Advertisement

Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion

      Highlights

      • New mechanisms underlying plaque erosion are emerging.
      • Endothelial cell biology is critical in plaque erosion.
      • Mechanical stress, neutrophils, and plaque composition are instrumental in erosion.

      Abstract

      Mechanical stress is a well-recognized driver of plaque rupture. Likewise, investigating the role of mechanical forces in plaque erosion has recently begun to provide some important insights, yet the knowledge is by far less advanced. The most significant example is that of shear stress, which has early been proposed as a possible driver for focal endothelial death and denudation. Recent findings using optical coherence tomography, computational sciences and mechanical models show that plaque erosion occurs most likely around atheromatous plaque throats with specific stress pattern. In parallel, we have recently shown that neutrophil-dependent inflammation promotes plaque erosion, possibly through a noxious action on ECs. Most importantly, spontaneous thrombosis - associated or not with EC denudation - can be impacted by hemodynamics, and it is now established that neutrophils promote thrombosis and platelet activation, highlighting a potential relationship between, mechanical stress, inflammation, and EC loss in the setting of coronary plaque erosion.
      Here, we review our current knowledge regarding the implication of both mechanical stress and neutrophils, and we discuss their implication in the promotion of plaque erosion via EC loss and thrombosis.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Partida R.A.
        • Libby P.
        • Crea F.
        • Jang I.K.
        Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes.
        Eur. Heart J. 2018; 39: 2070-2076
        • van der Wal A.C.
        • Becker A.E.
        • van der Loos C.M.
        • Das P.K.
        Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology.
        Circulation. 1994; 89: 36-44
        • Clark E.
        • Graef I.
        • Chasis H.
        Thrombosis of the aorta and coronary arteries, with special reference to the "Fibrinoid" lesions.
        Arch. Pathol. 1936; 22 (1936): 183
        • Burke A.P.
        • Farb A.
        • Malcom G.T.
        • Liang Y.H.
        • Smialek J.
        • Virmani R.
        Coronary risk factors and plaque morphology in men with coronary disease who died suddenly.
        N. Engl. J. Med. 1997; 336: 1276-1282
        • Arbustini E.
        • Dal Bello B.
        • Morbini P.
        • Burke A.P.
        • Bocciarelli M.
        • Specchia G.
        • Virmani R.
        Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction.
        Heart. 1999; 82: 269-272
        • Burke A.P.
        • Farb A.
        • Malcom G.T.
        • Liang Y.
        • Smialek J.
        • Virmani R.
        Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women.
        Circulation. 1998; 97: 2110-2116
        • Farb A.
        • Burke A.P.
        • Tang A.L.
        • Liang T.Y.
        • Mannan P.
        • Smialek J.
        • Virmani R.
        Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death.
        Circulation. 1996; 93: 1354-1363
        • Virmani R.
        • Kolodgie F.D.
        • Burke A.P.
        • Farb A.
        • Schwartz S.M.
        Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1262-1275
        • Higuma T.
        • Soeda T.
        • Abe N.
        • Yamada M.
        • Yokoyama H.
        • Shibutani S.
        • Vergallo R.
        • Minami Y.
        • Ong D.S.
        • Lee H.
        • Okumura K.
        • Jang I.K.
        A combined optical coherence tomography and intravascular ultrasound study on plaque rupture, plaque erosion, and calcified nodule in patients with ST-segment elevation myocardial infarction: incidence, morphologic characteristics, and outcomes after percutaneous coronary intervention.
        JACC Cardiovasc. Interv. 2015; 8: 1166-1176
        • Jinnouchi H.
        • Virmani R.
        • Finn A.V.
        Are characteristics of plaque erosion defined by optical coherence tomography similar to true erosion in pathology?.
        Eur. Heart J. 2018; 39: 2086-2089
        • Kolodgie F.D.
        • Burke A.P.
        • Farb A.
        • Weber D.K.
        • Kutys R.
        • Wight T.N.
        • Virmani R.
        Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion.
        Arterioscler. Thromb. Vasc. Biol. 2002; 22: 1642-1648
        • Pedicino D.
        • Vinci R.
        • Giglio A.F.
        • Pisano E.
        • Porto I.
        • Vergallo R.
        • Russo G.
        • Ruggio A.
        • D'Aiello A.
        • Flego D.
        • Annibali G.
        • Trotta F.
        • Piacentini R.
        • Niccoli G.
        • Liuzzo G.
        • Crea F.
        Alterations of hyaluronan metabolism in acute coronary syndrome: implications for plaque erosion.
        J. Am. Coll. Cardiol. 2018; 72: 1490-1503
        • Quillard T.
        • Araujo H.A.
        • Franck G.
        • Shvartz E.
        • Sukhova G.
        • Libby P.
        TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion.
