Actin remodelling of the endothelium during transendothelial migration of leukocytes

  • Author Footnotes
    1 These authors contributed equally to this work.
    Abraham C.I. van Steen
    1 These authors contributed equally to this work.
    Molecular Cell Biology Lab at Dept. Molecular Cellular Haemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Werner J. van der Meer
    1 These authors contributed equally to this work.
    Molecular Cell Biology Lab at Dept. Molecular Cellular Haemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands

    Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, the Netherlands
    Search for articles by this author
  • Imo E. Hoefer
    Laboratory of Clinical Chemistry and Hematology, UMC Utrecht, Utrecht, the Netherlands
    Search for articles by this author
  • Jaap D. van Buul
    Corresponding author. Molecular Cell Biology Lab, Dept. Molecular and Cellular Hemostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, Plesmanlaan 125, 1066CX, Amsterdam, the Netherlands.
    Molecular Cell Biology Lab at Dept. Molecular Cellular Haemostasis, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands

    Leeuwenhoek Centre for Advanced Microscopy (LCAM), Section Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, the Netherlands
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.


      • This review summarizes the latest findings on leukocyte transendothelial migration, focussing on the role of the endothelium.
      • Focus on the dynamics of the endothelial actin cytoskeleton and how cytoskeletal-based structures support leukocyte passage.
      • This review gives a comprehensive overview of trans- versus paracellular transendothelial migration in literature.


      For leukocytes crossing the vessel wall to solve inflammation, the endothelium acts as customs control. In the past years, progress has been made on the molecular mechanisms that are used by both the leukocytes and endothelium to allow efficient crossing, although not all the exact rules these vascular customs play by are completely understood. In this review, we focus on the contribution of the endothelium to the process of leukocyte extravasation and summarize the different molecular mechanisms involved in efficient leukocyte passage and prevention of local leakage at the same time. We will highlight the dynamic regulation of the endothelial actin cytoskeleton, which under the influence of different stimuli is a key player in leukocyte transendothelial migration.

      Graphical abstract


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Butcher E.C.
        Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity.
        Cell. 20-Dec-1991; 67: 1033-1036
        • Springer T.A.
        Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm.
        Cell. 28-Jan-1994; 76: 301-314
        • Carlos T.M.
        • Harlan J.M.
        Leukocyte-endothelial adhesion molecules.
        Blood. Oct. 1994; 84: 2068-2101
        • Gorina R.
        • Lyck R.
        • Vestweber D.
        • Engelhardt B.
        β 2 integrin–mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood–brain barrier.
        J. Immunol. Jan. 2014; 192: 324-337
        • Mamdouh Z.
        • Mikhailov A.
        • Muller W.A.
        Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment.
        J. Exp. Med. Nov. 2009; 206: 2795-2808
        • Nourshargh S.
        • Alon R.
        Leukocyte migration into inflamed tissues.
        Immunity. 20-Nov-2014; 41 (Cell Press): 694-707
        • Pollard T.D.
        Actin and actin-binding proteins.
        Cold Spring Harb. Perspect. Biol. Aug. 2016; 8
        • Longbiao Y.
        • Setiadi H.
        • Lijun X.
        • Laszik Z.
        • Taylor F.B.
        • McEver R.P.
        Divergent inducible expression of P-selectin and E-selectin in mice and primates.
        Blood. Dec. 1999; 94: 3820-3828
        • van Buul J.D.
        • Hordijk P.L.
        Endothelial signalling by Ig-like cell adhesion molecules.
        Transfus. Clin. Biol. Feb. 2008; 15: 3-6
        • Wójciak-Stothard B.
        • Entwistle A.
        • Garg R.
        • Ridley A.J.
        Regulation of TNF-α-induced reorganization of the actin cytoskeleton and cell-cell junctions by Rho, Rac, and Cdc42 in human endothelial cells,.
        J. Cell. Physiol. Jul. 1998; 176: 150-165
        • van Buul J.D.
        • Timmerman I.
        Small Rho GTPase-mediated actin dynamics at endothelial adherens junctions.
        Small GTPases. 2016; 7: 21-31
        • He P.
        Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled?.
