Advertisement

Ikk2-mediated inflammatory activation of arterial endothelial cells promotes the development and progression of atherosclerosis

      Highlights

      • Inflammatory activation of endothelial cells via a constitutively active form of IKK2 in ApoE−/− mice.
      • Inflammatory endothelial activation aggravated atherosclerosis at early and late stages.
      • Endothelial-cell specific inflammation caused phenotypic transitions of smooth-muscle cells.

      Abstract

      Background and aims

      Inflammatory activation of endothelial cells is considered to be the first step in the development of atherosclerosis. Here, we determined the consequences of chronic endothelial activation via the NF-κB activator Ikk2 (Inhibitor of nuclear factor kappa-B kinase 2, Ikk-beta) on the development and progression of atherosclerosis.

      Methods

      We established a conditional transgenic mouse model, expressing a tamoxifen-inducible, constitutively active form of Ikk2 exclusively in arterial endothelial cells (caIkk2EC mice) on an ApoE-deficient background. Mice were fed a Western-type diet and endothelial Ikk2 was activated either at early or late stages of atherosclerosis.

      Results

      En face preparations of isolated aortas revealed a significant increase in plaque area in caIkk2EC mice at 12 weeks of Western-type diet as compared to ApoE-deficient littermates. This was accompanied by increased infiltration of macrophages and T cells into the lesion. Several chemokine/cytokine and immune cell pathways were significantly upregulated in the aortic transcriptome of caIkk2EC mice. Of note, in mice with established atherosclerosis, activation of endothelial Ikk2 still further accelerated progression of atherosclerosis. This indicates that inflammatory endothelial activation is crucial during all stages of the disease.

