Rondina M.T.
        • Harris E.M.
        • Kraiss L.W.
        • Mackman N.
        • Zimmerman G.A.
        • Weyrich A.S.
        Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenecity of human platelets.
        J. Exp. Med. 2006; 203: 2433-2440https://doi.org/10.1084/jem.20061302
        • Evangelista V.
        • Manarini S.
        • Di Santo A.
        • Capone M.L.
        • Ricciotti E.
        • Di Francesco L.
        • Tacconelli S.
        • Sacchetti A.
        • D'Angelo S.
        • Scilimati A.
        • Sciulli M.G.
        • Patrignani P.
        De novo synthesis of cyclooxygenase-1 counteracts the suppression of platelet thromboxane biosynthesis by aspirin.
        Circ. Res. 2006; 98: 593-595https://doi.org/10.1161/01.RES.0000214553.37930.3e
        • Rosenwald I.B.
        • Pechet L.
        • Han A.
        • Lu L.
        • Pihan G.
        • Woda B.
        • Chen J.J.
        • Szymanski I.
        Expression of translation initiation factors eIF-4E and eIF-2α and a potential physiologic role of continuous protein synthesis in human platelets.
        Thromb. Haemostasis. 2001; 85: 142-151https://doi.org/10.1055/s-0037-1612917
        • Thon J.N.
        • Devine D.V.
        Translation of glycoprotein IIIa in stored blood platelets.
        Transfusion. 2007; 47https://doi.org/10.1111/J.1537-2995.2007.01455.X
        • Lindemann S.
        • Tolley N.D.
        • Dixon D.A.
        • McIntyre T.M.
        • Prescott S.M.
        • Zimmerman G.A.
        • Weyrich A.S.
        Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis.
        J. Cell Biol. 2001; 154: 485-490https://doi.org/10.1083/jcb.200105058
        • Panes O.
        • Matus V.
        • Sáez C.G.
        • Quiroga T.
        • Pereira J.
        • Mezzano D.
        Human platelets synthesize and express functional tissue factor.
        Blood. 2007; 109: 5242-5250https://doi.org/10.1182/blood-2006-06-030619
        • Angénieux C.
        • Maître B.
        • Eckly A.
        • Lanza F.
        • Gachet C.
        • de la Salle H.
        Time-dependent decay of mRNA and ribosomal RNA during platelet aging and its correlation with translation activity.
        PloS One. 2016; 11e0148064https://doi.org/10.1371/journal.pone.0148064
        • Schwertz H.
        • Rowley J.W.
        • Schumann G.G.
        • Thorack U.
        • Campbell R.A.
        • Manne B.K.
        • Zimmerman G.A.
        • Weyrich A.S.
        • Rondina M.T.
        Endogenous LINE-1 (long interspersed nuclear element-1) reverse transcriptase activity in platelets controls translational events through RNA-DNA hybrids.
        Arterioscler. Thromb. Vasc. Biol. 2018; 38: 801-815https://doi.org/10.1161/ATVBAHA.117.310552
        • Banerjee M.
        • Whiteheart S.W.
        The ins and outs of endocytic trafficking in platelet functions.
        Curr. Opin. Hematol. 2017; 24: 467-474https://doi.org/10.1097/MOH.0000000000000366
        • Ingolia N.T.
        • Ghaemmaghami S.
        • Newman J.R.S.
        • Weissman J.S.
        Genome-Wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.
        Science. 2009; 324: 218-223https://doi.org/10.1126/science.1168978
        • Middleton E.A.
        • Rowley J.W.
        • Campbell R.A.
        • Grissom C.K.
        • Brown S.M.
        • Beesley S.J.
        • Schwertz H.O.R.
        • Kosaka Y.
        • Manne B.K.
        • Krauel K.
        • Tolley N.D.
        • Eustes A.S.
        • Guo L.
        • Paine R.
        • Harris E.
        • Zimmerman G.A.
        • Weyrich A.S.
        • Rondina M.T.
        Sepsis Alters the Transcriptional and Translational Landscape of Human and Murine Platelets.
        Blood, 2019https://doi.org/10.1182/blood.2019000067 (blood.2019000067)
        • Loroch S.
        • Zahedi R.P.
        • Sickmann A.
        Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography.
        Anal. Chem. 2015; 87: 1596-1604https://doi.org/10.1021/ac502708m
        • Kleifeld O.
        • Doucet A.
        • auf dem Keller U.
        • Prudova A.
        • Schilling O.
        • Kainthan R.K.
        • Starr A.E.
