Advertisement

Hyperinsulinemia promotes endothelial inflammation via increased expression and release of Angiopoietin-2

      Highlights

      • Circulating levels of Angiopoietin-2 (ANG-2) are high in hyperinsulinemic insulin resistant men.
      • ANG-2 nullifying antibody abrogates endothelial inflammation elicited by hyperinsulinemic serum.
      • Insulin promotes expression and release of ANG-2 from endothelial cells in a p38 MAPK dependent manner.
      • cFOS transcription factor activates transcription by binding to c-FOS site present between −640 and −494 of ANG-2 promoter.

      Abstract

      Background and aims

      Angiopoietin-2 (ANG-2) mediates endothelial inflammation to initiate atherosclerosis and angiogenesis. Here we determined the serum levels of ANG-2 in hyperinsulinemic subjects and whether insulin increases its expression and release.

      Methods

      Healthy male subjects were recruited from the D-CLIP and CURES studies and, based on their fasting insulin levels, were classified as normoinsulinemic (n = 228) and hyperinsulinemic (n = 32). Serum proteins were estimated by ELISA. Endothelial inflammation was scored as the number of THP-1 monocytes adhered to HUVEC monolayer. Gene expression was determined with promoter reporter assays and semi-quantitative RT-PCR. Western blotting was used to assess changes in protein expression and activation. Immunofluorescence imaging and ChIP assay were used for nuclear localization and promoter binding studies, respectively.

      Results

      ANG-2 and sTIE2 levels were higher in hyperinsulinemic subjects. Hyperinsulinemic serum elicited endothelial inflammation, which was abrogated by an ANG-2 blocker antibody. Insulin (100 nM) increased mRNA and protein expression of ANG-2, and its release from HUVECs. It induced activation of p38 MAPK and an increase in protein levels and nuclear localization of cFOS. Binding of cFOS to the −640 to −494 promoter region mediated insulin dependent ANG-2 transcription. p38 MAPK inhibitor (25 μM) blocked insulin-induced nuclear localization of cFOS, expression of ANG-2 and ICAM-1, and release of ANG-2 into the culture medium. Spent medium collected from insulin treated cells enhanced endothelial inflammation, which was lost upon ANG-2 knockdown as well as upon p38 MAPK inhibition.

      Conclusions

      ANG-2 levels are high in hyperinsulinemic subjects and insulin induces expression and release of ANG-2 from HUVECs through p38 MAPK-cFOS pathway to elicit endothelial inflammation.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rensing K.L.
        • Reuwer A.Q.
        • Arsenault B.J.
        • von der Thusen J.H.
        • Hoekstra J.B.
        • Kastelein J.J.
        • Twickler T.B.
        Reducing cardiovascular disease risk in patients with type 2 diabetes and concomitant macrovascular disease: can insulin be too much of a good thing?.
        Diabetes Obes. Metabol. Dec.2011; 13: 1073-1087
        • Bornfeldt K.E.
        • Tabas I.
        Insulin resistance, hyperglycemia, and atherosclerosis.
        Cell Metabol. Nov.2011; 14: 575-585
        • King G.L.
        • Park K.
        • Li Q.
        Selective insulin resistance and the development of cardiovascular diseases in diabetes: the 2015 edwin bierman award lecture.
        Diabetes. June 2016; 65: 1462-1471
        • Reddy K.J.
        • Singh M.
        • Bangit J.R.
        • Batsell R.R.
        The role of insulin resistance in the pathogenesis of atherosclerotic cardiovascular disease: an updated review.
        J. Cardiovasc. Med. Sept.2010; 11: 633-647
        • Rose D.P.
        • Vona-Davis L.
        The cellular and molecular mechanisms by which insulin influences breast cancer risk and progression.
        Endocr. Relat. Canc. Dec.2012; 19: R225-R241
        • Rensing K.L.
        • Houttuijn Bloemendaal F.M.