      Conclusions

      Our results show for the first time that chronic inflammatory activation of arterial endothelial cells accelerates the development and progression of atherosclerosis both at early and late stages of disease development. Thus, pharmacological targeting of endothelial inflammation emerges as a promising treatment approach.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Raggi P.
        • Genest J.
        • Giles J.T.
        • et al.
        Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions.
        Atherosclerosis. 2018; 276: 98-108https://doi.org/10.1016/j.atherosclerosis.2018.07.014
        • Davignon J.
        • Ganz P.
        Role of endothelial dysfunction in atherosclerosis.
        Circulation. 2004; 109: III27-32https://doi.org/10.1161/01.CIR.0000131515.03336.f8
        • Geovanini G.R.
        • Libby P.
        Atherosclerosis and inflammation: overview and updates.
        Clin. Sci. (Lond.). 2018; 132: 1243-1252https://doi.org/10.1042/CS20180306
        • Back M.
        • Weber C.
        • Lutgens E.
        Regulation of atherosclerotic plaque inflammation.
        J. Intern. Med. 2015; 278: 462-482https://doi.org/10.1111/joim.12367
        • Kempe S.
        • Kestler H.
        • Lasar A.
        • et al.
        NF-kappaB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program.
        Nucleic Acids Res. 2005; 33: 5308-5319https://doi.org/10.1093/nar/gki836
        • Gimbrone Jr., M.A.
        • Garcia-Cardena G.
        Endothelial cell dysfunction and the pathobiology of atherosclerosis.
        Circ. Res. 2016; 118: 620-636https://doi.org/10.1161/circresaha.115.306301
        • Hansson G.K.
        • Libby P.
        • Tabas I.
        Inflammation and plaque vulnerability.
        J. Intern. Med. 2015; 278: 483-493https://doi.org/10.1111/joim.12406
        • Gomez D.
        • Owens G.K.
        Smooth muscle cell phenotypic switching in atherosclerosis.
        Cardiovasc. Res. 2012; 95: 156-164https://doi.org/10.1093/cvr/cvs115
        • Chaudhary R.
        • Garg J.
        • Shah N.
        • et al.
        PCSK9 inhibitors: a new era of lipid lowering therapy.
        World J. Cardiol. 2017; 9: 76-91https://doi.org/10.4330/wjc.v9.i2.76
        • Ridker P.M.
        • Everett B.M.
        • Thuren T.
        • et al.
        Antiinflammatory therapy with canakinumab for atherosclerotic disease.
        N. Engl. J. Med. 2017; 377: 1119-1131https://doi.org/10.1056/NEJMoa1707914
        • Mussbacher M.
        • Salzmann M.
        • Brostjan C.
        • et al.
        Cell type-specific roles of NF-kappaB linking inflammation and thrombosis.
        Front. Immunol. 2019; 10: 85https://doi.org/10.3389/fimmu.2019.00085
        • Ganguli A.
        • Persson L.
        • Palmer I.R.
        • et al.
        Distinct NF-kappaB regulation by shear stress through Ras-dependent IkappaBalpha oscillations: real-time analysis of flow-mediated activation in live cells.
        Circ. Res. 2005; 96: 626-634https://doi.org/10.1161/01.RES.0000160435.83210.95
        • Hoesel B.
        • Schmid J.A.
        The complexity of NF-kappaB signaling in inflammation and cancer.
        Mol. Canc. 2013; 12: 86https://doi.org/10.1186/1476-4598-12-86
        • Schmid J.A.
        • Birbach A.
        IkappaB kinase beta (Ikkbeta/Ikk2/IKBKB)--a key molecule in signaling to the transcription factor NF-kappaB.
        Cytokine Growth Factor Rev. 2008; 19: 157-165https://doi.org/10.1016/j.cytogfr.2008.01.006
        • Wilson S.H.
        • Best P.J.
        • Edwards W.D.
        • et al.
        Nuclear factor-kappaB immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris.
        Atherosclerosis. 2002; 160: 147-153
        • Hajra L.
        • Evans A.I.
        • Chen M.
        • et al.
        The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation.
        Proc. Natl. Acad. Sci. U.S.A. 2000; 97: 9052-9057
        • Bu D.X.
        • Erl W.
        • de Martin R.
        • et al.
        Ikkbeta-dependent NF-kappaB pathway controls vascular inflammation and intimal hyperplasia.
        Faseb. J. 2005; 19: 1293-1295https://doi.org/10.1096/fj.04-2645fje
        • Saito T.
        • Hasegawa Y.
        • Ishigaki Y.
        • et al.
        Importance of endothelial NF-kappaB signalling in vascular remodelling and aortic aneurysm formation.
        Cardiovasc. Res. 2013; 97: 106-114https://doi.org/10.1093/cvr/cvs298
        • Sehnert B.
        • Burkhardt H.
        • Wessels J.T.
        • et al.
        NF-kappaB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-kappaB in immune-mediated diseases.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 16556-16561https://doi.org/10.1073/pnas.1218219110
        • Ding J.
        • Song D.
        • Ye X.
        • et al.
        A pivotal role of endothelial-specific NF-kappaB signaling in the pathogenesis of septic shock and septic vascular dysfunction.
        J. Immunol. 2009; 183: 4031-4038https://doi.org/10.4049/jimmunol.0900105
        • Gareus R.
        • Kotsaki E.
        • Xanthoulea S.
        • et al.
        Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis.
        Cell Metabol. 2008; 8: 372-383https://doi.org/10.1016/j.cmet.2008.08.016
        • Sasaki Y.
        • Derudder E.
        • Hobeika E.
        • et al.
        Canonical NF-kappaB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation.
        Immunity. 2006; 24: 729-739
        • Ehling M.
        • Adams S.
        • Benedito R.
        • et al.
        Notch controls retinal blood vessel maturation and quiescence.
        Development. 2013; 140: 3051-3061https://doi.org/10.1242/dev.093351