        • Foster L.J.
        • Kizhakkedathu J.N.
        • Overall C.M.
        Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products.
        Nat. Biotechnol. 2010; 28: 281-288https://doi.org/10.1038/nbt.1611
        • Izquierdo I.
        • Barrachina M.N.
        • Hermida-Nogueira L.
        • Casas V.
        • Morán L.A.
        • Lacerenza S.
        • Pinto-Llorente R.
        • Eble J.A.
        • de Los Ríos V.
        • Domínguez E.
        • Loza M.I.
        • Casal J.I.
        • Carrascal M.
        • Abián J.
        • García A.
        A comprehensive tyrosine phosphoproteomic analysis reveals novel components of the platelet CLEC-2 signaling cascade.
        Thromb. Haemostasis. 2020; 120: 262-276https://doi.org/10.1055/s-0039-3400295
        • Schmoker A.M.
        • Perez Pearson L.M.
        • Cruz C.
        • Colon Flores L.G.
        • Branfeild S.
        • Pagán Torres F.D.
        • Fonseca K.
        • Cantres Y.M.
        • Salgado Ramirez C.A.
        • Melendez L.M.
        • Ballif B.A.
        • Washington A.V.
        Defining the TLT-1 interactome from resting and activated human platelets.
        J. Proteomics. 2020; 215103638https://doi.org/10.1016/j.jprot.2020.103638
        • Coman C.
        • Solari F.A.
        • Hentschel A.
        • Sickmann A.
        • Zahedi R.P.
        • Ahrends R.
        Simultaneous metabolite, protein, lipid extraction (SIMPLEX): a combinatorial multimolecular omics approach for systems biology.
        Mol. Cell. Proteomics. 2016; 15: 1453-1466https://doi.org/10.1074/mcp.M115.053702
        • Solari F.A.
        • Mattheij N.J.A.
        • Burkhart J.M.
        • Swieringa F.
        • Collins P.W.
        • Cosemans J.M.E.M.
        • Sickmann A.
        • Heemskerk J.W.M.
        • Zahedi R.P.
        Combined quantification of the global proteome, phosphoproteome, and proteolytic cleavage to characterize altered platelet functions in the human Scott syndrome.
        Mol. Cell. Proteomics. 2016; 15: 3154-3169https://doi.org/10.1074/mcp.M116.060368
        • Zeiler M.
        • Moser M.
        • Mann M.
        Copy number analysis of the murine platelet proteome spanning the complete abundance range.
        Mol. Cell. Proteomics. 2014; 13: 3435-3445https://doi.org/10.1074/mcp.M114.038513
        • Owens A.P.
        • Byrnes J.R.
        • Mackman N.
        Hyperlipidemia, tissue factor, coagulation, and simvastatin.
        Trends Cardiovasc. Med. 2014; 24: 95-98https://doi.org/10.1016/j.tcm.2013.07.003
        • Wang N.
        • Tall A.R.
        Cholesterol in platelet biogenesis and activation.
        Blood. 2016; 127 (1949–53)https://doi.org/10.1182/blood-2016-01-631259
        • Heemskerk J.W.M.
        • Feijge M.A.H.
        • Simonis M.A.G.
        • Hornstra G.
        Effects of dietary fatty acids on signal transduction and membrane cholesterol content in rat platelets.
        Biochim. Biophys. Acta Lipids Lipid. Metabol. 1995; 1255: 87-97https://doi.org/10.1016/0005-2760(94)00225-N
        • Panes O.
        • González C.
        • Hidalgo P.
        • Valderas J.P.
        • Acevedo M.
        • Contreras S.
        • Sánchez X.
        • Pereira J.
        • Rigotti A.
        • Mezzano D.
        Platelet tissue factor activity and membrane cholesterol are increased in hypercholesterolemia and normalized by rosuvastatin, but not by atorvastatin.
        Atherosclerosis. 2017; 257: 164-171https://doi.org/10.1016/j.atherosclerosis.2016.12.019
        • Chacko B.K.
        • Smith M.R.
        • Johnson M.S.
        • Benavides G.
        • Culp M.L.
        • Pilli J.
        • Shiva S.
        • Uppal K.
        • Go Y.-M.
        • Jones D.P.
        • Darley-Usmar V.M.
        Mitochondria in precision medicine; linking bioenergetics and metabolomics in platelets.
        Redox Biol. 2019; 22101165https://doi.org/10.1016/j.redox.2019.101165
        • Zharikov S.
        • Shiva S.
        Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease.
