Advertisement

How strong is the evidence that gut microbiota composition can be influenced by lifestyle interventions in a cardio-protective way?

      Highlights

      • Aberrant gut microbiota has been demonstrated in cardiovascular diseases.
      • Lifestyle factors modify the composition and function of the gut microbiota.
      • Gut microbiota may exert modification of serum cardiovascular risk markers.
      • Evidence on lifestyle-gut microbiota-cardiovascular health triad is inconclusive.

      Abstract

      Alterations in composition and function of the gut microbiota have been demonstrated in diseases involving the cardiovascular system, particularly coronary heart disease and atherosclerosis. The data are still limited but the typical altered genera include Roseburia and Faecalibacterium. Plausible mechanisms by which microbiota may mediate cardio-protective effects have been postulated, including the production of metabolites like trimethylamine (TMA), as well as immunomodulatory functions. This raises the question of whether it is possible to modify the gut microbiota by lifestyle interventions and thereby improve cardiovascular health. Nevertheless, lifestyle intervention studies that have involved modifications of dietary intake and/or physical activity, as well as investigating changes in the gut microbiota and subsequent modifications of the cardioprotective markers, are still scarce, and the results have been inconclusive. Current evidence points to benefits of consuming high-fibre foods, nuts and an overall healthy dietary pattern to achieve beneficial effects on both gut microbiota and serum cardiovascular markers, primarily lipids. The relationship between physical exercise and gut microbiota is probably complex and may be dependent on the intensity of exercise. In this article, we review the available evidence on lifestyle, specifically diet, physical activity and smoking as modifiers of the gut microbiota, and subsequently as modifiers of serum cardiovascular health markers. We have attempted to elucidate the plausible mechanisms and further critically appraise the caveats and gaps in the research.

      Graphical abstract

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. WHO | Disease Burden and Mortality Estimates. 2020
        • Jie Z.
        • Xia H.
        • Zhong S.
        • Feng Q.
        • Li S.
        • Liang S.
        • et al.
        The gut microbiome in atherosclerotic cardiovascular disease.
        Nat. Commun. 2017; : 845
        • Jonsson A.L.
        • Bäckhed F.
        Role of gut microbiota in atherosclerosis.
        Nat. Rev. Cardiol. 2017; : 79-87
        • Tang W.H.W.
        • Kitai T.
        • Hazen S.L.
        Gut Microbiota in Cardiovascular Health and Disease.
        Circ Res120, 2017: 1183-1196
        • Katsimichas T.
        • Antonopoulos A.S.
        • Katsimichas A.
        • Ohtani T.
        • Sakata Y.
        • Tousoulis D.
        The intestinal microbiota and cardiovascular disease.
        Cardiovasc Res115, 2019: 1471-1486
        • Attaye I.
        • Pinto-Sietsma S.
        • Herrema H.
        • Nieuwdorp M.
        A crucial role for diet in the relationship between gut microbiota and cardiometabolic disease.
        Annu. Rev. Med. 2020; : 149-161
        • Qin J.
        • Li R.
        • Raes J.
        • Arumugam M.
        • Burgdorf K.S.
        • Manichanh C.
        • et al.
        A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing.
        Nature464, 2010: 59-65
        • Arumugam M.
        • Raes J.
        • Pelletier E.
        • Le Paslier D.
        • Yamada T.
        • Mende D.R.
        • et al.
        Enterotypes of the Human Gut Microbiome.
        Nature473, 2011: 174-180
        • Clemente J.C.
        • Ursell L.K.
        • Parfrey L.W.
        • Knight R.
        The Impact of the Gut Microbiota on Human Health: an Integrative View. Cell148. 2012: 1258-1270
        • Li J.
        • Jia H.
        • Cai X.
        • Zhong H.
        • Feng Q.
        • Sunagawa S.
        • et al.
        An integrated catalog of reference genes in the human gut microbiome.
        Nat. Biotechnol. 2014; : 834-841
        • Wu G.D.
        • Chen J.
        • Hoffmann C.
        • Bittinger K.
        • Chen Y.
        • Keilbaugh S.A.
        • et al.
        Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes.
        Science334, 2011: 105-108
        • Janssens Y.
        • Nielandt J.
        • Bronselaer A.
        • Debunne N.
        • Verbeke F.
        • Wynendaele E.
        • et al.
        Disbiome database: linking the microbiome to disease.
        BMC Microbiol. 2018; : 50
      2. Disbiome database.
        • Tang W.H.W.
        • Bäckhed F.
        • Landmesser U.
        • Hazen S.L.
        Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review.
        J. Am. Coll. Cardiol. 2019; : 2089-2105
        • Busnelli M.
        • Manzini S.
        • Chiesa G.
        The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease.
        Nutrients12, 2019
        • Pedersen H.K.
        • Gudmundsdottir V.
        • Nielsen H.B.
        • Hyotylainen T.
        • Nielsen T.
        • Jensen B.A.H.
        • et al.
        Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity.
        Nature535, 2016: 376-381
        • Onyszkiewicz M.
        • Jaworska K.
        • Ufnal M.
        Short chain fatty acids and methylamines produced by gut microbiota as mediators and markers in the circulatory system.
        Exp. Biol. Med. 2020; 245: 166-175
        • Zeisel S.H.
        • Warrier M.
        Trimethylamine N-oxide, the microbiome, and heart and kidney disease.
        Annu. Rev. Nutr. 2017; : 157-181
        • Shortt C.
        • Hasselwander O.
        • Meynier A.
        • Nauta A.
        • Fernández E.N.
        • Putz P.
        • et al.
        Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients.
        Eur. J. Nutr. 2018; : 25-49
        • Mokkala K.
        • Houttu N.
        • Cansev T.
        • Laitinen K.
        Interactions of dietary fat with the gut microbiota: evaluation of mechanisms and metabolic consequences.
        Clin. Nutr. (Edinb.). 2020; : 994-1018
        • Brighenti F.
        • Casiraghi M.C.
        • Canzi E.
        • Ferrari A.
        Effect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteers.
        Eur. J. Clin. Nutr. 1999; : 726-733
        • Foerster J.
        • Maskarinec G.
        • Reichardt N.
        • Tett A.
        • Narbad A.
        • Blaut M.
        • et al.
        The influence of whole grain products and red meat on intestinal microbiota composition in normal weight adults: a randomized crossover intervention trial.
        PLoS ONE9. 2014; e109606
        • Velikonja A.
        • Lipoglavšek L.
        • Zorec M.
        • Orel R.
        • Avguštin G.
        Alterations in Gut Microbiota Composition and Metabolic Parameters after Dietary Intervention with Barley Beta Glucans in Patients with High Risk for Metabolic Syndrome Development.