        • Weijers E.M.
        • Richel D.J.
        • Buller H.R.
        • Koolwijk P.
        • van der Loos C.M.
        • Twickler T.B.
        • von der Thusen J.H.
        Could recombinant insulin compounds contribute to adenocarcinoma progression by stimulating local angiogenesis?.
        Diabetologia. May 2010; 53: 966-970
        • Giri H.
        • Muthuramu I.
        • Dhar M.
        • Rathnakumar K.
        • Ram U.
        • Dixit M.
        Protein tyrosine phosphatase SHP2 mediates chronic insulin-induced endothelial inflammation.
        Arterioscler. Thromb. Vasc. Biol. Aug.2012; 32: 1943-1950
        • Okouchi M.
        • Okayama N.
        • Shimizu M.
        • Omi H.
        • Fukutomi T.
        • Itoh M.
        High insulin exacerbates neutrophil-endothelial cell adhesion through endothelial surface expression of intercellular adhesion molecule-1 via activation of protein kinase C and mitogen-activated protein kinase.
        Diabetologia. Apr.2002; 45: 556-559
        • Okouchi M.
        • Okayama N.
        • Imai S.
        • Omi H.
        • Shimizu M.
        • Fukutomi T.
        • Itoh M.
        High insulin enhances neutrophil transendothelial migration through increasing surface expression of platelet endothelial cell adhesion molecule-1 via activation of mitogen activated protein kinase.
        Diabetologia. Oct.2002; 45: 1449-1456
        • Madonna R.
        • Pandolfi A.
        • Massaro M.
        • Consoli A.
        • De C.R.
        Insulin enhances vascular cell adhesion molecule-1 expression in human cultured endothelial cells through a pro-atherogenic pathway mediated by p38 mitogen-activated protein-kinase.
        Diabetologia. Mar.2004; 47: 532-536
        • Viswambharan H.
        • Yuldasheva N.Y.
        • Sengupta A.
        • Imrie H.
        • Gage M.C.
        • Haywood N.
        • Walker A.M.
        • Skromna A.
        • Makova N.
        • Galloway S.
        • Shah P.
        • Sukumar P.
        • Porter K.E.
        • Grant P.J.
        • Shah A.M.
        • Santos C.X.
        • Li J.
        • Beech D.J.
        • Wheatcroft S.B.
        • Cubbon R.M.
        • Kearney M.T.
        Selective enhancement of insulin sensitivity in the endothelium in vivo reveals a novel proatherosclerotic signaling loop.
        Circ. Res. Mar.2017; 120: 784-798
        • Duncan E.R.
        • Crossey P.A.
        • Walker S.
        • Anilkumar N.
        • Poston L.
        • Douglas G.
        • Ezzat V.A.
        • Wheatcroft S.B.
        • Shah A.M.
        • Kearney M.T.
        Effect of endothelium-specific insulin resistance on endothelial function in vivo.
        Diabetes. Dec.2008; 57: 3307-3314
        • Gage M.C.
        • Yuldasheva N.Y.
        • Viswambharan H.
        • Sukumar P.
        • Cubbon R.M.
        • Galloway S.
        • Imrie H.
        • Skromna A.
        • Smith J.
        • Jackson C.L.
        • Kearney M.T.
        • Wheatcroft S.B.
        Endothelium-specific insulin resistance leads to accelerated atherosclerosis in areas with disturbed flow patterns: a role for reactive oxygen species.
        Atherosclerosis. Sept.2013; 230: 131-139
        • Vicent D.
        • Ilany J.
        • Kondo T.
        • Naruse K.
        • Fisher S.J.
        • Kisanuki Y.Y.
        • Bursell S.
        • Yanagisawa M.
        • King G.L.
        • Kahn C.R.
        The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance.
        J. Clin. Invest. May.2003; 111: 1373-1380
        • Kearney M.T.
        • Duncan E.R.
        • Kahn M.