        • Gistera A.
        • Ketelhuth D.F.
        Immunostaining of lymphocytes in mouse atherosclerotic plaque.
        Methods Mol. Biol. 2015; 1339: 149-159https://doi.org/10.1007/978-1-4939-2929-0_10
        • Mohanta S.
        • Yin C.
        • Weber C.
        • et al.
        Aorta atherosclerosis lesion analysis in hyperlipidemic mice.
        Bio Protoc. 2016; 6https://doi.org/10.21769/bioprotoc.1833
        • Dobin A.
        • Davis C.A.
        • Schlesinger F.
        • et al.
        STAR: ultrafast universal RNA-seq aligner.
        Bioinformatics. 2013; 29: 15-21https://doi.org/10.1093/bioinformatics/bts635
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 550https://doi.org/10.1186/s13059-014-0550-8
        • Subramanian A.
        • Tamayo P.
        • Mootha V.K.
        • et al.
        Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
        Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 15545-15550https://doi.org/10.1073/pnas.0506580102
        • Mootha V.K.
        • Lindgren C.M.
        • Eriksson K.F.
        • et al.
        PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.
        Nat. Genet. 2003; 34: 267-273https://doi.org/10.1038/ng1180
        • Jia Z.
        • Zhang X.
        • Guan N.
        • et al.
        Gene ranking of RNA-seq data via discriminant non-negative matrix factorization.
        PloS One. 2015; 10e0137782https://doi.org/10.1371/journal.pone.0137782
        • Puig O.
        • Yuan J.
        • Stepaniants S.
        • et al.
        A gene expression signature that classifies human atherosclerotic plaque by relative inflammation status.
        Circ. Cardiovasc. Genet. 2011; 4: 595-604https://doi.org/10.1161/CIRCGENETICS.111.960773
        • Nakagawa M.M.
        • Rathinam C.V.
        Constitutive activation of the canonical NF-kappaB pathway leads to bone marrow failure and induction of erythroid signature in hematopoietic stem cells.
        Cell Rep. 2018; 25 (e2094): 2094-2109https://doi.org/10.1016/j.celrep.2018.10.071
        • Perisic Matic L.
        • Rykaczewska U.
        • Razuvaev A.
        • et al.
        Phenotypic modulation of smooth muscle cells in atherosclerosis is associated with downregulation of LMOD1, SYNPO2, PDLIM7, PLN, and SYNM.
        Arterioscler. Thromb. Vasc. Biol. 2016; 36: 1947-1961https://doi.org/10.1161/ATVBAHA.116.307893
        • Albarran-Juarez J.
        • Kaur H.
        • Grimm M.
        • et al.
        Lineage tracing of cells involved in atherosclerosis.
        Atherosclerosis. 2016; 251: 445-453https://doi.org/10.1016/j.atherosclerosis.2016.06.012
        • Ovchinnikova O.
        • Robertson A.K.
        • Wagsater D.
        • et al.
        T-cell activation leads to reduced collagen maturation in atherosclerotic plaques of Apoe(-/-) mice.
        Am. J. Pathol. 2009; 174: 693-700https://doi.org/10.2353/ajpath.2009.080561
        • Zhou G.
        • Soufan O.
        • Ewald J.
        • et al.
        NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis.
        Nucleic Acids Res. 2019; 47: W234-W241https://doi.org/10.1093/nar/gkz240
        • Puig-Kröger A.
        • Corbí A.
        RUNX3: a new player in myeloid gene expression and immune response.
        J. Cell. Biochem. 2006; 98: 744-756https://doi.org/10.1002/jcb.20813
        • Soung D.Y.
        • Dong Y.
        • Wang Y.
        • et al.
        Runx3/AML2/Cbfa3 regulates early and late chondrocyte differentiation.
        J. Bone Miner. Res. : Off. J. Am. Soc. Bone Miner. Res. 2007; 22: 1260-1270https://doi.org/10.1359/jbmr.070502
        • Nagel T.
        • Resnick N.
        • Dewey Jr., C.F.
        • et al.
        Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors.
        Arterioscler. Thromb. Vasc. Biol. 1999; 19: 1825-1834
        • Lutgens E.
        • Faber B.
        • Schapira K.
        • et al.
        Gene profiling in atherosclerosis reveals a key role for small inducible cytokines: validation using a novel monocyte chemoattractant protein monoclonal antibody.
        Circulation. 2005; 111: 3443-3452https://doi.org/10.1161/CIRCULATIONAHA.104.510073
        • Merhi-Soussi F.
        • Kwak B.R.
        • Magne D.
        • et al.
        Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice.
        Cardiovasc. Res. 2005; 66: 583-593https://doi.org/10.1016/j.cardiores.2005.01.008
        • Kirii H.
        • Niwa T.
        • Yamada Y.
        • et al.
        Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 656-660https://doi.org/10.1161/01.ATV.0000064374.15232.C3
        • Libby P.
        Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond.
        J. Am. Coll. Cardiol. 2017; 70: 2278-2289https://doi.org/10.1016/j.jacc.2017.09.028
        • Sandison M.E.
        • Dempster J.
        • McCarron J.G.
        The transition of smooth muscle cells from a contractile to a migratory, phagocytic phenotype: direct demonstration of phenotypic modulation.
        J. Physiol. 2016; 594: 6189-6209https://doi.org/10.1113/JP272729
        • Doring Y.
        • Noels H.
        • van der Vorst E.P.C.
        • et al.
        Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: evidence from mouse and human studies.
        Circulation. 2017; 136: 388-403https://doi.org/10.1161/CIRCULATIONAHA.117.027646
        • Bergheanu S.C.
        • Bodde M.C.
        • Jukema J.W.
        Pathophysiology and treatment of atherosclerosis : current view and future perspective on lipoprotein modification treatment.
        Neth. Heart J. 2017; 25: 231-242https://doi.org/10.1007/s12471-017-0959-2