        Anaerobe55, 2019: 67-77
        • Vulevic J.
        • Juric A.
        • Tzortzis G.
        • Gibson G.R.
        A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults.
        J. Nutr. 2013; : 324-331
        • Xiao S.
        • Fei N.
        • Pang X.
        • Shen J.
        • Wang L.
        • Zhang B.
        • et al.
        A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome.
        FEMS Microbiol. 2014; Ecol87: 357-367
        • Canfora E.E.
        • van der Beek
        • Christina M.
        • Hermes G.D.A.
        • Goossens G.H.
        • Jocken J.W.E.
        • Holst J.J.
        • et al.
        Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity.
        in: Obese Prediabetic Individuals, Gastroenterology 153. vol. 87. 2017 (97.e3)
        • Carvalho-Wells A.L.
        • Helmolz K.
        • Nodet C.
        • Molzer C.
        • Leonard C.
        • McKevith B.
        • et al.
        Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study.
        Br. J. Nutr. 2010; : 1353-1356
        • Clarke S.T.
        • Green-Johnson J.M.
        • Brooks S.P.J.
        • Ramdath D.D.
        • Bercik P.
        • Avila C.
        • et al.
        β2-1 Fructan supplementation alters host immune responses in a manner consistent with increased exposure to microbial components: results from a double-blinded, randomised, cross-over study in healthy adults.
        Br. J. Nutr. 2016; : 1748-1759
        • Costabile A.
        • Klinder A.
        • Fava F.
        • Napolitano A.
        • Fogliano V.
        • Leonard C.
        • et al.
        Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study.
        Br. J. Nutr. 2008; : 110-120
        • Dewulf E.M.
        • Cani P.D.
        • Claus S.P.
        • Fuentes S.
        • Puylaert P.G.B.
        • Neyrinck A.M.
        • et al.
        Insight into the Prebiotic Concept: Lessons from an Exploratory, Double Blind Intervention Study with Inulin-type Fructans in Obese Women.
        Gut62, 2013: 1112-1121
        • Jie Z.
        • Bang-Yao L.
        • Ming-Jie X.
        • Hai-Wei L.
        • Zu-Kang Z.
        • Ting-Song W.
        • et al.
        Studies on the effects of polydextrose intake on physiologic functions in Chinese people.
        Am. J. Clin. Nutr. 2000; : 1503-1509
        • Roager H.M.
        • Vogt J.K.
        • Kristensen M.
        • Hansen L.B.S.
        • Ibrügger S.
        • Mærkedahl R.B.
        • et al.
        Whole Grain-Rich Diet Reduces Body Weight and Systemic Low-Grade Inflammation without Inducing Major Changes of the Gut Microbiome: a Randomised Cross-Over Trial.
        Gut68, 2019: 83-93
        • Robinson R.R.
        • Feirtag J.
        • Slavin J.L.
        Effects of dietary arabinogalactan on gastrointestinal and blood parameters in healthy human subjects.
        J. Am. Coll. Nutr. 2001; : 279-285
        • Schutte S.
        • Esser D.
        • Hoevenaars F.P.M.
        • Hooiveld
        • Guido J.E.J.
        • Priebe M.G.
        • Vonk R.J.
        • et al.
        A 12-wk whole-grain wheat intervention protects against hepatic fat: the Graandioos study, a randomized trial in overweight subjects.
        Am. J. Clin. Nutr. 2018; : 1264-1274
        • Rebello C.J.
        • Burton J.
        • Heiman M.
        • Greenway F.L.
        Gastrointestinal microbiome modulator improves glucose tolerance in overweight and obese subjects: a randomized controlled pilot trial.
        J. Diabet. Complicat. 2015; : 1272-1276
        • Vitaglione P.
        • Mennella I.
        • Ferracane R.
        • Rivellese A.A.
        • Giacco R.
        • Ercolini D.
        • et al.
        Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber.
        Am. J. Clin. Nutr. 2015; : 251-261
        • Ampatzoglou A.
        • Atwal K.K.
        • Maidens C.M.
        • Williams C.L.
        • Ross A.B.
        • Thielecke F.
        • et al.
        Increased whole grain consumption does not affect blood biochemistry, body composition, or gut microbiology in healthy, low-habitual whole grain consumers.
        J. Nutr. 2015; : 215-221
        • Jenkins D.J.
        • Vuksan V.
        • Rao A.V.
        • Vidgen E.
        • Kendall C.W.
        • Tariq N.
        • et al.
        Colonic bacterial activity and serum lipid risk factors for cardiovascular disease.
        Metab Clin. 1999; Exp48: 264-268
        • Lima A.C.D.
        • Cecatti C.
        • Fidélix M.P.
        • Adorno M.A.T.
        • Sakamoto I.K.
        • Cesar T.B.
        • et al.
        Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: controlled clinical trials.
        J. Med. Food. 2019; : 202-210
        • Moreno-Indias I.
        • Sánchez-Alcoholado L.
        • Pérez-Martínez P.
        • Andrés-Lacueva C.
        • Cardona F.
        • Tinahones F.
        • et al.
        Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients.
        Food Funct7. 2016; : 1775-1787
        • Ni Y.
        • Mu C.
        • He X.
        • Zheng K.
        • Guo H.
        • Zhu W.
        Characteristics of gut microbiota and its response to a Chinese Herbal Formula in elder patients with metabolic syndrome.
        Drug Discov Ther12. 2018; : 161-169
        • Puupponen-Pimiä R.
        • Seppänen-Laakso T.
        • Kankainen M.
        • Maukonen J.
        • Törrönen R.
        • Kolehmainen M.
        • et al.
        Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome.
        Mol Nutr Food. 2013; Res57: 2258-2263
        • Ravn-Haren G.
        • Dragsted L.O.
        • Buch-Andersen T.
        • Jensen E.N.
        • Jensen R.I.
        • Németh-Balogh M.
        • et al.
        Intake of whole apples or clear apple juice has contrasting effects on plasma lipids in healthy volunteers.
        Eur. J. Nutr. 2013; : 1875-1889
        • Wilson R.
        • Willis J.
        • Gearry R.B.
        • Hughes A.
        • Lawley B.
        • Skidmore P.
        • et al.
        SunGold kiwifruit supplementation of individuals with prediabetes alters gut microbiota and improves vitamin C status, anthropometric and clinical markers.
        Nutrients. 2018; 10: 895
        • Medina-Vera I.
        • Sanchez-Tapia M.
        • Noriega-López L.
        • Granados-Portillo O.
        • Guevara-Cruz M.
        • Flores-López A.
        • et al.
        A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes.
        Diabetes Metab. 2019; : 122-131
        • Slavin J.L.
        • Martini M.C.
        • Jacobs D.R.
        • Marquart L.