        • Wheatcroft S.B.
        Insulin resistance and endothelial cell dysfunction: studies in mammalian models.
        Exp. Physiol. Jan.2008; 93: 158-163
        • Augustin H.G.
        • Koh G.Y.
        • Thurston G.
        • Alitalo K.
        Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system.
        Nat. Rev. Mol. Cell Biol. Mar.2009; 10: 165-177
        • Maisonpierre P.C.
        • Suri C.
        • Jones P.F.
        • Bartunkova S.
        • Wiegand S.J.
        • Radziejewski C.
        • Compton D.
        • McClain J.
        • Aldrich T.H.
        • Papadopoulos N.
        • Daly T.J.
        • Davis S.
        • Sato T.N.
        • Yancopoulos G.D.
        Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis.
        Science. July.1997; 277: 55-60
        • Reiss Y.
        • Droste J.
        • Heil M.
        • Tribulova S.
        • Schmidt M.H.H.
        • Schaper W.
        • Dumont D.J.
        • Plate K.H.
        Angiopoietin-2 impairs revascularization after limb ischemia.
        Circ. Res. July.2007; 101: 88-96
        • Souma T.
        • Thomson B.R.
        • Heinen S.
        • Carota I.A.
        • Yamaguchi S.
        • Onay T.
        • Liu P.
        • Ghosh A.K.
        • Li C.
        • Eremina V.
        • Hong Y.K.
        • Economides A.N.
        • Vestweber D.
        • Peters K.G.
        • Jin J.
        • Quaggin S.E.
        Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP.
        Proc. Natl. Acad. Sci. U. S. A. Feb.2018; 115: 1298-1303
        • Scholz A.
        • Lang V.
        • Henschler R.
        • Czabanka M.
        • Vajkoczy P.
        • Chavakis E.
        • Drynski J.
        • Harter P.N.
        • Mittelbronn M.
        • Dumont D.J.
        • Plate K.H.
        • Reiss Y.
        Angiopoietin-2 promotes myeloid cell infiltration in a beta(2)-integrin-dependent manner.
        Blood. Nov.2011; 118: 5050-5059
        • Ju R.
        • Zhuang Z.W.
        • Zhang J.
        • Lanahan A.A.
        • Kyriakides T.
        • Sessa W.C.
        • Simons M.
        Angiopoietin-2 secretion by endothelial cell exosomes: regulation by the phosphatidylinositol 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) and syndecan-4/syntenin pathways.
        J. Biol. Chem. Jan.2014; 289: 510-519
        • Lim H.S.
        • Lip G.Y.
        • Blann A.D.
        Angiopoietin-1 and angiopoietin-2 in diabetes mellitus: relationship to VEGF, glycaemic control, endothelial damage/dysfunction and atherosclerosis.
        Atherosclerosis. May.2005; 180: 113-118
        • Li L.
        • Qian L.
        • Yu Z.Q.
        Serum angiopoietin-2 is associated with angiopathy in type 2 diabetes mellitus.
        J. Diabet. Complicat. May.2015; 29: 568-571
        • Statz S.
        • Sabal G.
        • Walborn A.
        • Williams M.
        • Hoppensteadt D.
        • Mosier M.
        • Rondina M.
        • Fareed J.
        Angiopoietin 2 levels in the risk stratification and mortality outcome prediction of sepsis-associated coagulopathy.
        Clin. Appl. Thromb. Hemost. Nov.2018; 24: 1223-1233
        • Anuradha S.
        • Mohan V.
        • Gokulakrishnan K.
        • Dixit M.
        Angiopoietin-2 levels in glucose intolerance, hypertension, and metabolic syndrome in Asian Indians (Chennai Urban Rural Epidemiology Study-74).
        Metabolism. June 2010; 59: 774-779
        • Ardeshna D.R.
        • Bob-Manuel T.
        • Nanda A.
        • Sharma A.
        • Skelton W.P.
        • Skelton M.