        Cardiovasc. Res. 2010; 87 (Oxford University Press): 281-290
        • McDonald D.M.
        Endothelial gaps and permeability of venules in rat tracheas exposed to inflammatory stimuli.
        Am. J. Physiol. Lung Cell Mol. Physiol. 1994; 266
        • Baluk P.
        • Bolton P.
        • Hirata A.
        • Thurston G.
        • McDonald D.M.
        Endothelial gaps and adherent leukocytes in allergen-induced early- and late-phase plasma leakage in rat airways.
        Am. J. Pathol. Jun. 1998; 152: 1463-1476
        • Zeng M.
        • Zhang H.
        • Lowell C.
        • He P.
        Tumor necrosis factor-α-induced leukocyte adhesion and microvessel permeability.
        Am. J. Physiol. Cell Physiol. Dec. 2002; 283: H2420-H2430
        • Hahn C.
        • Schwartz M.A.
        Mechanotransduction in vascular physiology and atherogenesis.
        Nat. Rev. Mol. Cell Biol. Jan. 2009; 10: 53-62
        • Ebnet K.
        • Vestweber D.
        Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines.
        Histochem. Cell Biol. 1999; 112: 1-23
        • McEver R.P.
        Selectins: initiators of leucocyte adhesion and signalling at the vascular wall.
        Cardiovasc. Res. Aug. 2015; 107: 331-339
        • Hammer D.A.
        Leukocyte adhesion: what's the catch?.
        Curr. Biol. 08-Feb-2005; 15 (Cell Press)
        • Marshall B.T.
        • Long M.
        • Piper J.W.
        • Yago T.
        • McEver R.P.
        • Zhu C.
        Direct observation of catch bonds involving cell-adhesion molecules.
        Nature. May 2003; 423: 190-193
        • Kuwano Y.
        • Spelten O.
        • Zhang H.
        • Ley K.
        • Zarbock A.
        Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils.
        Blood. Jul. 2010; 116: 617-624
        • Oh H.-M.
        • et al.
        RKIKK motif in the intracellular domain is critical for spatial and dynamic organization of ICAM-1: functional implication for the leukocyte adhesion and transmigration.
        Mol. Biol. Cell. Jun. 2007; 18: 2322-2335
        • van Buul J.D.
        • et al.
        Inside-out regulation of ICAM-1 dynamics in TNF-alpha-activated endothelium.
        PloS One. Jun. 2010; 5: e11336
        • Walski M.
        • Chlopicki S.
        • Celary-Walska R.
        • Frontczak-Baniewicz M.
        Ultrastructural alterations of endothelium covering advanced atherosclerotic plaque in human carotid artery visualised by scanning electron microscope.
        J. Physiol. Pharmacol. 2002; 53: 713-723
        • Middleton J.
        • et al.
        Transcytosis and surface presentation of IL-8 by venular endothelial cells.
        Cell. Oct. 1997; 91: 385-395
        • Hoogewerf A.J.
        • et al.
        Glycosaminoglycans mediate cell surface oligomerization of chemokines.
        Biochemistry. Nov. 1997; 36: 13570-13578
        • Chhabra E.S.
        • Higgs H.N.
        The many faces of actin: matching assembly factors with cellular structures.
        Nat. Cell Biol. Oct-2007; 9: 1110-1121
        • Zheng J.Q.
        • Wan J.J.
        • Poo M.M.
        Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient.
        J. Neurosci. Feb. 1996; 16: 1140-1149
        • Jacquemet G.
        • Hamidi H.
        • Ivaska J.
        Filopodia in cell adhesion, 3D migration and cancer cell invasion.
        Curr. Opin. Cell Biol. 01-Oct-2015; 36 (Elsevier Ltd): 23-31
        • Bohil A.B.
        • Robertson B.W.
        • Cheney R.E.
        Myosin-X is a molecular motor that functions in filopodia formation.
        Proc. Natl. Acad. Sci. U. S. A. Aug. 2006; 103: 12411-12416
        • Tokuo H.
        • Mabuchi K.
        • Ikebe M.
        The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation.
        J. Cell Biol. Oct. 2007; 179: 229-238
        • Van Rijssel J.
        • et al.