        Eur. Heart J. 2015; 36: 1394-1404
        • Virmani R.
        • Burke A.P.
        • Farb A.
        • Kolodgie F.D.
        Pathology of the vulnerable plaque.
        J. Am. Coll. Cardiol. 2006; 47: C13-C18
        • Jia H.
        • Abtahian F.
        • Aguirre A.D.
        • Lee S.
        • Chia S.
        • Lowe H.
        • Kato K.
        • Yonetsu T.
        • Vergallo R.
        • Hu S.
        • Tian J.
        • Lee H.
        • Park S.J.
        • Jang Y.S.
        • Raffel O.C.
        • Mizuno K.
        • Uemura S.
        • Itoh T.
        • Kakuta T.
        • Choi S.Y.
        • Dauerman H.L.
        • Prasad A.
        • Toma C.
        • McNulty I.
        • Zhang S.
        • Yu B.
        • Fuster V.
        • Narula J.
        • Virmani R.
        • Jang I.K.
        In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography.
        J. Am. Coll. Cardiol. 2013; 62: 1748-1758
        • Chatzizisis Y.S.
        • Giannoglou G.D.
        • Parcharidis G.E.
        • Louridas G.E.
        Is left coronary system more susceptible to atherosclerosis than right? A pathophysiological insight.
        Int. J. Cardiol. 2007; 116: 7-13
        • Dai J.
        • Xing L.
        • Jia H.
        • Zhu Y.
        • Zhang S.
        • Hu S.
        • Lin L.
        • Ma L.
        • Liu H.
        • Xu M.
        • Ren X.
        • Yu H.
        • Li L.
        • Zou Y.
        • Zhang S.
        • Mintz G.S.
        • Hou J.
        • Yu B.
        In vivo predictors of plaque erosion in patients with ST-segment elevation myocardial infarction: a clinical, angiographical, and intravascular optical coherence tomography study.
        Eur. Heart J. 2018; 39: 2077-2085
        • Back M.
        • Gasser T.C.
        • Michel J.B.
        • Caligiuri G.
        Biomechanical factors in the biology of aortic wall and aortic valve diseases.
        Cardiovasc. Res. 2013; 99: 232-241
        • Fry D.L.
        Certain histological and chemical responses of the vascular interface to acutely induced mechanical stress in the aorta of the dog.
        Circ. Res. 1969; 24: 93-108
        • Campbell I.C.
        • Timmins L.H.
        • Giddens D.P.
        • Virmani R.
        • Veneziani A.
        • Rab S.T.
        • Samady H.
        • McDaniel M.C.
        • Finn A.V.
        • Taylor W.R.
        • Oshinski J.N.
        Computational fluid dynamics simulations of hemodynamics in plaque erosion.
        Cardiovasc Eng Technol. 2013; 4
        • Giannopoulos A.A.
        • Antoniadis A.P.
        • Croce K.
        • Chatzizisis Y.S.
        Erosion of thin-cap fibroatheroma in an area of low endothelial shear stress: anatomy and local hemodynamic environment dictate outcomes.
        JACC Cardiovasc. Interv. 2016; 9: e77-e78
        • Vergallo R.
        • Papafaklis M.I.
        • D'Amario D.
        • Michalis L.K.
        • Crea F.
        • Porto I.
        Coronary plaque erosion developing in an area of high endothelial shear stress: insights from serial optical coherence tomography imaging.
        Coron. Artery Dis. 2019; 30: 74-75
        • Yamamoto E.
        • Thondapu V.
        • Poon E.
        • Sugiyama T.
        • Fracassi F.
        • Dijkstra J.
        • Lee H.
        • Ooi A.
        • Barlis P.
        • Jang I.K.
        Endothelial shear stress and plaque erosion: a computational fluid dynamics and optical coherence tomography study.
        JACC Cardiovasc Imaging. 2019; 12: 374-375
        • Sumi T.
        • Yamashita A.
        • Matsuda S.
        • Goto S.
        • Nishihira K.
        • Furukoji E.
        • Sugimura H.
        • Kawahara H.
        • Imamura T.
        • Kitamura K.
        • Tamura S.
        • Asada Y.
        Disturbed blood flow induces erosive injury to smooth muscle cell-rich neointima and promotes thrombus formation in rabbit femoral arteries.
        J. Thromb. Haemostasis. 2010; 8: 1394-1402
        • Sameshima N.
        • Yamashita A.
        • Sato S.
        • Matsuda S.
        • Matsuura Y.
        • Asada Y.
        The values of wall shear stress, turbulence kinetic energy and blood pressure gradient are associated with atherosclerotic plaque erosion in rabbits.
        J. Atherosclerosis Thromb. 2014; 21: 831-838
        • Franck G.
        • Mawson T.
        • Sausen G.
        • Salinas M.
        • Masson G.S.