        • Khouzam R.N.
        Asian-Indians: a review of coronary artery disease in this understudied cohort in the United States.
        Ann. Transl. Med. Jan.2018; 6: 12
        • Mohan V.
        • Deepa R.
        • Rani S.S.
        • Premalatha G.
        Prevalence of coronary artery disease and its relationship to lipids in a selected population in South India: the Chennai Urban Population Study (CUPS No. 5).
        J. Am. Coll. Cardiol. Sept.2001; 38: 682-687
        • Hegen A.
        • Koidl S.
        • Weindel K.
        • Marme D.
        • Augustin H.G.
        • Fiedler U.
        Expression of angiopoietin-2 in endothelial cells is controlled by positive and negative regulatory promoter elements.
        Arterioscler. Thromb. Vasc. Biol. Oct.2004; 24: 1803-1809
        • Deepa M.
        • Pradeepa R.
        • Rema M.
        • Mohan A.
        • Deepa R.
        • Shanthirani S.
        • Mohan V.
        The Chennai Urban Rural Epidemiology Study (CURES)--study design and methodology (urban component) (CURES-I).
        J. Assoc. Phys. India. Sept.2003; 51: 863-870
        • Weber M.B.
        • Ranjani H.
        • Meyers G.C.
        • Mohan V.
        • Narayan K.M.
        A model of translational research for diabetes prevention in low and middle-income countries: the Diabetes Community Lifestyle Improvement Program (D-CLIP) trial.
        Prim. Care Diabetes. Apr.2012; 6: 3-9
        • Deepa M.
        • Farooq S.
        • Datta M.
        • Deepa R.
        • Mohan V.
        Prevalence of metabolic syndrome using WHO, ATPIII and IDF definitions in asian Indians: the Chennai urban rural Epidemiology study (CURES-34).
        Diabetes Metab Res. Rev. Feb.2007; 23: 127-134
        • Shah D.
        • Puthran S.
        Diagnosis of hyperinsulinaemia in a normoglycaemic healthy Indian Population--developing ethnic reference ranges.
        J. Assoc. Phys. India. May.2014; 62: 394-399
        • Schindelin J.
        • Arganda-Carreras I.
        • Frise E.
        • Kaynig V.
        • Longair M.
        • Pietzsch T.
        • Preibisch S.
        • Rueden C.
        • Saalfeld S.
        • Schmid B.
        • Tinevez J.Y.
        • White D.J.
        • Hartenstein V.
        • Eliceiri K.
        • Tomancak P.
        • Cardona A.
        Fiji: an open-source platform for biological-image analysis.
        Nat. Methods. June.2012; 9: 676-682
        • Tanos T.
        • Marinissen M.J.
        • Leskow F.C.
        • Hochbaum D.
        • Martinetto H.
        • Gutkind J.S.
        • Coso O.A.
        Phosphorylation of c-Fos by members of the p38 MAPK family. Role in the AP-1 response to UV light.
        J. Biol. Chem. May.2005; 280: 18842-18852
        • Simon M.P.
        • Tournaire R.
        • Pouyssegur J.
        The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1.
        J. Cell. Physiol. Dec.2008; 217: 809-818
        • Hasegawa Y.
        • Abe M.
        • Yamazaki T.
        • Niizeki O.
        • Shiiba K.
        • Sasaki I.
        • Sato Y.
        Transcriptional regulation of human angiopoietin-2 by transcription factor Ets-1.
        Biochem. Biophys. Res. Commun. Mar.2004; 316: 52-58
        • Deleuze V.
        • El-Hajj R.
        • Chalhoub E.
        • Dohet C.
        • Pinet V.
        • Couttet P.
        • Mathieu D.
        Angiopoietin-2 is a direct transcriptional target of TAL1, LYL1 and LMO2 in endothelial cells.
        PloS One. 2012; 7e40484
        • Piechaczyk M.
        • Blanchard J.M.
        c-fos proto-oncogene regulation and function.