        The Rho-GEF Trio regulates a novel pro-inflammatory pathway through the transcription factor Ets2.
        Biol. Open. Jun. 2013; 2: 569-579
        • Kroon J.
        • et al.
        Inflammation-sensitive myosin-X functionally supports leukocyte extravasation by cdc42-mediated ICAM-1-rich endothelial filopodia formation.
        J. Immunol. 2018; 200: 1790-1801
        • Abo A.
        PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia.
        EMBO J. Nov. 1998; 17: 6527-6540
        • Girbl T.
        • et al.
        Distinct compartmentalization of the chemokines CXCL1 and CXCL2 and the atypical receptor ACKR1 determine discrete stages of neutrophil diapedesis.
        Immunity. Dec. 2018; 49 (e6): 1062-1076
        • Whittall C.
        • Kehoe O.
        • King S.
        • Rot A.
        • Patterson A.
        • Middleton J.
        A chemokine self-presentation mechanism involving formation of endothelial surface microstructures.
        J. Immunol. Feb. 2013; 190: 1725-1736
        • Middleton J.
        • Patterson A.M.
        • Gardner L.
        • Schmutz C.
        • Ashton B.A.
        Leukocyte extravasation: chemokine transport and presentation by the endothelium.
        Blood. 01-Dec-2002; 100: 3853-3860
        • Graham G.J.
        • Handel T.M.
        • Proudfoot A.E.I.
        Leukocyte adhesion: reconceptualizing chemokine presentation by glycosaminoglycans.
        Trends Immunol. 01-Jun-2019; 40 (Elsevier Ltd): 472-481
        • Shulman Z.
        • et al.
        Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots.
        Nat. Immunol. Jan. 2012; 13: 67-76
        • Proudfoot A.E.I.
        • Uguccioni M.
        Modulation of chemokine responses: synergy and cooperativity.
        Front. Immunol. 2016; 7 (MAY. Frontiers Media S.A.)
        • Heit B.
        • Colarusso P.
        • Kubes P.
        Fundamentally different roles for LFA-1, Mac-1 and α 4-integrin in neutrophil chemotaxis.
        J. Cell Sci. Nov. 2005; 118: 5205-5220
        • Reglero-Real N.
        • Marcos-Ramiro B.
        • Millán J.
        Endothelial membrane reorganization during leukocyte extravasation.
        Cell. Mol. Life Sci. Sep-2012; 69: 3079-3099
        • Barreiro O.
        • et al.
        Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes.
        J. Cell Biol. Jun. 2002; 157: 1233-1245
        • Schaefer A.
        • et al.
        Actin-binding proteins differentially regulate endothelial cell stiffness, ICAM-1 function and neutrophil transmigration.
        J. Cell Sci. 2014; 127: 4470-4482
        • Amos C.
        • et al.
        Cross-linking of brain endothelial intercellular adhesion molecule (ICAM)-1 induces association of ICAM-1 with detergent-insoluble cytoskeletal fraction.
        Arterioscler. Thromb. Vasc. Biol. May 2001; 21: 810-816
        • Van Buul J.D.
        • Hordijk P.L.
        Signaling in leukocyte transendothelial migration.
        Arterioscler. Thromb. Vasc. Biol. May-2004; 24: 824-833
        • Huynh J.
        • et al.
        Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration.
        Sci. Transl. Med. Dec. 2011; 3
        • Stroka K.M.
        • Aranda-Espinoza H.
        Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction.
        Blood. Aug. 2011; 118: 1632-1640
        • Schimmel L.
        • et al.
        Stiffness-induced endothelial DLC-1 expression forces leukocyte spreading through stabilization of the ICAM-1 adhesome.
        Cell Rep. Sep. 2018; 24: 3115-3124
        • Schnoor M.
        Endothelial actin-binding proteins and actin dynamics in leukocyte transendothelial migration.
        J. Immunol. Apr. 2015; 194: 3535-3541
        • Carman C.V.
        • Springer T.A.
        A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them.
        J. Cell Biol. Oct. 2004; 167: 377-388
        • van Buul J.D.
        • et al.
        RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration.
        J. Cell Biol. Sep. 2007; 178: 1279-1293
        • V Carman C.