        Biochem. Soc. Trans. 2013; 41: 118-123https://doi.org/10.1042/BST20120327
        • Braganza A.
        • Corey C.G.
        • Santanasto A.J.
        • Distefano G.
        • Coen P.M.
        • Glynn N.W.
        • Nouraie S.-M.
        • Goodpaster B.H.
        • Newman A.B.
        • Shiva S.
        Platelet bioenergetics correlate with muscle energetics and are altered in older adults.
        JCI Insight. 2019; 4https://doi.org/10.1172/jci.insight.128248
        • Smith M.R.
        • Chacko B.K.
        • Johnson M.S.
        • Benavides G.A.
        • Uppal K.
        • Go Y.-M.
        • Jones D.P.
        • Darley-Usmar V.M.
        A precision medicine approach to defining the impact of doxorubicin on the bioenergetic-metabolite interactome in human platelets.
        Redox Biol. 2020; 28101311https://doi.org/10.1016/j.redox.2019.101311
        • Wilkins H.M.
        • Koppel S.J.
        • Bothwell R.
        • Mahnken J.
        • Burns J.M.
        • Swerdlow R.H.
        Platelet cytochrome oxidase and citrate synthase activities in APOE ε4 carrier and non-carrier Alzheimer's disease patients.
        Redox Biol. 2017; 12: 828-832https://doi.org/10.1016/j.redox.2017.04.010
        • Cardenes N.
        • Corey C.
        • Geary L.
        • Jain S.
        • Zharikov S.
        • Barge S.
        • Novelli E.M.
        • Shiva S.
        Platelet bioenergetic screen in sickle cell patients reveals mitochondrial complex V inhibition, which contributes to platelet activation.
        Blood. 2014; 123: 2864-2872https://doi.org/10.1182/blood-2013-09-529420
        • Malchow S.
        • Loosse C.
        • Sickmann A.
        • Lorenz C.
        Quantification of cardiovascular disease biomarkers in human platelets by targeted mass spectrometry.
        Proteomes. 2017; 5: 31https://doi.org/10.3390/proteomes5040031
        • Wegler C.
        • Gaugaz F.Z.
        • Andersson T.B.
        • Wiśniewski J.R.
        • Busch D.
        • Gröer C.
        • Oswald S.
        • Norén A.
        • Weiss F.
        • Hammer H.S.
        • Joos T.O.
        • Poetz O.
        • Achour B.
        • Rostami-Hodjegan A.
        • van de Steeg E.
        • Wortelboer H.M.
        • Artursson P.
        Variability in mass spectrometry-based quantification of clinically relevant drug transporters and drug metabolizing enzymes.
        Mol. Pharm. 2017; 14: 3142-3151https://doi.org/10.1021/acs.molpharmaceut.7b00364
        • Klovaite J.
        • Benn M.
        • Yazdanyar S.
        • Nordestgaard B.G.
        High platelet volume and increased risk of myocardial infarction: 39,531 participants from the general population.
        J. Thromb. Haemostasis. 2011; 9https://doi.org/10.1111/J.1538-7836.2010.04110.X
        • Slavka G.
        • Perkmann T.
        • Haslacher H.
        • Greisenegger S.
        • Marsik C.
        • Wagner O.F.
        • Endler G.
        Mean platelet volume may represent a predictive parameter for overall vascular mortality and ischemic heart disease.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 1215-1218https://doi.org/10.1161/ATVBAHA.110.221788
        • Cesari F.
        • Marcucci R.
        • Gori A.M.
        • Caporale R.
        • Fanelli A.
        • Casola G.
        • Balzi D.
        • Barchielli A.
        • Valente S.
        • Giglioli C.
        • Gensini G.F.
        • Abbate R.
        Reticulated platelets predict cardiovascular death in acute coronary syndrome patients. Insights from the AMI-Florence 2 Study.
        Thromb. Haemostasis. 2013; 109: 846-853https://doi.org/10.1160/TH12-09-0709
        • Ibrahim H.
        • Schutt R.C.
        • Hannawi B.
        • DeLao T.
        • Barker C.M.
        • Kleiman N.S.
        Association of immature platelets with adverse cardiovascular outcomes.
        J. Am. Coll. Cardiol. 2014; 64: 2122-2129https://doi.org/10.1016/j.jacc.2014.06.1210
        • Bernlochner I.
        • Goedel A.
        • Plischke C.
        • Schüpke S.
        • Haller B.
        • Schulz C.
        • Mayer K.
        • Morath T.
        • Braun S.
        • Schunkert H.
        • Siess W.