        Crit. Rev. Oncol. Hematol. Oct.1994; 17: 93-131
        • Fiedler U.
        • Reiss Y.
        • Scharpfenecker M.
        • Grunow V.
        • Koidl S.
        • Thurston G.
        • Gale N.W.
        • Witzenrath M.
        • Rosseau S.
        • Suttorp N.
        • Sobke A.
        • Herrmann M.
        • Preissner K.T.
        • Vajkoczy P.
        • Augustin H.G.
        Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation.
        Nat. Med. Feb.2006; 12: 235-239
        • Schlosser K.
        • Taha M.
        • Deng Y.
        • McIntyre L.A.
        • Mei S.H.J.
        • Stewart D.J.
        High circulating angiopoietin-2 levels exacerbate pulmonary inflammation but not vascular leak or mortality in endotoxin-induced lung injury in mice.
        Thorax. Mar.2018; 73: 248-261
        • Benest A.V.
        • Kruse K.
        • Savant S.
        • Thomas M.
        • Laib A.M.
        • Loos E.K.
        • Fiedler U.
        • Augustin H.G.
        Angiopoietin-2 is critical for cytokine-induced vascular leakage.
        PloS One. 2013; 8e70459
        • Lukasz A.
        • Hillgruber C.
        • Oberleithner H.
        • Kusche-Vihrog K.
        • Pavenstadt H.
        • Rovas A.
        • Hesse B.
        • Goerge T.
        • Kumpers P.
        Endothelial glycocalyx breakdown is mediated by angiopoietin-2.
        Cardiovasc. Res. May.2017; 113: 671-680
        • Pauta M.
        • Ribera J.
        • Melgar-Lesmes P.
        • Casals G.
        • Rodriguez-Vita J.
        • Reichenbach V.
        • Fernandez-Varo G.
        • Morales-Romero B.
        • Bataller R.
        • Michelena J.
        • Altamirano J.
        • Jimenez W.
        • Morales-Ruiz M.
        Overexpression of angiopoietin-2 in rats and patients with liver fibrosis. Therapeutic consequences of its inhibition.
        Liver Int. Apr.2015; 35: 1383-1392
        • Theelen T.L.
        • Lappalainen J.P.
        • Sluimer J.C.
        • Gurzeler E.
        • Cleutjens J.P.
        • Gijbels M.J.
        • Biessen E.A.
        • Daemen M.J.
        • Alitalo K.
        • Yla-Herttuala S.
        Angiopoietin-2 blocking antibodies reduce early atherosclerotic plaque development in mice.
        Atherosclerosis. Aug.2015; 241: 297-304
        • Post S.
        • Peeters W.
        • Busser E.
        • Lamers D.
        • Sluijter J.P.
        • Goumans M.J.
        • de Weger R.A.
        • Moll F.L.
        • Doevendans P.A.
        • Pasterkamp G.
        • Vink A.
        Balance between angiopoietin-1 and angiopoietin-2 is in favor of angiopoietin-2 in atherosclerotic plaques with high microvessel density.
        J. Vasc. Res. 2008; 45: 244-250
        • Liu X.W.
        • Ma T.
        • Liu W.
        • Cai Q.
        • Wang L.
        • Song H.W.
        • Yuan L.
        • Liu Z.
        Sustained increase in angiopoietin-2, heparin-binding protein, and procalcitonin is associated with severe sepsis.
        J. Crit. Care. June 2018; 45: 14-19
        • Chen J.
        • Yu H.
        • Sun K.
        • Song W.
        • Bai Y.
        • Yang T.
        • Song Y.
        • Zhang Y.
        • Hui R.
        Promoter variant of angiopoietin-2 and plasma angiopoietin-2 are associated with risk of stroke recurrence in lacunar infarct patients.
        Biochem. Biophys. Res. Commun. July.2010; 398: 212-216
        • Davis J.S.
        • Yeo T.W.