        • Cole A.
        • Beltrami-Moreira M.
        • Chatzizisis Y.
        • Quillard T.
        • Tesmenitsky Y.
        • Shvartz E.
        • Sukhova G.K.
        • Swirski F.K.
        • Nahrendorf M.
        • Aikawa E.
        • Croce K.J.
        • Libby P.
        Flow perturbation mediates neutrophil recruitment and potentiates endothelial injury via TLR2 in mice: implications for superficial erosion.
        Circ. Res. 2017; 121: 31-42
        • Richardson P.D.
        • Davies M.J.
        • Born G.V.
        Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques.
        Lancet. 1989; 2: 941-944
        • Campbell I.C.
        • Suever J.D.
        • Timmins L.H.
        • Veneziani A.
        • Vito R.P.
        • Virmani R.
        • Oshinski J.N.
        • Taylor W.R.
        Biomechanics and inflammation in atherosclerotic plaque erosion and plaque rupture: implications for cardiovascular events in women.
        PloS One. 2014; 9e111785
        • Carew T.E.
        • Patel D.J.
        Effect of tensile and shear stress on intimal permeability of the left coronary artery in dogs.
        Atherosclerosis. 1973; 18: 179-189
        • Duguid J.B.
        • Robertson W.B.
        Mechanical factors in atherosclerosis.
        Lancet. 1957; 272: 1205-1209
        • Franck G.
        • Even G.
        • Gautier A.
        • Salinas M.
        • Loste A.
        • Procopio E.
        • Gaston A.T.
        • Morvan M.
        • Dupont S.
        • Deschildre C.
        • Berissi S.
        • Laschet J.
        • Nataf P.
        • Nicoletti A.
        • Michel J.B.
        • Caligiuri G.
        Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis.
        Eur. Heart J. 2019; 40: 928-937
        • Kolpakov V.
        • Polishchuk R.
        • Bannykh S.
        • Rekhter M.
        • Solovjev P.
        • Romanov Y.
        • Tararak E.
        • Antonov A.
        • Mironov A.
        Atherosclerosis-prone branch regions in human aorta: microarchitecture and cell composition of intima.
        Atherosclerosis. 1996; 122: 173-189
        • Davies M.J.
        • Woolf N.
        • Rowles P.M.
        • Pepper J.
        Morphology of the endothelium over atherosclerotic plaques in human coronary arteries.
        Br. Heart J. 1988; 60: 459-464
        • Zarins C.K.
        • Giddens D.P.
        • Bharadvaj B.K.
        • Sottiurai V.S.
        • Mabon R.F.
        • Glagov S.
        Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
        Circ. Res. 1983; 53: 502-514
        • Albert S.
        • Balaban R.S.
        • Neufeld E.B.
        • Rossmann J.S.
        Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis.
        J. Biomech. 2014; 47: 1594-1602
        • Nosovitsky V.A.
        • Ilegbusi O.J.
        • Jiang J.
        • Stone P.H.
        • Feldman C.L.
        Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow.
        Comput. Biomed. Res. 1997; 30: 61-82
        • Roux E.
        • Bougaran P.
        • Dufourcq P.
        • Couffinhal T.
        Fluid shear stress sensing by the endothelial layer.
        Front. Physiol. 2020; 11: 861
        • Gimbrone Jr., M.A.
        • Topper J.N.
        • Nagel T.
        • Anderson K.R.
        • Garcia-Cardena G.
        Endothelial dysfunction, hemodynamic forces, and atherogenesis.
        Ann. N. Y. Acad. Sci. 2000; 902 (discussion 239-40): 230-239
        • Dimmeler S.
        • Haendeler J.
        • Rippmann V.
        • Nehls M.
        • Zeiher A.M.
        Shear stress inhibits apoptosis of human endothelial cells.
        FEBS Lett. 1996; 399: 71-74
        • Caro C.G.
        • Fitz-Gerald J.M.
        • Schroter R.C.
        Arterial wall shear and distribution of early atheroma in man.
        Nature. 1969; 223: 1159-1160
        • Ku D.N.
        • Giddens D.P.
        • Zarins C.K.
        • Glagov S.
        Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress.
        Arteriosclerosis. 1985; 5: 293-302
        • Heo K.S.
        • Lee H.
        • Nigro P.
        • Thomas T.
        • Le N.T.
        • Chang E.
        • McClain C.
        • Reinhart-King C.A.
        • King M.R.
        • Berk B.C.
        • Fujiwara K.
        • Woo C.H.
        • Abe J.
        PKCzeta mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation.
        J. Cell Biol. 2011; 193: 867-884
        • Pan L.
        • Hong Z.
        • Yu L.
        • Gao Y.
        • Zhang R.
        • Feng H.
        • Su L.
        • Wang G.