        Plausible mechanisms for the protectiveness of whole grains.
        Am. J. Clin. Nutr. 1999; 70: 459s-463s
        • Dao M.C.
        • Everard A.
        • Aron-Wisnewsky J.
        • Sokolovska N.
        • Prifti E.
        • Verger E.O.
        • et al.
        Akkermansia Muciniphila and Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology.
        Gut65, 2016: 426-436
        • Fu J.
        • Bonder M.J.
        • Cenit M.C.
        • Tigchelaar E.F.
        • Maatman A.
        • Dekens J.A.M.
        • et al.
        The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids.
        Circ Res117, 2015: 817-824
        • Röytiö H.
        • Mokkala K.
        • Vahlberg T.
        • Laitinen K.
        Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women.
        Br. J. Nutr. 2017; : 343-352
        • Kong L.C.
        • Wuillemin P.
        • Bastard J.
        • Sokolovska N.
        • Gougis S.
        • Fellahi S.
        • et al.
        Insulin resistance and inflammation predict kinetic body weight changes in response to dietary weight loss and maintenance in overweight and obese subjects by using a Bayesian network approach.
        Am. J. Clin. Nutr. 2013; : 1385-1394
        • Haro C.
        • Montes-Borrego M.
        • Rangel-Zúñiga O.A.
        • Alcalá-Díaz J.F.
        • Gómez-Delgado F.
        • Pérez-Martínez P.
        • et al.
        Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population.
        J. Clin. Endocrinol. Metab. 2016; : 233-242
        • Zeevi D.
        • Korem T.
        • Zmora N.
        • Israeli D.
        • Rothschild D.
        • Weinberger A.
        • et al.
        Personalized Nutrition by Prediction of Glycemic Responses. Cell163. 2015: 1079-1094
        • Estruch R.
        • Ros E.
        • Salas-Salvadó J.
        • Covas M.
        • Corella D.
        • Arós F.
        • et al.
        Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts.
        N. Engl. J. Med. 2018; : e34
        • Á Martínez-González M.
        • Corella D.
        • Salas-Salvadó J.
        • Ros E.
        • Covas M.I.
        • Fiol M.
        • et al.
        Cohort profile: design and methods of the PREDIMED study.
        Int. J. Epidemiol. 2012; : 377-385
        • Holscher H.D.
        • Guetterman H.M.
        • Swanson K.S.
        • An R.
        • Matthan N.R.
        • Lichtenstein A.H.
        • et al.
        Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: a randomized controlled trial.
        J. Nutr. 2018; : 861-867
        • Tindall A.M.
        • Petersen K.S.
        • Skulas-Ray A.C.
        • Richter C.K.
        • Proctor D.N.
        • Kris-Etherton P.M.
        Replacing saturated fat with walnuts or vegetable oils improves central blood pressure and serum lipids in adults at risk for cardiovascular disease: a randomized controlled-feeding trial.
        J Am Heart Assoc8. 2019; e011512
        • Tindall A.M.
        • McLimans C.J.
        • Petersen K.S.
        • Kris-Etherton P.M.
        • Lamendella R.
        Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease.
        J. Nutr. 2020; : 806-817
        • De Filippis F.
        • Pellegrini N.
        • Vannini L.
        • Jeffery I.B.
        • La Storia A.
        • Laghi L.
        • et al.
        High-level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated Metabolome.
        Gut65, 2016: 1812-1821
        • Mitsou E.K.
        • Kakali A.
        • Antonopoulou S.
        • Mountzouris K.C.
        • Yannakoulia M.
        • Panagiotakos D.B.
        • et al.
        Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population.
        Br. J. Nutr. 2017; : 1645-1655
        • Gylling H.
        • Plat J.
        • Turley S.
        • Ginsberg H.N.
        • Ellegård L.
        • Jessup W.
        • et al.
        Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease.
        Atherosclerosis. 2014; : 346-360
        • Ayesh R.
        • Weststrate J.A.
        • Drewitt P.N.
        • Hepburn P.A.
        Safety evaluation of phytosterol esters. Part 5. Faecal short-chain fatty acid and microflora content, faecal bacterial enzyme activity and serum female sex hormones in healthy normolipidaemic volunteers consuming a controlled diet either with or without a phytosterol ester-enriched margarine.
        Food Chem. Toxicol. 1999; : 1127-1138
        • Baumgartner S.
        • Mensink R.P.
        • Smet E.D.
        • Konings M.
        • Fuentes S.
        • de Vos W.M.
        • et al.
        Effects of plant stanol ester consumption on fasting plasma oxy(phyto)sterol concentrations as related to fecal microbiota characteristics.
        J Steroid Biochem Mol. 2017; Biol169: 46-53
        • Cuevas-Tena M.
        • Bermúdez J.D.
        • Silvestre Ramona de Los
        • Ángeles
        • Alegría A.
        • Lagarda M.J.
        Impact of colonic fermentation on sterols after the intake of a plant sterol-enriched beverage: a randomized, double-blind crossover trial.
        Clin. Nutr. (Edinb.). 2019; : 1549-1560
        • Deng X.
        • Ma J.
        • Song M.
        • Jin Y.
        • Ji C.
        • Ge W.
        • et al.
        Effects of products designed to modulate the gut microbiota on hyperlipidaemia.
        Eur. J. Nutr. 2019; : 2713-2729
        • Dong Y.
        • Xu M.
        • Chen L.
        • Bhochhibhoya A.
        Probiotic foods and supplements interventions for metabolic syndromes: a systematic review and meta-analysis of recent clinical trials.
        Ann. Nutr. Metab. 2019; : 224-241
        • Yan S.
        • Tian Z.
        • Li M.
        • Li B.
        • Cui W.
        Effects of probiotic supplementation on the regulation of blood lipid levels in overweight or obese subjects: a meta-analysis.
        Food Funct10. 2019; : 1747-1759
        • Pourrajab B.
        • Fatahi S.
        • Dehnad A.
        • Kord Varkaneh H.
        • Shidfar F.
        The impact of probiotic yogurt consumption on lipid profiles in subjects with mild to moderate hypercholesterolemia: a systematic review and meta-analysis of randomized controlled trials.
        Nutr. Metabol. Cardiovasc. Dis. 2020; : 11-22
        • Pu S.
        • Khazanehei H.
        • Jones P.J.
        • Khafipour E.
        Interactions between obesity status and dietary intake of monounsaturated and polyunsaturated oils on human gut microbiome profiles in the canola oil multicenter intervention trial (COMIT).
        Front. Microbiol. 2016; : 1612
        • Watson H.
        • Mitra S.
        • Croden F.C.
        • Taylor M.
        • Wood H.M.
        • Perry S.L.
        • et al.