        • Piera K.A.
        • Woodberry T.
        • Celermajer D.S.
        • Stephens D.P.
        • Anstey N.M.
        Angiopoietin-2 is increased in sepsis and inversely associated with nitric oxide-dependent microvascular reactivity.
        Crit. Care. 2010; 14: R89
        • Matsushita K.
        • Morrell C.N.
        • Cambien B.
        • Yang S.X.
        • Yamakuchi M.
        • Bao C.
        • Hara M.R.
        • Quick R.A.
        • Cao W.
        • O'Rourke B.
        • Lowenstein J.M.
        • Pevsner J.
        • Wagner D.D.
        • Lowenstein C.J.
        Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor.
        Cell. Oct.2003; 115: 139-150
        • Lee J.Y.
        • Linge H.M.
        • Ochani K.
        • Lin K.
        • Miller E.J.
        Regulation of angiopoietin-2 secretion from human pulmonary microvascular endothelial cells.
        Exp. Lung Res. Sept.2016; 42: 335-345
        • Fisslthaler B.
        • Loot A.E.
        • Mohamed A.
        • Busse R.
        • Fleming I.
        Inhibition of endothelial nitric oxide synthase activity by proline-rich tyrosine kinase 2 in response to fluid shear stress and insulin.
        Circ. Res. June 2008; 102: 1520-1528
        • Duncan E.R.
        • Walker S.J.
        • Ezzat V.A.
        • Wheatcroft S.B.
        • Li J.M.
        • Shah A.M.
        • Kearney M.T.
        Accelerated endothelial dysfunction in mild prediabetic insulin resistance: the early role of reactive oxygen species.
        Am. J. Physiol. Endocrinol. Metab. Nov.2007; 293: E1311-E1319
        • Muniyappa R.
        • Sowers J.R.
        Role of insulin resistance in endothelial dysfunction.
        Rev. Endocr. Metab. Disord. Mar.2013; 14: 5-12
        • An Y.A.
        • Sun K.
        • Joffin N.
        • Zhang F.
        • Deng Y.
        • Donze O.
        • Kusminski C.M.
        • Scherer P.E.
        Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis.
        Elife. Mar.2017; 6
        • Lassance L.
        • Miedl H.
        • Absenger M.
        • Diaz-Perez F.
        • Lang U.
        • Desoye G.
        • Hiden U.
        Hyperinsulinemia stimulates angiogenesis of human fetoplacental endothelial cells: a possible role of insulin in placental hypervascularization in diabetes mellitus.
        J. Clin. Endocrinol. Metab. Sept.2013; 98: E1438-E1447
        • Wang X.
        • Haring M.F.
        • Rathjen T.
        • Lockhart S.M.
        • Sorensen D.
        • Ussar S.
        • Rasmussen L.M.
        • Bertagnolli M.M.
        • Kahn C.R.
        • Rask-Madsen C.
        Insulin resistance in vascular endothelial cells promotes intestinal tumour formation.
        Oncogene. Aug.2017; 36: 4987-4996
        • Ye F.C.
        • Blackbourn D.J.
        • Mengel M.
        • Xie J.P.
        • Qian L.W.
        • Greene W.
        • Yeh I.T.
        • Graham D.
        • Gao S.J.
        Kaposi's sarcoma-associated herpesvirus promotes angiogenesis by inducing angiopoietin-2 expression via AP-1 and Ets1.
        J. Virol. Apr.2007; 81: 3980-3991
        • Chen Y.
        • Wu Y.
        • Zhang X.
        • Zeng H.
        • Liu Y.
        • Wu Q.
        • Chen Y.
        • Zhu G.
        • Pan Q.
        • Jin L.
        • Guo L.
        • Sun F.
        Angiopoietin-2 (Ang-2) is a useful serum tumor marker for liver cancer in the Chinese population.
        Clin. Chim. Acta. Mar.2018; 478: 18-27
        • Kim H.