        Shear stress induces human aortic endothelial cell apoptosis via interleukin1 receptorassociated kinase 2induced endoplasmic reticulum stress.
        Mol. Med. Rep. 2017; 16: 7205-7212
        • Langille B.L.
        • Bendeck M.P.
        • Keeley F.W.
        Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow.
        Am. J. Physiol. 1989; 256: H931-H939
        • Cho A.
        • Mitchell L.
        • Koopmans D.
        • Langille B.L.
        Effects of changes in blood flow rate on cell death and cell proliferation in carotid arteries of immature rabbits.
        Circ. Res. 1997; 81: 328-337
        • Caplan B.A.
        • Schwartz C.J.
        Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta.
        Atherosclerosis. 1973; 17: 401-417
        • Tricot O.
        • Mallat Z.
        • Heymes C.
        • Belmin J.
        • Leseche G.
        • Tedgui A.
        Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques.
        Circulation. 2000; 101: 2450-2453
        • Cicha I.
        • Worner A.
        • Urschel K.
        • Beronov K.
        • Goppelt-Struebe M.
        • Verhoeven E.
        • Daniel W.G.
        • Garlichs C.D.
        Carotid plaque vulnerability: a positive feedback between hemodynamic and biochemical mechanisms.
        Stroke. 2011; 42: 3502-3510
        • Chien S.
        • Li S.
        • Shyy Y.J.
        Effects of mechanical forces on signal transduction and gene expression in endothelial cells.
        Hypertension. 1998; 31: 162-169
        • Durand E.
        • Scoazec A.
        • Lafont A.
        • Boddaert J.
        • Al Hajzen A.
        • Addad F.
        • Mirshahi M.
        • Desnos M.
        • Tedgui A.
        • Mallat Z.
        In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion.
        Circulation. 2004; 109: 2503-2506
        • Shiomi M.
        • Ishida T.
        • Kobayashi T.
        • Nitta N.
        • Sonoda A.
        • Yamada S.
        • Koike T.
        • Kuniyoshi N.
        • Murata K.
        • Hirata K.
        • Ito T.
        • Libby P.
        Vasospasm of atherosclerotic coronary arteries precipitates acute ischemic myocardial damage in myocardial infarction-prone strain of the Watanabe heritable hyperlipidemic rabbits.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 2518-2523
        • Doring Y.
        • Drechsler M.
        • Soehnlein O.
        • Weber C.
        Neutrophils in atherosclerosis: from mice to man.
        Arterioscler. Thromb. Vasc. Biol. 2015; 35: 288-295
        • Franck G.
        • Mawson T.L.
        • Folco E.J.
        • Molinaro R.
        • Ruvkun V.
        • Engelbertsen D.
        • Liu X.
        • Tesmenitsky Y.
        • Shvartz E.
        • Sukhova G.K.
        • Michel J.B.
        • Nicoletti A.
        • Lichtman A.
        • Wagner D.
        • Croce K.J.
        • Libby P.
        Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion.
        Circ. Res. 2018; 123: 33-42
        • Chevre R.
        • Gonzalez-Granado J.M.
        • Megens R.T.
        • Sreeramkumar V.
        • Silvestre-Roig C.
        • Molina-Sanchez P.
        • Weber C.
        • Soehnlein O.
        • Hidalgo A.
        • Andres V.
        High-resolution imaging of intravascular atherogenic inflammation in live mice.
        Circ. Res. 2014; 114: 770-779
        • Drechsler M.
        • Megens R.T.
        • van Zandvoort M.
        • Weber C.
        • Soehnlein O.
        Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis.
        Circulation. 2010; 122: 1837-1845
        • Sundd P.
        • Gutierrez E.
        • Koltsova E.K.
        • Kuwano Y.
        • Fukuda S.
        • Pospieszalska M.K.
        • Groisman A.
        • Ley K.
        'Slings' enable neutrophil rolling at high shear.
        Nature. 2012; 488: 399-403
        • von Andrian U.H.
        • Hasslen S.R.
        • Nelson R.D.
        • Erlandsen S.L.
        • Butcher E.C.
        A central role for microvillous receptor presentation in leukocyte adhesion under flow.
        Cell. 1995; 82: 989-999
        • Franck G.
        • Mawson T.L.
        • Folco E.J.
        • Molinaro R.
        • Ruvkun V.
        • Engelbertsen D.
        • Liu X.
        • Tesmenitsky Y.
        • Shvartz E.
        • Sukhova G.K.
        • Michel J.B.
        • Nicoletti A.
        • Lichtman A.H.
        • Wagner D.D.
        • Croce K.J.
        • Libby P.
        Roles of PAD4 and NETosis in experimental atherosclerosis and arterial injury: implications for superficial erosion.
        Circ. Res. 2018;
        • Mitchell M.J.
        • Lin K.S.