        • Jun C.-D.
        • Salas A.
        • Springer T.A.
        Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1.
        J. Immunol. Dec. 2003; 171: 6135-6144
        • Vestweber D.
        How leukocytes cross the vascular endothelium.
        Nat. Rev. Immunol. Nov. 2015; 15: 692-704
        • Schimmel L.
        • de Ligt A.
        • Tol S.
        • de Waard V.
        • van Buul J.D.
        Endothelial RhoB and RhoC are dispensable for leukocyte diapedesis and for maintaining vascular integrity during diapedesis.
        Small GTPases. Jan. 2018; : 1-8
        • Johnson H.E.
        • King S.J.
        • Asokan S.B.
        • Rotty J.D.
        • Bear J.E.
        • Haugh J.M.
        F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling.
        J. Cell Biol. Feb. 2015; 208: 443-455
        • Krause M.
        • Gautreau A.
        Steering cell migration: lamellipodium dynamics and the regulation of directional persistence.
        Nat. Rev. Mol. Cell Biol. 2014; 15 (Nature Publishing Group): 577-590
        • Dvorak A.M.
        • Kohn S.
        • Morgan E.S.
        • Fox P.
        • Nagy J.A.
        • Dvorak H.F.
        The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation.
        J. Leukoc. Biol. 1996; 59: 100-115
        • Citi S.
        • Guerrera D.
        • Spadaro D.
        • Shah J.
        Epithelial junctions and Rho family GTPases: the zonular signalosome.
        Small GTPases. Dec. 2014; 5
        • Garrido-Urbani S.
        • Bradfield P.F.
        • Imhof B.A.
        Tight junction dynamics: the role of junctional adhesion molecules (JAMs).
        Cell Tissue Res. 2014; 355 (Springer Verlag): 701-715
        • Wegmann F.
        • et al.
        ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability.
        J. Exp. Med. Jul. 2006; 203: 1671-1677
        • Duong C.N.
        • et al.
        Interference with ESAM (endothelial cell-selective adhesion molecule) plus vascular endothelial-cadherin causes immediate lethality and lung-specific blood coagulation.
        Arterioscler. Thromb. Vasc. Biol. Feb. 2020; 40: 378-393
        • Dejana E.
        Endothelial cell-cell junctions: happy together.
        Nat. Rev. Mol. Cell Biol. Apr-2004; 5: 261-270
        • Huveneers S.
        • et al.
        Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling.
        J. Cell Biol. 2012; 196: 641-652
        • Millán J.
        • et al.
        Adherens junctions connect stress fibres between adjacent endothelial cells.
        BMC Biol. Aug. 2010; 8: 11
        • Nottebaum A.F.
        • et al.
        VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF.
        J. Exp. Med. Nov. 2008; 205: 2929-2945
        • Bixel M.G.
        • et al.
        CD99 and CD99L2 act at the same site as, but independently of, PECAM-1 during leukocyte diapedesis.
        Blood. Aug. 2010; 116: 1172-1184
        • Watson R.L.
        • et al.
        Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration.
        J. Exp. Med. 2015; 212: 1021-1041
        • Seelige R.
        • et al.
        Cutting edge: endothelial-specific gene ablation of CD99L2 impairs leukocyte extravasation in vivo.
        J. Immunol. Feb. 2013; 190: 892-896
        • Heemskerk N.
        • et al.
        F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling.
        Nat. Commun. 2016; 7
        • Muller W.A.
        Transendothelial migration: unifying principles from the endothelial perspective.
        Immunol. Rev. 01-Sep-2016; 273 (Blackwell Publishing Ltd): 61-75
        • Carman C.V.
        Mechanisms for transcellular diapedesis: probing and pathfinding by ‘invadosome-like protrusions.
        J. Cell Sci. Sep. 2009; 122: 3025-3035
        • Sage P.T.
        • Carman C.V.
        Settings and mechanisms for trans-cellular diapedesis.
        Front. Biosci. Jun. 2009; 14: 5066-5083
        • Carman C.V.
        • Springer T.A.
        Trans-cellular migration: cell-cell contacts get intimate.
        Curr. Opin. Cell Biol. Oct-2008; 20: 533-540
        • V Carman C.