        A Randomised Trial of the Effect of Omega-3 Polyunsaturated Fatty Acid Supplements on the Human Intestinal Microbiota.
        Gut67, 2018: 1974-1983
        • Rajkumar H.
        • Mahmood N.
        • Kumar M.
        • Varikuti S.R.
        • Challa H.R.
        • Myakala S.P.
        Effect of Probiotic (VSL#3) and Omega-3 on Lipid Profile, Insulin Sensitivity, Inflammatory Markers, and Gut Colonization in Overweight Adults: a Randomized, Controlled Trial.
        Mediators Inflamm2014, 2014: 348959
        • Hannah W.N.
        • Harrison S.A.
        Lifestyle and Dietary Interventions in the Management of Nonalcoholic Fatty Liver Disease.
        Dig Dis Sci61, 2016: 1365-1374
        • Chen J.
        • Guo Y.
        • Gui Y.
        • Xu D.
        Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases.
        Lipids Health Dis. 2018; : 17
        • Karl J.P.
        • Margolis L.M.
        • Madslien E.H.
        • Murphy N.E.
        • Castellani J.W.
        • Gundersen Y.
        • et al.
        Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress.
        Am. J. Physiol. Gastrointest. Liver Physiol. 2017; : G559-G571
        • Murtaza N.
        • Burke L.M.
        • Vlahovich N.
        • Charlesson B.
        • O' Neill H.
        • Ross M.L.
        • et al.
        The Effects of Dietary Pattern during Intensified Training on Stool Microbiota of Elite Race Walkers.
        Nutrients11, 2019
        • Keohane D.M.
        • Woods T.
        • O'Connor P.
        • Underwood S.
        • Cronin O.
        • Whiston R.
        • et al.
        Four men in a boat: ultra-endurance exercise alters the gut microbiome.
        J. Sci. Med. Sport. 2019; : 1059-1064
        • Hampton-Marcell J.T.
        • Eshoo T.W.
        • Cook M.D.
        • Gilbert J.A.
        • Horswill C.A.
        • Poretsky R.
        Comparative analysis of gut microbiota following changes in training volume Among swimmers.
        Int J Sports. 2020; Med41: 292-299
        • Zhao X.
        • Zhang Z.
        • Hu B.
        • Huang W.
        • Yuan C.
        • Zou L.
        Response of gut microbiota to metabolite changes induced by endurance exercise.
        Front. Microbiol. 2018; : 765
        • Scheiman J.
        • Luber J.M.
        • Chavkin T.A.
        • MacDonald T.
        • Tung A.
        • Pham L.
        • et al.
        Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism.
        Nat. 2019; Med25: 1104-1109
        • Morita E.
        • Yokoyama H.
        • Imai D.
        • Takeda R.
        • Ota A.
        • Kawai E.
        • et al.
        Aerobic Exercise Training with Brisk Walking Increases Intestinal Bacteroides in Healthy Elderly Women.
        Nutrients11, 2019
        • Allen J.M.
        • Mailing L.J.
        • Niemiro G.M.
        • Moore R.
        • Cook M.D.
        • White B.A.
        • et al.
        Exercise alters gut microbiota composition and function in lean and obese humans.
        Med. Sci. Sports Exerc. 2018; : 747-757
        • Taniguchi H.
        • Tanisawa K.
        • Sun X.
        • Kubo T.
        • Hoshino Y.
        • Hosokawa M.
        • et al.
        Effects of short-term endurance exercise on gut microbiota in elderly men.
        Phys. Rep. 2018; e13935
        • Munukka E.
        • Ahtiainen J.P.
        • Puigbó P.
        • Jalkanen S.
        • Pahkala K.
        • Keskitalo A.
        • et al.
        Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women.
        Front. Microbiol. 2018; : 2323
        • Cronin O.
        • Barton W.
        • Skuse P.
        • Penney N.C.
        • Garcia-Perez I.
        • Murphy E.F.
        • et al.
        A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise And/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults.
        mSystems3, 2018
        • Cronin O.
        • Barton W.
        • Moran C.
        • Sheehan D.
        • Whiston R.
        • Nugent H.
        • et al.
        Moderate-intensity aerobic and resistance exercise is safe and favorably influences body composition in patients with quiescent Inflammatory Bowel Disease: a randomized controlled cross-over trial.
        BMC Gastroenterol. 2019; : 29
        • Pasini E.
        • Corsetti G.
        • Assanelli D.
        • Testa C.
        • Romano C.
        • Dioguardi F.S.
        • et al.
        Effects of Chronic Exercise on Gut Microbiota and Intestinal Barrier in Human with Type 2 Diabetes.
        Minerva Med110, 2019: 3-11
        • Lee J.
        • Cooke J.P.
        The Role of Nicotine in the Pathogenesis of Atherosclerosis.
        Atherosclerosis215, 2011: 281-283
        • Lee S.H.
        • Yun Y.
        • Kim S.J.
        • Lee E.
        • Chang Y.
        • Ryu S.
        • et al.
        Association between cigarette smoking status and composition of gut microbiota: population-based cross-sectional study.
        J Clin. 2018; Med7
        • Zhernakova A.
        • Kurilshikov A.
        • Bonder M.J.
        • Tigchelaar E.F.
        • Schirmer M.
        • Vatanen T.
        • et al.
        Population-based Metagenomics Analysis Reveals Markers for Gut Microbiome Composition and Diversity.
        Science352, 2016: 565-569
        • Huang C.
        • Shi G.
        Smoking and microbiome in oral, airway, gut and some systemic diseases.
        JSME Trans. 2019; Med17: 225
        • Griffen A.L.
        • Beall C.J.
        • Campbell J.H.
        • Firestone N.D.
        • Kumar P.S.
        • Yang Z.K.
        • et al.
        Distinct and Complex Bacterial Profiles in Human Periodontitis and Health Revealed by 16S Pyrosequencing.
        ISME J6, 2012: 1176-1185
        • Hong B.
        • Furtado Araujo M.V.
        • Strausbaugh L.D.
        • Terzi E.
        • Ioannidou E.
        • Diaz P.I.
        Microbiome profiles in periodontitis in relation to host and disease characteristics.
        PLoS ONE10. 2015; e0127077
        • Delima S.L.
        • McBride R.K.
        • Preshaw P.M.
        • Heasman P.A.
        • Kumar P.S.
        Response of subgingival bacteria to smoking cessation.
        J. Clin. Microbiol. 2010; : 2344-2349
        • Biedermann L.
        • Zeitz J.
        • Mwinyi J.
        • Sutter-Minder E.
        • Rehman A.
        • Ott S.J.
        • et al.
        Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans.
        PLoS ONE8. 2013; e59260
        • Biedermann L.
        • Brülisauer K.