        • King M.R.
        Fluid shear stress increases neutrophil activation via platelet-activating factor.
        Biophys. J. 2014; 106: 2243-2253
        • Dewitz T.S.
        • Hung T.C.
        • Martin R.R.
        • McIntire L.V.
        Mechanical trauma in leukocytes.
        J. Lab. Clin. Med. 1977; 90: 728-736
        • Shive M.S.
        • Salloum M.L.
        • Anderson J.M.
        Shear stress-induced apoptosis of adherent neutrophils: a mechanism for persistence of cardiovascular device infections.
        Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 6710-6715
        • Rocheleau A.D.
        • Wang W.
        • King M.R.
        Effect of pseudopod extensions on neutrophil hemodynamic transport near a wall.
        Cell. Mol. Bioeng. 2016; 9: 85-95
        • Qin W.D.
        • Mi S.H.
        • Li C.
        • Wang G.X.
        • Zhang J.N.
        • Wang H.
        • Zhang F.
        • Ma Y.
        • Wu D.W.
        • Zhang M.
        Low shear stress induced HMGB1 translocation and release via PECAM-1/PARP-1 pathway to induce inflammation response.
        PloS One. 2015; 10e0120586
        • Tadie J.M.
        • Bae H.B.
        • Jiang S.
        • Park D.W.
        • Bell C.P.
        • Yang H.
        • Pittet J.F.
        • Tracey K.
        • Thannickal V.J.
        • Abraham E.
        • Zmijewski J.W.
        HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4.
        Am. J. Physiol. Lung Cell Mol. Physiol. 2013; 304: L342-L349
        • Ekpenyong A.E.
        • Toepfner N.
        • Chilvers E.R.
        • Guck J.
        Mechanotransduction in neutrophil activation and deactivation.
        Biochim. Biophys. Acta. 2015; 1853: 3105-3116
        • Kumar S.
        • Dikshit M.
        Metabolic insight of neutrophils in health and disease.
        Front. Immunol. 2019; 10: 2099
        • Fine N.
        • Dimitriou I.D.
        • Rullo J.
        • Sandi M.J.
        • Petri B.
        • Haitsma J.
        • Ibrahim H.
        • La Rose J.
        • Glogauer M.
        • Kubes P.
        • Cybulsky M.
        • Rottapel R.
        GEF-H1 is necessary for neutrophil shear stress-induced migration during inflammation.
        J. Cell Biol. 2016; 215: 107-119
        • Wojciak-Stothard B.
        • Ridley A.J.
        Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases.
        J. Cell Biol. 2003; 161: 429-439
        • Wan Q.
        • Kim S.J.
        • Yokota H.
        • Na S.
        Differential activation and inhibition of RhoA by fluid flow induced shear stress in chondrocytes.
        Cell Biol. Int. 2013; 37: 568-576
        • Houk A.R.
        • Jilkine A.
        • Mejean C.O.
        • Boltyanskiy R.
        • Dufresne E.R.
        • Angenent S.B.
        • Altschuler S.J.
        • Wu L.F.
        • Weiner O.D.
        Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration.
        Cell. 2012; 148: 175-188
        • Ley K.
        • Gaehtgens P.
        Endothelial, not hemodynamic, differences are responsible for preferential leukocyte rolling in rat mesenteric venules.
        Circ. Res. 1991; 69: 1034-1041
        • Lei X.
        • Lawrence M.B.
        • Dong C.
        Influence of cell deformation on leukocyte rolling adhesion in shear flow.
        J. Biomech. Eng. 1999; 121: 636-643
        • Saffarzadeh M.
        • Juenemann C.
        • Queisser M.A.
        • Lochnit G.
        • Barreto G.
        • Galuska S.P.
        • Lohmeyer J.
        • Preissner K.T.
        Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones.
        PloS One. 2012; 7e32366
        • Silvestre-Roig C.
        • Braster Q.
        • Wichapong K.
        • Lee E.Y.
        • Teulon J.M.
        • Berrebeh N.
        • Winter J.
        • Adrover J.M.
        • Santos G.S.
        • Froese A.
        • Lemnitzer P.
        • Ortega-Gomez A.
        • Chevre R.
        • Marschner J.
        • Schumski A.
        • Winter C.
        • Perez-Olivares L.
        • Pan C.
        • Paulin N.
        • Schoufour T.
        • Hartwig H.
        • Gonzalez-Ramos S.
        • Kamp F.
        • Megens R.T.A.
        • Mowen K.A.
        • Gunzer M.
        • Maegdefessel L.
        • Hackeng T.
        • Lutgens E.
        • Daemen M.
        • von Blume J.
        • Anders H.J.
        • Nikolaev V.O.
        • Pellequer J.L.
        • Weber C.
        • Hidalgo A.
        • Nicolaes G.A.F.