        • et al.
        Transcellular diapedesis is initiated by invasive podosomes.
        Immunity. Jun. 2007; 26: 784-797
        • Wong D.
        • Prameya R.
        • Dorovini-Zis K.
        In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1.
        J. Neuropathol. Exp. Neurol. Feb. 1999; 58: 138-152
        • Cinamon G.
        • Shinder V.
        • Shamri R.
        • Alon R.
        Chemoattractant signals and beta 2 integrin occupancy at apical endothelial contacts combine with shear stress signals to promote transendothelial neutrophil migration.
        J. Immunol. Dec. 2004; 173: 7282-7291
        • Ferreira A.M.
        • McNeil C.J.
        • Stallaert K.M.
        • Rogers K.A.
        • Sandig M.
        Interleukin-1beta reduces transcellular monocyte diapedesis and compromises endothelial adherens junction integrity.
        Microcirculation. 2005; 12: 563-579
        • Millán J.
        • Hewlett L.
        • Glyn M.
        • Toomre D.
        • Clark P.
        • Ridley A.J.
        Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains.
        Nat. Cell Biol. Feb. 2006; 8: 113-123
        • Yang L.
        • Froio R.M.
        • Sciuto T.E.
        • Dvorak A.M.
        • Alon R.
        • Luscinskas F.W.
        ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow.
        Blood. Jul. 2005; 106: 584-592
        • Riethmuller C.
        • Nasdala I.
        • Vestweber D.
        Nano-surgery at the leukocyte-endothelial docking site.
        Pflugers Archiv European Journal of Physiology. Apr-2008; 456: 71-81
        • Marmon S.
        • Cammer M.
        • Raine C.S.
        • Lisanti M.P.
        Transcellular migration of neutrophils is a quantitatively significant pathway across dermal microvascular endothelial cells.
        Exp. Dermatol. Jan. 2009; 18: 88-90
        • Shulman Z.
        • et al.
        Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin.
        Immunity. Mar. 2009; 30: 384-396
        • Abadier M.
        • et al.
        Cell surface levels of endothelial ICAM-1 influence the transcellular or paracellular T-cell diapedesis across the blood-brain barrier.
        Eur. J. Immunol. Apr. 2015; 45: 1043-1058
        • Barzilai S.
        • et al.
        Leukocytes breach endothelial barriers by insertion of nuclear lobes and disassembly of endothelial actin filaments.
        Cell Rep. Jan. 2017; 18: 685-699
        • Wimmer I.
        • et al.
        PECAM-1 Stabilizes Blood-Brain Barrier Integrity and Favors Paracellular T-Cell Diapedesis Across the Blood-Brain Barrier During Neuroinflammation.
        Front. Immunol. 2019; 10: 711
        • Marchesi V.T.
        • Florey H.W.
        Electron micrographic observations on the emigration of leucocyt.
        Q. J. Exp. Physiol. Cogn. Med. Sci. Oct. 1960; 45: 343-348
        • Williamson J.R.
        • Grisham J.W.
        Leucocytic emigration from inflamed capillaries.
        Nature. 1960; 188: 1203
        • Williamson J.R.
        • Grisham J.W.
        Electron microscopy of leukocytic margination and emigration in acute inflammation in dog pancreas.
        Am. J. Pathol. Aug. 1961; 39: 239-256
        • Schubert C.
        • Christophers E.
        • Swensson O.
        • Isei T.
        Transendothelial cell diapedesis of neutrophils in inflamed human skin.
        Arch. Dermatol. Res. 1989; 281: 475-481
        • Fujita S.
        • Puri R.K.
        • Yu Z.X.
        • Travis W.D.
        • Ferrans V.J.
        An ultrastructural study of in vivo interactions between lymphocytes and endothelial cells in the pathogenesis of the vascular leak syndrome induced by interleukin-2.
        Cancer. Nov. 1991; 68: 2169-2174
        • Feng D.
        • Nagy J.A.
        • Pyne K.
        • Dvorak H.F.
        • Dvorak A.M.
        Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP.
        J. Exp. Med. Mar. 1998; 187: 903-915
        • Hoshi O.
        • Ushiki T.