        • Zeitz J.
        • Frei P.
        • Scharl M.
        • Vavricka S.R.
        • et al.
        Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH.
        Inflamm. Bowel Dis. 2014; : 1496-1501
        • Bennett B.J.
        • de Aguiar Vallim
        • Thomas Q.
        • Wang Z.
        • Shih D.M.
        • Meng Y.
        • Gregory J.
        • et al.
        Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation.
        Cell Metab17. 2013; : 49-60
        • DiNicolantonio J.J.
        • McCarty M.
        • OKeefe J.
        Association of Moderately Elevated Trimethylamine N-Oxide with Cardiovascular Risk: Is TMAO Serving as a Marker for Hepatic Insulin Resistance.
        Open Heart6, 2019e000890
        • Yang S.
        • Li X.
        • Yang F.
        • Zhao R.
        • Pan X.
        • Liang J.
        • et al.
        Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target.
        Front. Pharmacol. 2019; : 1360
        • Erickson M.L.
        • Malin S.K.
        • Wang Z.
        • Brown J.M.
        • Hazen S.L.
        • Kirwan J.P.
        Effects of Lifestyle Intervention on Plasma Trimethylamine N-Oxide in Obese Adults.
        Nutrients11, 2019
        • Heianza Y.
        • Sun D.
        • Li X.
        • DiDonato J.A.
        • Bray G.A.
        • Sacks F.M.
        • et al.
        Gut Microbiota Metabolites, Amino Acid Metabolites and Improvements in Insulin Sensitivity and Glucose Metabolism: the POUNDS Lost Trial.
        Gut68, 2019: 263-270
        • Smits L.P.
        • Kootte R.S.
        • Levin E.
        • Prodan A.
        • Fuentes S.
        • Zoetendal E.G.
        • et al.
        Effect of vegan fecal microbiota transplantation on carnitine- and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome.
        J. Am. Heart Assoc. 2018; 7e008342
        • Zhu W.
        • Gregory J.C.
        • Org E.
        • Buffa J.A.
        • Gupta N.
        • Wang Z.
        • et al.
        Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell165. 2016: 111-124
        • Chen S.
        • Henderson A.
        • Petriello M.C.
        • Romano K.A.
        • Gearing M.
        • Miao J.
        • et al.
        Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction.
        Cell Metab30. 2019; 1141 (1151.e5)
        • Koeth R.A.
        • Wang Z.
        • Levison B.S.
        • Buffa J.A.
        • Org E.
        • Sheehy B.T.
        • et al.
        Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.
        Nat. 2013; Med19: 576-585
        • Ma G.
        • Pan B.
        • Chen Y.
        • Guo C.
        • Zhao M.
        • Zheng L.
        • et al.
        Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion.
        Biosci. 2017; : Rep37
        • Koh A.
        • Molinaro A.
        • Ståhlman M.
        • Khan M.T.
        • Schmidt C.
        • Mannerås-Holm L.
        • et al.
        Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. vol. 947. 2018: Cell175 (961.e17)
        • Russell D.W.
        The enzymes, regulation, and genetics of bile acid synthesis.
        Annu. Rev. Biochem. 2003; : 137-174
        • Kuipers F.
        • Bloks V.W.
        • Groen A.K.
        Beyond intestinal soap--bile acids in metabolic control.
        Nat. Rev. Endocrinol. 2014; : 488-498
        • Döring B.
        • Lütteke T.
        • Geyer J.
        • Petzinger E.
        The SLC10 carrier family: transport functions and molecular structure.
        Curr. Top. Membr. 2012; : 105-168
        • Ridlon J.M.
        • Kang D.
        • Hylemon P.B.
        Bile salt biotransformations by human intestinal bacteria.
        J Lipid. 2006; Res47: 241-259
        • Schranner D.
        • Kastenmüller G.
        • Schönfelder M.
        • Römisch-Margl W.
        • Wackerhage H.
        Metabolite concentration changes in humans after a bout of exercise: a systematic review of exercise metabolomics studies.
        Sports Med Open6. 2020; : 11
        • Meslier V.
        • Laiola M.
        • Roager H.M.
        • De Filippis F.
        • Roume H.
        • Quinquis B.
        • et al.
        Mediterranean Diet Intervention in Overweight and Obese Subjects Lowers Plasma Cholesterol and Causes Changes in the Gut Microbiome and Metabolome Independently of Energy Intake.
        Gut69, 2020: 1258-1268
        • Weickert M.O.
        • Hattersley J.G.
        • Kyrou I.
        • Arafat A.M.
        • Rudovich N.
        • Roden M.
        • et al.
        Effects of Supplemented Isoenergetic Diets Varying in Cereal Fiber and Protein Content on the Bile Acid Metabolic Signature and Relation to Insulin Resistance.
        Nutr Diabetes8, 2018: 11
        • Hanniman E.A.
        • Lambert G.
        • McCarthy T.C.
        • Sinal C.J.
        Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice.
        J Lipid. 2005; Res46: 2595-2604
        • Zhang Y.
        • Wang X.
        • Vales C.
        • Lee F.Y.
        • Lee H.
        • Lusis A.J.
        • et al.
        FXR deficiency causes reduced atherosclerosis in Ldlr-/- mice.
        Arterioscler. Thromb. Vasc. Biol. 2006; : 2316-2321
        • Hambruch E.
        • Miyazaki-Anzai S.
        • Hahn U.
        • Matysik S.
        • Boettcher A.
        • Perović-Ottstadt S.
        • et al.
        Synthetic farnesoid X receptor agonists induce high-density lipoprotein-mediated transhepatic cholesterol efflux in mice and monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (-/-) mice.
        J Pharmacol Exp Ther343. 2012; : 556-567
        • Nevens F.
        • Andreone P.
        • Mazzella G.
        • Strasser S.I.
        • Bowlus C.
        • Invernizzi P.
        • et al.
        A placebo-controlled trial of obeticholic acid in primary biliary cholangitis.
        N Engl J. 2016; Med375: 631-643
        • Kida T.
        • Tsubosaka Y.
        • Hori M.
        • Ozaki H.
        • Murata T.
        Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells.
        Arterioscler. Thromb. Vasc. Biol. 2013; : 1663-1669
        • Studer E.
        • Zhou X.
        • Zhao R.
        • Wang Y.
        • Takabe K.
        • Nagahashi M.
        • et al.
        Conjugated Bile Acids Activate the Sphingosine-1-Phosphate Receptor 2 in Primary Rodent Hepatocytes.
        Hepatology55, 2012: 267-276
        • Skoura A.
        • Michaud J.
        • Im D.
        • Thangada S.
        • Xiong Y.
        • Smith J.D.
        • et al.
        Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2011; : 81-85
        • Sui Y.