        • Kastrati A.
        • Laugwitz K.-L.
        Impact of immature platelets on platelet response to ticagrelor and prasugrel in patients with acute coronary syndrome.
        Eur. Heart J. 2015; 36: 3202-3210https://doi.org/10.1093/eurheartj/ehv326
        • Armstrong P.C.
        • Hoefer T.
        • Knowles R.B.
        • Tucker A.T.
        • Hayman M.A.
        • Ferreira P.M.
        • V Chan M.
        • Warner T.D.
        Newly formed reticulated platelets undermine pharmacokinetically short-lived antiplatelet therapies.
        Arterioscler. Thromb. Vasc. Biol. 2017; 37: 949-956https://doi.org/10.1161/ATVBAHA.116.308763
        • Kraakman M.J.
        • Lee M.K.
        • Al-Sharea A.
        • Dragoljevic D.
        • Barrett T.J.
        • Montenont E.
        • Basu D.
        • Heywood S.
        • Kammoun H.L.
        • Flynn M.
        • Whillas A.
        • Hanssen N.M.
        • Febbraio M.A.
        • Westein E.
        • Fisher E.A.
        • Chin-Dusting J.
        • Cooper M.E.
        • Berger J.S.
        • Goldberg I.J.
        • Nagareddy P.R.
        • Murphy A.J.
        Neutrophil-derived S100 calcium-binding proteins A8/A9 promote reticulated thrombocytosis and atherogenesis in diabetes.
        J. Clin. Invest. 2017; 127: 2133-2147https://doi.org/10.1172/JCI92450
        • Lee E.Y.
        • Kim S.J.
        • Song Y.J.
        • Choi S.J.
        • Song J.
        Immature platelet fraction in diabetes mellitus and metabolic syndrome.
        Thromb. Res. 2013; 132: 692-695https://doi.org/10.1016/j.thromres.2013.09.035
        • Betteridge D.J.
        • El Tahir K.E.
        • Reckless J.P.
        • Williams K.I.
        Platelets from diabetic subjects show diminished sensitivity to prostacyclin.
        Eur. J. Clin. Invest. 1982; 12: 395-398https://doi.org/10.1111/j.1365-2362.1982.tb00686.x
        • Akinosoglou K.
        • Perperis A.
        • Theodoraki S.
        • Alexopoulos D.
        • Gogos C.
        Sepsis favors high-on-clopidogrel platelet reactivity.
        Platelets. 2018; 29: 76-78https://doi.org/10.1080/09537104.2017.1319919
        • Anfossi G.
        • Mularoni E.M.
        • Burzacca S.
        • Ponziani M.C.
        • Massucco P.
        • Mattiello L.
        • Cavalot F.
        • Trovati M.
        Platelet resistance to nitrates in obesity and obese NIDDM, and normal platelet sensitivity to both insulin and nitrates in lean NIDDM.
        Diabetes Care. 1998; 21: 121-126https://doi.org/10.2337/diacare.21.1.121
        • Mahmoodian R.
        • Salimian M.
        • Hamidpour M.
        • Khadem-Maboudi A.A.
        • Gharehbaghian A.
        The effect of mild agonist stimulation on the platelet reactivity in patients with type 2 diabetes mellitus.
        BMC Endocr. Disord. 2019; 19: 62https://doi.org/10.1186/s12902-019-0391-2
        • Nishimura S.
        • Nagasaki M.
        • Kunishima S.
        • Sawaguchi A.
        • Sakata A.
        • Sakaguchi H.
        • Ohmori T.
        • Manabe I.
        • Italiano J.E.
        • Ryu T.
        • Takayama N.
        • Komuro I.
        • Kadowaki T.
        • Eto K.
        • Nagai R.
        IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs.
        J. Cell Biol. 2015; 209: 453-466https://doi.org/10.1083/jcb.201410052
        • Alberio L.
        • Safa O.
        • Clemetson K.J.
        • Esmon C.T.
        • Dale G.L.
        Surface expression and functional characterization of alpha-granule factor V in human platelets: effects of ionophore A23187, thrombin, collagen, and convulxin.
        Blood. 2000; 95: 1694-1702https://doi.org/10.1182/blood.V95.5.1694.005k24_1694_1702
        • Hamilton S.F.
        • Miller M.W.
        • Thompson C.A.
        • Dale G.L.
        Glycoprotein IIb/IIIa inhibitors increase COAT-platelet production in vitro.
        J. Lab. Clin. Med. 2004; 143: 320-326https://doi.org/10.1016/j.lab.2004.02.001
        • Thiele T.