        • Ahn T.S.
        • Kim C.J.
        • Bae S.B.
        • Kim H.J.
        • Lee C.S.
        • Kim T.H.
        • Im J.
        • Lee S.H.
        • Son M.W.
        • Lee M.S.
        • Baek M.J.
        • Jeong D.
        Oncogenic function of angiopoietin-2 in vitro and its modulation of tumor progression in colorectal carcinoma.
        Oncol. Lett. July 2017; 14: 553-560
        • Yang P.
        • Chen N.
        • Yang D.
        • Crane J.
        • Yang S.
        • Wang H.
        • Dong R.
        • Yi X.
        • Xie L.
        • Jing G.
        • Cai J.
        • Wang Z.
        The ratio of serum Angiopoietin-1 to Angiopoietin-2 in patients with cervical cancer is a valuable diagnostic and prognostic biomarker.
        Peer J. 2017; 5e3387
        • Martinelli S.
        • Kanduri M.
        • Maffei R.
        • Fiorcari S.
        • Bulgarelli J.
        • Marasca R.
        • Rosenquist R.
        ANGPT2 promoter methylation is strongly associated with gene expression and prognosis in chronic lymphocytic leukemia.
        Epigenetics. July 2013; 8: 720-729
        • Xu Y.
        • Zhang Y.
        • Wang Z.
        • Chen N.
        • Zhou J.
        • Liu L.
        The role of serum angiopoietin-2 levels in progression and prognosis of lung cancer: a meta-analysis.
        Medicine (Baltim.). Sept.2017; 96e8063
        • Leow C.C.
        • Coffman K.
        • Inigo I.
        • Breen S.
        • Czapiga M.
        • Soukharev S.
        • Gingles N.
        • Peterson N.
        • Fazenbaker C.
        • Woods R.
        • Jallal B.
        • Ricketts S.A.
        • Lavallee T.
        • Coats S.
        • Chang Y.
        MEDI3617, a human anti-angiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models.
        Int. J. Oncol. May.2012; 40: 1321-1330
        • D'Souza S.S.
        • Scherzinger-Laude K.
        • Simon M.
        • Salimath B.P.
        • Rossler J.
        Angiopoietin-2 inhibition using siRNA or the peptide antagonist L1-10 results in antitumor activity in human neuroblastoma.
        J. Canc. Res. Clin. Oncol. Dec.2012; 138: 2017-2026
        • Coffelt S.B.
        • Tal A.O.
        • Scholz A.
        • De P.M.
        • Patel S.
        • Urbich C.
        • Biswas S.K.
        • Murdoch C.
        • Plate K.H.
        • Reiss Y.
        • Lewis C.E.
        Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions.
        Canc. Res. July 2010; 70: 5270-5280
        • Felcht M.
        • Luck R.
        • Schering A.
        • Seidel P.
        • Srivastava K.
        • Hu J.
        • Bartol A.
        • Kienast Y.
        • Vettel C.
        • Loos E.K.
        • Kutschera S.
        • Bartels S.
        • Appak S.
        • Besemfelder E.
        • Terhardt D.
        • Chavakis E.
        • Wieland T.
        • Klein C.
        • Thomas M.
        • Uemura A.
        • Goerdt S.
        • Augustin H.G.
        Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling.
        J. Clin. Invest. June.2012; 122: 1991-2005
        • Murdoch C.
        • Tazzyman S.
        • Webster S.
        • Lewis C.E.
        Expression of Tie-2 by human monocytes and their responses to angiopoietin-2.
        J. Immunol. June 2007; 178: 7405-7411
        • Coffelt S.B.
        • Chen Y.Y.
        • Muthana M.
        • Welford A.F.
        • Tal A.O.
        • Scholz A.
        • Plate K.H.
        • Reiss Y.
        • Murdoch C.
        • De P.M.
        • Lewis C.E.
        Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion.
        J. Immunol. Apr.2011; 186: 4183-4190