        • Xu J.
        • Rios-Pilier J.
        • Zhou C.
        Deficiency of PXR decreases atherosclerosis in apoE-deficient mice.
        J. Lipid Res. 2011; : 1652-1659
        • Kim S.
        • Goel R.
        • Kumar A.
        • Qi Y.
        • Lobaton G.
        • Hosaka K.
        • et al.
        Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure.
        Clin. Sci. (Lond.). 2018; : 701-718
        • Kasahara K.
        • Krautkramer K.A.
        • Org E.
        • Romano K.A.
        • Kerby R.L.
        • Vivas E.I.
        • et al.
        Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model.
        Nat Microbiol3. 2018; : 1461-1471
        • Brinkworth G.D.
        • Noakes M.
        • Clifton P.M.
        • Bird A.R.
        Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations.
        Br. J. Nutr. 2009; : 1493-1502
        • Sowah S.A.
        • Riedl L.
        • Damms-Machado A.
        • Johnson T.S.
        • Schübel R.
        • Graf M.
        • et al.
        Effects of weight-loss interventions on short-chain fatty acid concentrations in blood and feces of adults: a systematic review.
        Adv Nutr10. 2019; : 673-684
        • Bartolomaeus H.
        • Balogh A.
        • Yakoub M.
        • Homann S.
        • Markó L.
        • Höges S.
        • et al.
        Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage.
        Circulation139, 2019: 1407-1421
        • Li M.
        • van Esch
        • Betty C.A.M.
        • Wagenaar G.T.M.
        • Garssen J.
        • Folkerts G.
        • Henricks P.A.J.
        Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells.
        Eur. J. Pharmacol. 2018; : 52-59
        • Aguilar E.C.
        • Leonel A.J.
        • Teixeira L.G.
        • Silva A.R.
        • Silva J.F.
        • Pelaez J.M.N.
        • et al.
        Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation.
        Nutr. Metabol. Cardiovasc. Dis. 2014; : 606-613
        • Zapolska-Downar D.
        • Siennicka A.
        • Kaczmarczyk M.
        • Kołodziej B.
        • Naruszewicz M.
        Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: the role of NF-kappaB and PPARalpha.
        J. Nutr. Biochem. 2004; : 220-228
        • Zapolska-Downar D.
        • Naruszewicz M.
        Propionate reduces the cytokine-induced VCAM-1 and ICAM-1 expression by inhibiting nuclear factor-kappa B (NF-kappaB) activation.
        J. Physiol. Pharmacol. 2009; : 123-131
        • Bouter K.
        • Bakker G.J.
        • Levin E.
        • Hartstra A.V.
        • Kootte R.S.
        • Udayappan S.D.
        • et al.
        Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects.
        Clin. Transl. Gastroenterol. 2018; : 155
        • van der Beek
        • Christina M.
        • Canfora E.E.
        • Lenaerts K.
        • Troost F.J.
        • Damink Steven W. M. Olde
        • Holst J.J.
        • et al.
        Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men.
        Clin. Sci. (Lond.). 2016; : 2073-2082
        • Tamakoshi K.
        • Yatsuya H.
        • Kondo T.
        • Hori Y.
        • Ishikawa M.
        • Zhang H.
        • et al.
        The metabolic syndrome is associated with elevated circulating C-reactive protein in healthy reference range, a systemic low-grade inflammatory state.
        Int. J. Obes. Relat. Metab. Disord. 2003; : 443-449
        • Robinson W.H.
        • Lepus C.M.
        • Wang Q.
        • Raghu H.
        • Mao R.
        • Lindstrom T.M.
        • et al.
        Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis.
        Nat. Rev. Rheumatol. 2016; : 580-592
        • Conti P.
        • Ronconi G.
        • Kritas S.K.
        • Caraffa A.
        • Theoharides T.C.
        Activated mast cells mediate low-grade inflammation in type 2 diabetes: interleukin-37 could Be beneficial.
        Can. J. Diabetes. 2018; : 568-573
        • Mastrangelo F.
        • Frydas I.
        • Ronconi G.
        • Kritas S.K.
        • Tettamanti L.
        • Caraffa A.
        • et al.
        Low-grade chronic inflammation mediated by mast cells in fibromyalgia: role of IL-37.
        J. Biol. Regul. Homeost. Agents. 2018; : 195-198
        • Libby P.
        Inflammation in Atherosclerosis.
        Arterioscler Thromb Vasc Biol32, 2012: 2045-2051
        • Ferrucci L.
        • Fabbri E.
        Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty.
        Nat. Rev. Cardiol. 2018; : 505-522
        • Cani P.D.
        • Bibiloni R.
        • Knauf C.
        • Waget A.
        • Neyrinck A.M.
        • Delzenne N.M.
        • et al.
        Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet-Induced Obesity and Diabetes in Mice.
        Diabetes57, 2008: 1470-1481
        • Asada M.
        • Oishi E.
        • Sakata S.
        • Hata J.
        • Yoshida D.
        • Honda T.
        • et al.
        Serum lipopolysaccharide-binding protein levels and the incidence of cardiovascular disease in a general Japanese population: the hisayama study.
        J Am Heart Assoc8. 2019; e013628
        • Formes H.
        • Reinhardt C.
        The gut microbiota - a modulator of endothelial cell function and a contributing environmental factor to arterial thrombosis.
        Expert Rev Hematol12. 2019; : 541-549
        • Hauser I.A.
        • Johnson D.R.
        • Madri J.A.
        Differential induction of VCAM-1 on human iliac venous and arterial endothelial cells and its role in adhesion.
        J. Immunol. 1993; : 5172-5185
        • Into T.
        • Kanno Y.
        • Dohkan J.
        • Nakashima M.
        • Inomata M.
        • Shibata K.
        • et al.
        Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells.
        J Biol. 2007; Chem282: 8134-8141
        • van den Munckhof I.C.L.
        • Kurilshikov A.
        • Ter Horst R.
        • Riksen N.P.
        • Joosten L.a.B.
        • Zhernakova A.
        • et al.
        Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies.
        Obes. Rev. 2018; : 1719-1734
        • Sun L.
        • Jia H.
        • Li J.
        • Yu M.
        • Yang Y.
        • Tian D.
        • et al.
        Cecal gut microbiota and metabolites might contribute to the severity of acute myocardial ischemia by impacting the intestinal permeability, oxidative stress, and energy metabolism.
        Front. Microbiol. 2019; : 1745
        • Chen R.
        • Xu Y.
        • Wu P.
        • Zhou H.
        • Lasanajak Y.
        • Fang Y.
        • et al.
        Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota.
        Pharmacol. 2019; Res148: 104403
        • Gil-Cruz C.
        • Perez-Shibayama C.
        • De Martin A.