        Scanning Electron Microscopic Studies on the Route of Neutrophil Extravasation in the Mouse after Exposure to the Chemotactic Peptide N-formyl-Methionyl-Leucyl-Phenylalanine (fMLP).
        Arch. Histol. Cytol. 1999; 62: 253-260
        • Phillipson M.
        • Heit B.
        • Colarusso P.
        • Liu L.
        • Ballantyne C.M.
        • Kubes P.
        Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade.
        J. Exp. Med. Nov. 2006; 203: 2569-2575
        • Phillipson M.
        • Kaur J.
        • Colarusso P.
        • Ballantyne C.M.
        • Kubes P.
        Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration.
        PLoS One. Feb. 2008; 3
        • Woodfin A.
        • et al.
        The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo.
        Nat. Immunol. Aug. 2011; 12: 761-769
        • Halai K.
        • Whiteford J.
        • Ma B.
        • Nourshargh S.
        • Woodfin A.
        ICAM-2 facilitates luminal interactions between neutrophils and endothelial cells in vivo.
        J. Cell Sci. Feb. 2014; 127: 620-629
        • Wessel F.
        • et al.
        Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin.
        Nat. Immunol. Mar. 2014; 15: 223-230
        • Hixenbaugh E.A.
        • Goeckeler Z.M.
        • Papaiya N.N.
        • Wysolmerski R.B.
        • Silverstein S.C.
        • Huang A.J.
        Stimulated neutrophils induce myosin light chain phosphorylation and isometric tension in endothelial cells.
        Am. J. Physiol. Aug. 1997; 273: H981-H988
        • Woodfin A.
        • Voisin M.B.
        • Imhof B.A.
        • Dejana E.
        • Engelhardt B.
        • Nourshargh S.
        Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1.
        Blood. 2009; 113: 6246-6257
        • Van Nieuw Amerongen G.P.
        • Draijer R.
        • Vermeer M.A.
        • Van Hinsbergh V.W.M.
        Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA.
        Circ. Res. Nov. 1998; 83: 1115-1123
        • Muller W.A.
        Localized signals that regulate transendothelial migration.
        Curr. Opin. Immunol. Feb. 2016; 38: 24-29
        • Mamdouh Z.
        • Chen X.
        • Plerini L.M.
        • Maxfield F.R.
        • Muller W.A.
        Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis.
        Nature. Feb. 2003; 421: 748-753
        • Mamdouh Z.
        • Mikhailov A.
        • Muller W.A.
        Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment.
        J. Exp. Med. Nov. 2009; 206: 2795-2808
        • Ostermann G.
        • Weber K.S.C.
        • Zernecke A.
        • Schröder A.
        • Weber C.
        JAM-I is a ligand of the β2 integrin LFA-I involved in transendothelial migration of leukocytes.
        Nat. Immunol. 2002; 3: 151-158
        • Goswami D.
        • et al.
        Endothelial CD99 supports arrest of mouse neutrophils in venules and binds to neutrophil PILRs.
        Blood. Mar. 2017; 129: 1811-1822
        • Schenkel A.R.
        • Mamdouh Z.
        • Chen X.
        • Liebman R.M.
        • Muller W.A.
        CD99 plays a major role in the migration of monocytes through endothelial junctions.
        Nat. Immunol. Feb. 2002; 3: 143-150
        • Shepro D.
        • Morel N.M.L.
        Pericyte physiology.
        FASEB (Fed. Am. Soc. Exp. Biol.) J. 1993; 7: 1031-1038
        • Proebstl D.
        • et al.
        Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo.
        J. Exp. Med. Jun. 2012; 209: 1219-1234
        • Voisin M.-B.
        • et al.
        Neutrophil elastase plays a non-redundant role in remodeling the venular basement membrane and neutrophil diapedesis post-ischemia/reperfusion injury.
        J. Pathol. May 2019; 248: 88-102
        • Wang S.
        • et al.
        Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils.
        J. Exp. Med. Jun. 2006; 203: 1519-1532
        • Song J.
        • et al.
        Endothelial basement membrane laminin 511 contributes to endothelial junctional tightness and thereby inhibits leukocyte transmigration.
        Cell Rep. Jan. 2017; 18: 1256-1269