        • Wong G.C.L.
        • Soehnlein O.
        Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death.
        Nature. 2019; 569: 236-240
        • Meegan J.E.
        • Yang X.
        • Beard Jr., R.S.
        • Jannaway M.
        • Chatterjee V.
        • Taylor-Clark T.E.
        • Yuan S.Y.
        Citrullinated histone 3 causes endothelial barrier dysfunction.
        Biochem. Biophys. Res. Commun. 2018; 503: 1498-1502
        • Doring Y.
        • Drechsler M.
        • Wantha S.
        • Kemmerich K.
        • Lievens D.
        • Vijayan S.
        • Gallo R.L.
        • Weber C.
        • Soehnlein O.
        Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice.
        Circ. Res. 2012; 110: 1052-1056
        • Wantha S.
        • Alard J.E.
        • Megens R.T.
        • van der Does A.M.
        • Doring Y.
        • Drechsler M.
        • Pham C.T.
        • Wang M.W.
        • Wang J.M.
        • Gallo R.L.
        • von Hundelshausen P.
        • Lindbom L.
        • Hackeng T.
        • Weber C.
        • Soehnlein O.
        Neutrophil-derived cathelicidin promotes adhesion of classical monocytes.
        Circ. Res. 2013; 112: 792-801
        • Gupta A.K.
        • Joshi M.B.
        • Philippova M.
        • Erne P.
        • Hasler P.
        • Hahn S.
        • Resink T.J.
        Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death.
        FEBS Lett. 2010; 584: 3193-3197
        • Wang H.
        • Wang C.
        • Zhao M.H.
        • Chen M.
        Neutrophil extracellular traps can activate alternative complement pathways.
        Clin. Exp. Immunol. 2015; 181: 518-527
        • Schreiber A.
        • Rousselle A.
        • Becker J.U.
        • von Massenhausen A.
        • Linkermann A.
        • Kettritz R.
        Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis.
        Proc. Natl. Acad. Sci. U. S. A. 2017; 114: E9618-E9625
        • Fuchs T.A.
        • Brill A.
        • Duerschmied D.
        • Schatzberg D.
        • Monestier M.
        • Myers Jr., D.D.
        • Wrobleski S.K.
        • Wakefield T.W.
        • Hartwig J.H.
        • Wagner D.D.
        Extracellular DNA traps promote thrombosis.
        Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 15880-15885
        • Stakos D.A.
        • Kambas K.
        • Konstantinidis T.
        • Mitroulis I.
        • Apostolidou E.
        • Arelaki S.
        • Tsironidou V.
        • Giatromanolaki A.
        • Skendros P.
        • Konstantinides S.
        • Ritis K.
        Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction.
        Eur. Heart J. 2015; 36: 1405-1414
        • Mangold A.
        • Alias S.
        • Scherz T.
        • Hofbauer T.
        • Jakowitsch J.
        • Panzenbock A.
        • Simon D.
        • Laimer D.
        • Bangert C.
        • Kammerlander A.
        • Mascherbauer J.
        • Winter M.P.
        • Distelmaier K.
        • Adlbrecht C.
        • Preissner K.T.
        • Lang I.M.
        Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size.
        Circ. Res. 2015; 116: 1182-1192
        • Noubouossie D.F.
        • Whelihan M.F.
        • Yu Y.B.
        • Sparkenbaugh E.
        • Pawlinski R.
        • Monroe D.M.
        • Key N.S.
        In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps.
        Blood. 2017; 129: 1021-1029
        • de Boer O.J.
        • Li X.
        • Teeling P.
        • Mackaay C.
        • Ploegmakers H.J.
        • van der Loos C.M.
        • Daemen M.J.
        • de Winter R.J.
        • van der Wal A.C.
        Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction.
        Thromb. Haemostasis. 2013; 109: 290-297
        • Folco E.J.
        • Mawson T.L.
        • Vromman A.
        • Bernardes-Souza B.
        • Franck G.
        • Persson O.
        • Nakamura M.
        • Newton G.
        • Luscinskas F.W.
        • Libby P.
        Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1alpha and cathepsin G.
        Arterioscler. Thromb. Vasc. Biol. 2018; 38: 1901-1912
        • Elaskalani O.
        • Abdol Razak N.B.
        • Metharom P.
        Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones.
        Cell Commun. Signal. 2018; 16: 24
        • Wang Y.
        • Luo L.
        • Braun O.O.
        • Westman J.
        • Madhi R.
        • Herwald H.
        • Morgelin M.
        • Thorlacius H.
        Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice.
        Sci. Rep. 2018; 8: 4020
        • Kim J.E.
        • Yoo H.J.
        • Gu J.Y.
        • Kim H.K.
        Histones induce the procoagulant phenotype of endothelial cells through tissue factor up-regulation and thrombomodulin down-regulation.