        • Braune J.
        • Dhople V.
        • Hammer E.
        • Scharf C.
        • Greinacher A.
        • Völker U.
        • Steil L.
        Proteomic profile of platelets during reconstitution of platelet counts after apheresis., Proteomics.
        Clin. Appl. 2016; 10: 831-838https://doi.org/10.1002/prca.201500134
        • Handtke S.
        • Steil L.
        • Palankar R.
        • Conrad J.
        • Cauhan S.
        • Kraus L.
        • Ferrara M.
        • Dhople V.
        • Wesche J.
        • Völker U.
        • Greinacher A.
        • Thiele T.
        Role of platelet size revisited-function and protein composition of large and small platelets.
        Thromb. Haemostasis. 2019; 119: 407-420https://doi.org/10.1055/s-0039-1677875
        • Banfi C.
        • Brioschi M.
        • Marenzi G.
        • De Metrio M.
        • Camera M.
        • Mussoni L.
        • Tremoli E.
        Proteome of platelets in patients with coronary artery disease.
        Exp. Hematol. 2010; 38: 341-350https://doi.org/10.1016/J.EXPHEM.2010.03.001
        • Parguiña A.F.
        • Fernández Parguiña A.
        • Grigorian-Shamajian L.
        • Agra R.M.
        • Teijeira-Fernández E.
        • Rosa I.
        • Alonso J.
        • Viñuela-Roldán J.E.
        • Seoane A.
        • González-Juanatey J.R.
        • García A.
        Proteins involved in platelet signaling are differentially regulated in acute coronary syndrome: a proteomic study.
        PloS One. 2010; 5e13404https://doi.org/10.1371/journal.pone.0013404
        • Arias-Salgado E.G.
        • Larrucea S.
        • Butta N.
        • Fernández D.
        • García-Muñoz S.
        • Parrilla R.
        • Ayuso M.S.
        Variations in platelet protein associated with arterial thrombosis, Thromb.
        Res. 2008; 122: 640-647https://doi.org/10.1016/j.thromres.2008.01.017
        • Cevik O.
        • Baykal A.T.
        • Sener A.
        Platelets proteomic profiles of acute ischemic stroke patients.
        PloS One. 2016; 11e0158287https://doi.org/10.1371/journal.pone.0158287
        • Bom M.J.
        • Levin E.
        • Driessen R.S.
        • Danad I.
        • Van Kuijk C.C.
        • van Rossum A.C.
        • Narula J.
        • Min J.K.
        • Leipsic J.A.
        • Belo Pereira J.P.
        • Taylor C.A.
        • Nieuwdorp M.
        • Raijmakers P.G.
        • Koenig W.
        • Groen A.K.
        • Stroes E.S.G.
        • Knaapen P.
        Predictive value of targeted proteomics for coronary plaque morphology in patients with suspected coronary artery disease.
        EBioMedicine. 2019; 39: 109-117https://doi.org/10.1016/j.ebiom.2018.12.033
        • Rohloff J.C.
        • Gelinas A.D.
        • Jarvis T.C.
        • Ochsner U.A.
        • Schneider D.J.
        • Gold L.
        • Janjic N.
        Nucleic acid ligands with protein-like side chains: modified aptamers and their use as diagnostic and therapeutic agents.
        Mol. Ther. Nucleic Acids. 2014; 3e201https://doi.org/10.1038/mtna.2014.49
        • Mosley J.D.
        • Benson M.D.
        • Smith J.G.
        • Melander O.
        • Ngo D.
        • Shaffer C.M.
        • Ferguson J.F.
        • Herzig M.S.
        • McCarty C.A.
        • Chute C.G.
        • Jarvik G.P.
        • Gordon A.S.
        • Palmer M.R.
        • Crosslin D.R.
        • Larson E.B.
        • Carrell D.S.
        • Kullo I.J.
        • Pacheco J.A.
        • Peissig P.L.
        • Brilliant M.H.
        • Kitchner T.E.
        • Linneman J.G.
        • Namjou B.
        • Williams M.S.
        • Ritchie M.D.
        • Borthwick K.M.
        • Kiryluk K.
        • Mentch F.D.
        • Sleiman P.M.
        • Karlson E.W.
        • Verma S.S.
        • Zhu Y.
        • Vasan R.S.
        • Yang Q.
        • Denny J.C.
        • Roden D.M.
        • Gerszten R.E.
        • Wang T.J.
        Probing the virtual proteome to identify novel disease biomarkers.