        • Ronchi F.
        • van der Borght K.
        • Niederer R.
        • et al.
        Microbiota-derived Peptide Mimics Drive Lethal Inflammatory Cardiomyopathy.
        Science366, 2019: 881-886
        • Minihane A.M.
        • Vinoy S.
        • Russell W.R.
        • Baka A.
        • Roche H.M.
        • Tuohy K.M.
        • et al.
        Low-grade inflammation, diet composition and health: current research evidence and its translation.
        Br. J. Nutr. 2015; : 999-1012
        • Ley R.E.
        • Turnbaugh P.J.
        • Klein S.
        • Gordon J.I.
        Microbial Ecology: Human Gut Microbes Associated with Obesity.
        Nature444, 2006: 1022-1023
        • Le Chatelier E.
        • Nielsen T.
        • Qin J.
        • Prifti E.
        • Hildebrand F.
        • Falony G.
        • et al.
        Richness of human gut microbiome correlates with metabolic markers.
        Nature (Lond.). 2013; : 541-546
        • Qin J.
        • Li Y.
        • Cai Z.
        • Li S.
        • Zhu J.
        • Zhang F.
        • et al.
        A Metagenome-wide Association Study of Gut Microbiota in Type 2 Diabetes.
        Nature490, 2012: 55-60
        • Karlsson F.H.
        • Tremaroli V.
        • Nookaew I.
        • Bergström G.
        • Behre C.J.
        • Fagerberg B.
        • et al.
        Gut Metagenome in European Women with Normal, Impaired and Diabetic Glucose Control. Nature498. 2013: 99-103
        • Vatanen T.
        • Franzosa E.A.
        • Schwager R.
        • Tripathi S.
        • Arthur T.D.
        • Vehik K.
        • et al.
        The Human Gut Microbiome in Early-Onset Type 1 Diabetes from the TEDDY Study.
        Nature562, 2018: 589-594
        • Vieira-Silva S.
        • Falony G.
        • Belda E.
        • Nielsen T.
        • Aron-Wisnewsky J.
        • Chakaroun R.
        • et al.
        Statin Therapy Is Associated with Lower Prevalence of Gut Microbiota Dysbiosis.
        Nature581, 2020: 310-315
        • Catry E.
        • Pachikian B.D.
        • Salazar N.
        • Neyrinck A.M.
        • Cani P.D.
        • Delzenne N.M.
        Ezetimibe and Simvastatin Modulate Gut Microbiota and Expression of Genes Related to Cholesterol Metabolism.
        Life Sci132, 2015: 77-84
        • Tuteja S.
        • Ferguson J.F.
        Gut Microbiome and Response to Cardiovascular Drugs.
        Circ Genom Precis Med12, 2019: 421-429
        • Milani C.
        • Hevia A.
        • Foroni E.
        • Duranti S.
        • Turroni F.
        • Lugli G.A.
        • et al.
        Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol.
        PloS one8. 2013; e68739
        • Hiergeist A.
        • Reischl U.
        • Gessner A.
        Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability.
        International Journal of Medical Microbiology306. 2016; : 334-342
        • Gerasimidis K.
        • Bertz M.
        • Quince C.
        • Brunner K.
        • Bruce A.
        • Combet E.
        • et al.
        The effect of DNA extraction methodology on gut microbiota research applications.
        BMC Res. Notes. 2016; 9: 365
        • Lankinen M.A.
        • Fauland A.
        • Shimizu B.
        • Ågren J.
        • Wheelock C.E.
        • Laakso M.
        • et al.
        Inflammatory response to dietary linoleic acid depends on FADS1 genotype.
        Am. J. Clin. Nutr. 2019; : 165-175
        • Martínez-González M.A.
        • Buil-Cosiales P.
        • Corella D.
        • Bulló M.
        • Fitó M.
        • Vioque J.
        • et al.
        Cohort Profile: design and methods of the PREDIMED-Plus randomized trial.
        Int J Epidemiol48. 2019; : 387-388o
        • Vrieze A.
        • Van Nood E.
        • Holleman F.
        • Salojärvi J.
        • Kootte R.S.
        • Bartelsman
        • Joep F.W.M.
        • et al.
        Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome.
        Gastroenterology. 2012; 913 (916.e7)
        • Kootte R.S.
        • Levin E.
        • Salojärvi J.
        • Smits L.P.
        • Hartstra A.V.
        • Udayappan S.D.
        • et al.
        Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition.
        Cell Metab26. 2017; 611 (619.e6)
        • Yu E.W.
        • Gao L.
        • Stastka P.
        • Cheney M.C.
        • Mahabamunuge J.
        • Torres Soto M.
        • et al.
        Fecal microbiota transplantation for the improvement of metabolism in obesity: the FMT-TRIM double-blind placebo-controlled pilot trial.
        PLoS. 2020; Med17e1003051
        • de Groot P.
        • Scheithauer T.
        • Bakker G.J.
        • Prodan A.
        • Levin E.
        • Khan M.T.
        • et al.
        Donor Metabolic Characteristics Drive Effects of Faecal Microbiota Transplantation on Recipient Insulin Sensitivity, Energy Expenditure and Intestinal Transit Time.
        Gut69, 2020: 502-512
        • Van Horn L.
        • Carson J.A.S.
        • Appel L.J.
        • Burke L.E.
        • Economos C.
        • Karmally W.
        • et al.
        Recommended Dietary Pattern to Achieve Adherence to the American Heart Association/American College of Cardiology (AHA/ACC) Guidelines:.
        A Scientific Statement From the American Heart Association, Circulation1342016: e505-e529
        • Koren O.
        • Spor A.
        • Felin J.
        • Fåk F.
        • Stombaugh J.
        • Tremaroli V.
        • et al.
        Human oral, gut, and plaque microbiota in patients with atherosclerosis.
        Proc Natl Acad Sci U S A108 Suppl. 2011; 1: 4592-4598
        • Yin J.
        • Liao S.
        • He Y.
        • Wang S.
        • Xia G.
        • Liu F.
        • et al.
        Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack.
        J. Am. Heart Assoc. 2015; 4e002699
        • Emoto T.
        • Yamashita T.
        • Kobayashi T.
        • Sasaki N.
        • Hirota Y.
        • Hayashi T.
        • et al.
        Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease.
        Heart Ves. 2017; : 39-46
        • Zhu Q.
        • Gao R.
        • Zhang Y.
        • Pan D.
        • Zhu Y.
        • Zhang X.
        • et al.
        Dysbiosis signatures of gut microbiota in coronary artery disease.
        Physiol. Genom. 2018; : 893-903
        • Li J.
        • Zhao F.
        • Wang Y.
        • Chen J.
        • Tao J.
        • Tian G.
        • et al.