        PloS One. 2016; 11e0156763
        • Caudrillier A.
        • Kessenbrock K.
        • Gilliss B.M.
        • Nguyen J.X.
        • Marques M.B.
        • Monestier M.
        • Toy P.
        • Werb Z.
        • Looney M.R.
        Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury.
        J. Clin. Invest. 2012; 122: 2661-2671
        • Stark K.
        • Philippi V.
        • Stockhausen S.
        • Busse J.
        • Antonelli A.
        • Miller M.
        • Schubert I.
        • Hoseinpour P.
        • Chandraratne S.
        • von Bruhl M.L.
        • Gaertner F.
        • Lorenz M.
        • Agresti A.
        • Coletti R.
        • Antoine D.J.
        • Heermann R.
        • Jung K.
        • Reese S.
        • Laitinen I.
        • Schwaiger M.
        • Walch A.
        • Sperandio M.
        • Nawroth P.P.
        • Reinhardt C.
        • Jackel S.
        • Bianchi M.E.
        • Massberg S.
        Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice.
        Blood. 2016; 128: 2435-2449
        • Sato Y.
        • Hatakeyama K.
        • Yamashita A.
        • Marutsuka K.
        • Sumiyoshi A.
        • Asada Y.
        Proportion of fibrin and platelets differs in thrombi on ruptured and eroded coronary atherosclerotic plaques in humans.
        Heart. 2005; 91: 526-530
        • Ferrante G.
        • Nakano M.
        • Prati F.
        • Niccoli G.
        • Mallus M.T.
        • Ramazzotti V.
        • Montone R.A.
        • Kolodgie F.D.
        • Virmani R.
        • Crea F.
        High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: a clinicopathological study.
        Circulation. 2010; 122: 2505-2513
        • Baldus S.
        • Eiserich J.P.
        • Mani A.
        • Castro L.
        • Figueroa M.
        • Chumley P.
        • Ma W.
        • Tousson A.
        • White C.R.
        • Bullard D.C.
        • Brennan M.L.
        • Lusis A.J.
        • Moore K.P.
        • Freeman B.A.
        Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration.
        J. Clin. Invest. 2001; 108: 1759-1770
        • Eiserich J.P.
        • Baldus S.
        • Brennan M.L.
        • Ma W.
        • Zhang C.
        • Tousson A.
        • Castro L.
        • Lusis A.J.
        • Nauseef W.M.
        • White C.R.
        • Freeman B.A.
        Myeloperoxidase, a leukocyte-derived vascular NO oxidase.
        Science. 2002; 296: 2391-2394
        • Klinke A.
        • Nussbaum C.
        • Kubala L.
        • Friedrichs K.
        • Rudolph T.K.
        • Rudolph V.
        • Paust H.J.
        • Schroder C.
        • Benten D.
        • Lau D.
        • Szocs K.
        • Furtmuller P.G.
        • Heeringa P.
        • Sydow K.
        • Duchstein H.J.
        • Ehmke H.
        • Schumacher U.
        • Meinertz T.
        • Sperandio M.
        • Baldus S.
        Myeloperoxidase attracts neutrophils by physical forces.
        Blood. 2011; 117: 1350-1358
        • Lau D.
        • Mollnau H.
        • Eiserich J.P.
        • Freeman B.A.
        • Daiber A.
        • Gehling U.M.
        • Brummer J.
        • Rudolph V.
        • Munzel T.
        • Heitzer T.
        • Meinertz T.
        • Baldus S.
        Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins.
        Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 431-436
        • Kettle A.J.
        • Winterbourn C.C.
        Myeloperoxidase: a key regulator of neutrophil oxidant production.
        Redox Rep. 1997; 3: 3-15
        • Sugiyama S.
        • Kugiyama K.
        • Aikawa M.
        • Nakamura S.
        • Ogawa H.
        • Libby P.
        Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis.
        Arterioscler. Thromb. Vasc. Biol. 2004; 24: 1309-1314
        • Sugiyama S.
        • Okada Y.
        • Sukhova G.K.
        • Virmani R.
        • Heinecke J.W.
        • Libby P.
        Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes.
        Am. J. Pathol. 2001; 158: 879-891
        • Wang Y.
        • Fang C.
        • Gao H.
        • Bilodeau M.L.
        • Zhang Z.
        • Croce K.
        • Liu S.
        • Morooka T.
        • Sakuma M.
        • Nakajima K.
        • Yoneda S.
        • Shi C.
        • Zidar D.
        • Andre P.
        • Stephens G.
        • Silverstein R.L.
        • Hogg N.
        • Schmaier A.H.
        • Simon D.I.
        Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis.
        J. Clin. Invest. 2014; 124: 2160-2171
        • Croce K.
        • Gao H.
        • Wang Y.