        Circulation. 2018; 138: 2469-2481https://doi.org/10.1161/CIRCULATIONAHA.118.036063
        • Rayes J.
        • Watson S.P.
        • Nieswandt B.
        Functional significance of the platelet immune receptors GPVI and CLEC-2.
        J. Clin. Invest. 2019; 129: 12-23https://doi.org/10.1172/JCI122955
        • Joshi A.
        • Mayr M.
        In aptamers they trust caveats of the SOMAscan biomarker discovery platform from SomaLogic.
        Circulation. 2018; 138: 2482-2485https://doi.org/10.1161/CIRCULATIONAHA.118.036823
        • Sunderland N.
        • Skroblin P.
        • Barwari T.
        • Huntley R.P.
        • Lu R.
        • Joshi A.
        • Lovering R.C.
        • Mayr M.
        MicroRNA biomarkers and platelet reactivity.
        Circ. Res. 2017; 120: 418-435https://doi.org/10.1161/CIRCRESAHA.116.309303
        • Braza-Boïls A.
        • Barwari T.
        • Gutmann C.
        • Thomas M.R.
        • Judge H.M.
        • Joshi A.
        • Pechlaner R.
        • Shankar-Hari M.
        • Ajjan R.A.
        • Sabroe I.
        • Storey R.F.
        • Mayr M.
        Circulating MicroRNA levels indicate platelet and leukocyte activation in endotoxemia despite platelet P2Y12 inhibition.
        Int. J. Mol. Sci. 2020; 21: 2897https://doi.org/10.3390/ijms21082897
        • McManus D.D.
        • Beaulieu L.M.
        • Mick E.
        • Tanriverdi K.
        • Larson M.G.
        • Keaney J.F.
        • Benjamin E.J.
        • Freedman J.E.
        Relationship among circulating inflammatory proteins, platelet gene expression, and cardiovascular risk.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 2666-2673https://doi.org/10.1161/ATVBAHA.112.301112
        • Raghavachari N.
        • Xu X.
        • Harris A.
        • Villagra J.
        • Logun C.
        • Barb J.
        • Solomon M.A.
        • Suffredini A.F.
        • Danner R.L.
        • Kato G.
        • Munson P.J.
        • Morris S.M.
        • Gladwin M.T.
        Amplified expression profiling of platelet transcriptome reveals changes in arginine metabolic pathways in patients with sickle cell disease.
        Circulation. 2007; 115: 1551-1562https://doi.org/10.1161/CIRCULATIONAHA.106.658641
        • Best M.G.
        • Sol N.
        • Kooi I.
        • Tannous J.
        • Westerman B.A.
        • Rustenburg F.
        • Schellen P.
        • Verschueren H.
        • Post E.
        • Koster J.
        • Ylstra B.
        • Ameziane N.
        • Dorsman J.
        • Smit E.F.
        • Verheul H.M.
        • Noske D.P.
        • Reijneveld J.C.
        • Nilsson R.J.A.
        • Tannous B.A.
        • Wesseling P.
        • Wurdinger T.
        RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics.
        Canc. Cell. 2015; 28: 666-676https://doi.org/10.1016/j.ccell.2015.09.018
        • Lood C.
        • Amisten S.
        • Gullstrand B.
        • Jonsen A.
        • Allhorn M.
        • Truedsson L.
        • Sturfelt G.
        • Erlinge D.
        • Bengtsson A.A.
        Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up-regulation of the type I interferon system is strongly associated with vascular disease.
        Blood. 2010; 116: 1951-1957https://doi.org/10.1182/blood-2010-03-274605
        • Freedman J.E.
        • Larson M.G.
        • Tanriverdi K.
        • O'Donnell C.J.
        • Morin K.
        • Hakanson A.S.
        • Vasan R.S.
        • Johnson A.D.
        • Iafrati M.D.
        • Benjamin E.J.
        Relation of platelet and leukocyte inflammatory transcripts to body mass index in the framingham heart study.
        Circulation. 2010; 122: 119-129https://doi.org/10.1161/CIRCULATIONAHA.109.928192
        • Plé H.
        • Maltais M.
        • Corduan A.
        • Rousseau G.
        • Madore F.
        • Provost P.
        Alteration of the platelet transcriptome in chronic kidney disease.
        Thromb. Haemostasis. 2012; 108: 605-615https://doi.org/10.1160/TH12-03-0153
        • Healy A.M.
        • Pickard M.D.
        • Pradhan A.D.
        • Wang Y.
        • Chen Z.
        • Croce K.
        • Sakuma M.