        Gut Microbiota Dysbiosis Contributes to the Development of Hypertension.
        Microbiome5, 2017: 14
        • Yan Q.
        • Gu Y.
        • Li X.
        • Yang W.
        • Jia L.
        • Chen C.
        • et al.
        Alterations of the gut microbiome in hypertension.
        Front Cell Infect Microbiol7. 2017; : 381
        • Cui X.
        • Ye L.
        • Li J.
        • Jin L.
        • Wang W.
        • Li S.
        • et al.
        Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients.
        Sci. Rep. 2018; : 635
        • Luedde M.
        • Winkler T.
        • Heinsen F.
        • Rühlemann M.C.
        • Spehlmann M.E.
        • Bajrovic A.
        • et al.
        Heart Failure Is Associated with Depletion of Core Intestinal Microbiota.
        ESC Heart Fail4, 2017: 282-290
        • Kummen M.
        • Mayerhofer C.C.K.
        • Vestad B.
        • Broch K.
        • Awoyemi A.
        • Storm-Larsen C.
        • et al.
        Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts.
        J. Am. Coll. Cardiol. 2018; : 1184-1186
        • Katsimichas T.
        • Ohtani T.
        • Motooka D.
        • Tsukamoto Y.
        • Kioka H.
        • Nakamoto K.
        • et al.
        Non-Ischemic Heart Failure with Reduced Ejection Fraction Is Associated with Altered Intestinal Microbiota.
        Circ J82, 2018: 1640-1650
        • Cooper D.N.
        • Kable M.E.
        • Marco M.L.
        • De Leon A.
        • Rust B.
        • Baker J.E.
        • et al.
        The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota.
        Nutrients9, 2017
        • Martínez I.
        • Lattimer J.M.
        • Hubach K.L.
        • Case J.A.
        • Yang J.
        • Weber C.G.
        • et al.
        Gut microbiome composition is linked to whole grain-induced immunological improvements.
        The ISME journal7. 2013; : 269-280
        • Sandberg J.
        • Kovatcheva-Datchary P.
        • Björck I.
        • Bäckhed F.
        • Nilsson A.
        Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics.
        Eur. J. Nutr. 2019; : 2365-2376
        • Balfegó M.
        • Canivell S.
        • Hanzu F.A.
        • Sala-Vila A.
        • Martínez-Medina M.
        • Murillo S.
        • et al.
        Effects of Sardine-Enriched Diet on Metabolic Control, Inflammation and Gut Microbiota in Drug-Naïve Patients with Type 2 Diabetes: a Pilot Randomized Trial.
        Lipids Health Dis15, 2016: 78
        • Chambers E.S.
        • Byrne C.S.
        • Morrison D.J.
        • Murphy K.G.
        • Preston T.
        • Tedford C.
        • et al.
        Dietary Supplementation with Inulin-Propionate Ester or Inulin Improves Insulin Sensitivity in Adults with Overweight and Obesity with Distinct Effects on the Gut Microbiota, Plasma Metabolome and Systemic Inflammatory Responses: a Randomised Cross-Over Trial.
        Gut68, 2019: 1430-1438
        • Han K.
        • Bose S.
        • Wang J.
        • Kim B.
        • Kim M.J.
        • Kim E.
        • et al.
        Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women.
        Mol Nutr Food. 2015; Res59: 1004-1008
        • Lear R.
        • O’Leary M.
        • O’Brien Andersen L.
        • Holt C.C.
        • Stensvold C.R.
        • van der Giezen M.
        • et al.
        Tart cherry concentrate does not alter the gut microbiome, glycaemic control or systemic inflammation in a middle-aged population.
        Nutrients. 2019; 11: 1063
        • Redondo N.
        • García-González N.
        • Diaz-Prieto L.E.
        • Olmedilla-Alonso B.
        • Martín-Diana A.B.
        • Asensio-Vegas C.
        • et al.
        Effects of Ewe's milk yogurt (whole and semi-skimmed) and cow's milk yogurt on inflammation markers and gut microbiota of subjects with borderline-high plasma cholesterol levels: a crossover study.
        Eur. J. Nutr. 2019; : 1113-1124
        • Sheflin A.M.
        • Borresen E.C.
        • Wdowik M.J.
        • Rao S.
        • Brown R.J.
        • Heuberger A.L.
        • et al.
        Pilot Dietary Intervention with Heat-Stabilized Rice Bran Modulates Stool Microbiota and Metabolites in Healthy Adults.
        Nutrients7, 2015: 1282-1300
        • Fava F.
        • Gitau R.
        • Griffin B.A.
        • Gibson G.R.
        • Tuohy K.M.
        • Lovegrove J.A.
        The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome 'at-risk' population.
        Int. J. Obes. 2013; 37: 216-223
        • Karusheva Y.
        • Koessler T.
        • Strassburger K.
        • Markgraf D.
        • Mastrototaro L.
        • Jelenik T.
        • et al.
        Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: a randomized controlled crossover trial.
        Am. J. Clin. Nutr. 2019; : 1098-1107
        • Marungruang N.
        • Tovar J.
        • Björck I.
        • Hållenius F.F.
        Improvement in cardiometabolic risk markers following a multifunctional diet is associated with gut microbial taxa in healthy overweight and obese subjects.
        Eur. J. Nutr. 2018; : 2927-2936
        • Ostan R.
        • Béné M.C.
        • Spazzafumo L.
        • Pinto A.
        • Donini L.M.
        • Pryen F.
        • et al.
        Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial.
        Clin. Nutr. (Edinb.). 2016; : 812-818
        • Salonen A.
        • Lahti L.
        • Salojärvi J.
        • Holtrop G.
        • Korpela K.
        • Duncan S.H.
        • et al.
        Impact of Diet and Individual Variation on Intestinal Microbiota Composition and Fermentation Products in Obese Men.
        ISME J8, 2014: 2218-2230
        • Lobley G.E.
        • Holtrop G.
        • Bremner D.M.
        • Calder A.G.
        • Milne E.
        • Johnstone A.M.
        Impact of short term consumption of diets high in either non-starch polysaccharides or resistant starch in comparison with moderate weight loss on indices of insulin sensitivity in subjects with metabolic syndrome.
        Nutrients. 2013; : 2144-2172
        • Mokkala K.
        • Paulin N.
        • Houttu N.
        • Koivuniemi E.
        • Pellonperä O.
        • Khan S.
        • Pietilä S.
        • Tertti K.
        • Elo L.L.
        • Laitinen K.
        Metagenomics analysis of gut microbiota in response to diet intervention and gestational diabetes in overweight and obese women: a randomised, double-blind, placebo-controlled clinical trial.
        Gut Microbiota. 2020; https://doi.org/10.1136/gutjnl-2020-321643