        • Shi C.
        • Zago A.C.
        • Garasic J.
        • Damokosh A.I.
        • Dowie T.L.
        • Poisson L.
        • Lillie J.
        • Libby P.
        • Ridker P.M.
        • Simon D.I.
        Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events.
        Circulation. 2006; 113: 2278-2284https://doi.org/10.1161/CIRCULATIONAHA.105.607333
        • Colombo G.
        • Gertow K.
        • Marenzi G.
        • Brambilla M.
        • De Metrio M.
        • Tremoli E.
        • Camera M.
        Gene expression profiling reveals multiple differences in platelets from patients with stable angina or non-ST elevation acute coronary syndrome.
        Thromb. Res. 2011; 128: 161-168https://doi.org/10.1016/j.thromres.2011.02.012
        • Eicher J.D.
        • Wakabayashi Y.
        • Vitseva O.
        • Esa N.
        • Yang Y.
        • Zhu J.
        • Freedman J.E.
        • McManus D.D.
        • Johnson A.D.
        Characterization of the platelet transcriptome by RNA sequencing in patients with acute myocardial infarction.
        Platelets. 2016; 27: 230-239https://doi.org/10.3109/09537104.2015.1083543
        • Reilly S.-J.
        • Li N.
        • Liska J.
        • Ekström M.
        • Tornvall P.
        Coronary artery bypass graft surgery up-regulates genes involved in platelet aggregation.
        J. Thromb. Haemostasis. 2012; 10: 557-563https://doi.org/10.1111/j.1538-7836.2012.04660.x
        • Saenz-Pipaon G.
        • San Martín P.
        • Planell N.
        • Maillo A.
        • Ravassa S.
        • Vilas-Zornoza A.
        • Martinez-Aguilar E.
        • Rodriguez J.A.
        • Alameda D.
        • Lara-Astiaso D.
        • Prosper F.
        • Paramo J.A.
        • Orbe J.
        • Gomez-Cabrero D.
        • Roncal C.
        Functional and transcriptomic analysis of extracellular vesicles identifies calprotectin as a new prognostic marker in peripheral arterial disease (PAD).
        J. Extracell. Vesicles. 2020; 9: 1729646https://doi.org/10.1080/20013078.2020.1729646
        • Wysokinski W.E.
        • Tafur A.
        • Ammash N.
        • Asirvatham S.J.
        • Wu Y.
        • Gosk-Bierska I.
        • Grill D.E.
        • Slusser J.P.
        • Mruk J.
        • McBane R.D.
        Impact of atrial fibrillation on platelet gene expression.
        Eur. J. Haematol. 2017; 98: 615-621https://doi.org/10.1111/ejh.12879
        • Tang F.
        • Barbacioru C.
        • Wang Y.
        • Nordman E.
        • Lee C.
        • Xu N.
        • Wang X.
        • Bodeau J.
        • Tuch B.B.
        • Siddiqui A.
        • Lao K.
        • Surani M.A.
        mRNA-Seq whole-transcriptome analysis of a single cell.
        Nat. Methods. 2009; 6: 377-382https://doi.org/10.1038/nmeth.1315
        • Faridani O.R.
        • Abdullayev I.
        • Hagemann-Jensen M.
        • Schell J.P.
        • Lanner F.
        • Sandberg R.
        Single-cell sequencing of the small-RNA transcriptome.
        Nat. Biotechnol. 2016; 34: 1264-1266https://doi.org/10.1038/nbt.3701
        • Wang N.
        • Zheng J.
        • Chen Z.
        • Liu Y.
        • Dura B.
        • Kwak M.
        • Xavier-Ferrucio J.
        • Lu Y.-C.
        • Zhang M.
        • Roden C.
        • Cheng J.
        • Krause D.S.
        • Ding Y.
        • Fan R.
        • Lu J.
        Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation.
        Nat. Commun. 2019; 10: 95https://doi.org/10.1038/s41467-018-07981-6
        • Stoeckius M.
        • Hafemeister C.
        • Stephenson W.
        • Houck-Loomis B.
        • Chattopadhyay P.K.
        • Swerdlow H.
        • Satija R.
        • Smibert P.
        Simultaneous epitope and transcriptome measurement in single cells.
        Nat. Methods. 2017; 14: 865-868https://doi.org/10.1038/nmeth.4380
        • Peterson V.M.
        • Zhang K.X.
        • Kumar N.
        • Wong J.
        • Li L.
        • Wilson D.C.
        • Moore R.
        • Mcclanahan T.K.
        • Sadekova S.
        • Klappenbach J.A.
        Multiplexed quantification of proteins and transcripts in single cells.
        Nat. Biotechnol. 2017; 35: 936-939https://doi.org/10.1038/nbt.3973
        • Bray P.F.
        • McKenzie S.E.
        • Edelstein L.C.
        • Nagalla S.
        • Delgrosso K.
        • Ertel A.
        • Kupper J.
        • Jing Y.
        • Londin E.
        • Loher P.
        • Chen H.-W.
        • Fortina P.
        • Rigoutsos I.
        The complex transcriptional landscape of the anucleate human platelet.
        BMC Genom. 2013; 14: 1https://doi.org/10.1186/1471-2164-14-1
        • Alhasan A.A.
        • Izuogu O.G.
        • Al-Balool H.H.
        • Steyn J.S.
        • Evans A.
        • Colzani M.
        • Ghevaert C.
        • Mountford J.C.
        • Marenah L.
        • Elliott D.J.
        • Santibanez-Koref M.
        • Jackson M.S.
        Circular RNA enrichment in platelets is a signature of transcriptome degradation.
        Blood. 2016; 127: e1-e11https://doi.org/10.1182/blood-2015-06-649434
        • Cecchetti L.
        • Tolley N.D.
        • Michetti N.
        • Bury L.
        • Weyrich A.S.
        • Gresele P.
        Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events.
        Blood. 2011; 118: 1903-1911https://doi.org/10.1182/blood-2010-12-324517
        • Bluteau O.
        • Langlois T.
        • Rivera-Munoz P.
        • Favale F.
        • Rameau P.
        • Meurice G.
        • Dessen P.
        • Solary E.
        • Raslova H.
        • Mercher T.
        • Debili N.
        • Vainchenker W.
        Developmental changes in human megakaryopoiesis.
        J. Thromb. Haemostasis. 2013; 11: 1730-1741https://doi.org/10.1111/jth.12326
        • Kammers K.
        • Taub M.A.
        • Ruczinski I.
        • Martin J.
        • Yanek L.R.
        • Frazee A.
        • Gao Y.
        • Hoyle D.
        • Faraday N.
        • Becker D.M.
        • Cheng L.
        • Wang Z.Z.
        • Leek J.T.
        • Becker L.C.
        • Mathias R.A.
        Integrity of induced pluripotent stem cell (iPSC) derived megakaryocytes as assessed by genetic and transcriptomic analysis.
        PloS One. 2017; 12e0167794https://doi.org/10.1371/journal.pone.0167794
        • Davizon-Castillo P.
        • McMahon B.
        • Aguila S.
        • Bark D.
        • Ashworth K.
        • Allawzi A.
        • Campbell R.A.
        • Montenont E.
        • Nemkov T.
        • D'Alessandro A.
        • Clendenen N.
        • Shih L.
        • Sanders N.A.
        • Higa K.
        • Cox A.
        • Padilla-Romo Z.
        • Hernandez G.
        • Wartchow E.
        • Trahan G.D.
        • Nozik-Grayck E.
        • Jones K.
        • Pietras E.
        • DeGregori J.
        • Rondina M.T.
        • Di Paola J.
        TNF-alpha driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging.
        Blood. 2019; (blood.2019000200)https://doi.org/10.1182/blood.2019000200
        • Teruel-Montoya R.
        • Kong X.
        • Abraham S.
        • Ma L.
        • Kunapuli S.P.
        • Holinstat M.
        • Shaw C.A.
        • McKenzie S.E.
        • Edelstein L.C.
        • Bray P.F.
        MicroRNA expression differences in human hematopoietic cell lineages enable regulated transgene expression.
        PloS One. 2014; 9e102259https://doi.org/10.1371/journal.pone.0102259
        • Smart - Servier Medical Art
        (n.d.) (accessed October 30, 2019)
        • Parguiña A.F.
        • Grigorian-Shamagian L.
        • Agra R.M.
        • López-Otero D.
        • Rosa I.
        • Alonso J.
        • Teijeira-Fernández E.
        • González-Juanatey J.R.
        • Garcia Á.
        Variations in Platelet Proteins Associated With ST-Elevation Myocardial Infarction.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 2957-2964https://doi.org/10.1161/ATVBAHA.111.235713
        • Gutmann C.
        • Joshi A.
        • Zampetaki A.
        • Mayr M.
        The Landscape of Coding and Non-coding RNAs in Platelets.
        Antioxid. Redox Signal. 2020; https://doi.org/10.1089/ars.2020.8139