        • Mooroka T.
        • Sakuma M.
        • Shi C.
        • Sukhova G.K.
        • Packard R.R.
        • Hogg N.
        • Libby P.
        • Simon D.I.
        Myeloid-related protein-8/14 is critical for the biological response to vascular injury.
        Circulation. 2009; 120: 427-436
        • Robinson M.J.
        • Tessier P.
        • Poulsom R.
        • Hogg N.
        The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells.
        J. Biol. Chem. 2002; 277: 3658-3665
        • Viemann D.
        • Strey A.
        • Janning A.
        • Jurk K.
        • Klimmek K.
        • Vogl T.
        • Hirono K.
        • Ichida F.
        • Foell D.
        • Kehrel B.
        • Gerke V.
        • Sorg C.
        • Roth J.
        Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells.
        Blood. 2005; 105: 2955-2962
        • Viemann D.
        • Barczyk K.
        • Vogl T.
        • Fischer U.
        • Sunderkotter C.
        • Schulze-Osthoff K.
        • Roth J.
        MRP8/MRP14 impairs endothelial integrity and induces a caspase-dependent and -independent cell death program.
        Blood. 2007; 109: 2453-2460
        • Hirono K.
        • Foell D.
        • Xing Y.
        • Miyagawa-Tomita S.
        • Ye F.
        • Ahlmann M.
        • Vogl T.
        • Futatani T.
        • Rui C.
        • Yu X.
        • Watanabe K.
        • Wanatabe S.
        • Tsubata S.
        • Uese K.
        • Hashimoto I.
        • Ichida F.
        • Nakazawa M.
        • Roth J.
        • Miyawaki T.
        Expression of myeloid-related protein-8 and -14 in patients with acute Kawasaki disease.
        J. Am. Coll. Cardiol. 2006; 48: 1257-1264
        • Leung D.Y.
        Clinical and immunologic aspects of Kawasaki disease.
        Immunodeficiency Rev. 1989; 1: 261-271
        • Pruenster M.
        • Kurz A.R.
        • Chung K.J.
        • Cao-Ehlker X.
        • Bieber S.
        • Nussbaum C.F.
        • Bierschenk S.
        • Eggersmann T.K.
        • Rohwedder I.
        • Heinig K.
        • Immler R.
        • Moser M.
        • Koedel U.
        • Gran S.
        • McEver R.P.
        • Vestweber D.
        • Verschoor A.
        • Leanderson T.
        • Chavakis T.
        • Roth J.
        • Vogl T.
        • Sperandio M.
        Extracellular MRP8/14 is a regulator of beta2 integrin-dependent neutrophil slow rolling and adhesion.
        Nat. Commun. 2015; 6: 6915
        • Qu D.
        • Wang L.
        • Huo M.
        • Song W.
        • Lau C.W.
        • Xu J.
        • Xu A.
        • Yao X.
        • Chiu J.J.
        • Tian X.Y.
        • Huang Y.
        Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation.
        Cardiovasc. Res. 2020; 116: 226-236
        • Suzuki K.
        • Okada H.
        • Takemura G.
        • Takada C.
        • Kuroda A.
        • Yano H.
        • Zaikokuji R.
        • Morishita K.
        • Tomita H.
        • Oda K.
        • Matsuo S.
        • Uchida A.
        • Fukuta T.
        • Sampei S.
        • Miyazaki N.
        • Kawaguchi T.
        • Watanabe T.
        • Yoshida T.
        • Ushikoshi H.
        • Yoshida S.
        • Maekawa Y.
        • Ogura S.
        Neutrophil elastase damages the pulmonary endothelial glycocalyx in lipopolysaccharide-induced experimental endotoxemia.
        Am. J. Pathol. 2019; 189: 1526-1535
        • Dollery C.M.
        • Owen C.A.
        • Sukhova G.K.
        • Krettek A.
        • Shapiro S.D.
        • Libby P.
        Neutrophil elastase in human atherosclerotic plaques: production by macrophages.
        Circulation. 2003; 107: 2829-2836
        • Grechowa I.
        • Horke S.
        • Wallrath A.
        • Vahl C.F.
        • Dorweiler B.
        Human neutrophil elastase induces endothelial cell apoptosis by activating the PERK-CHOP branch of the unfolded protein response.
        Faseb. J. 2017; 31: 3868-3881
        • Iacoviello L.
        • Kolpakov V.
        • Salvatore L.
        • Amore C.
        • Pintucci G.
        • de Gaetano G.
        • Donati M.B.
        Human endothelial cell damage by neutrophil-derived cathepsin G. Role of cytoskeleton rearrangement and matrix-bound plasminogen activator inhibitor-1.
        Arterioscler. Thromb. Vasc. Biol. 1995; 15: 2037-2046
        • Kougias P.
        • Chai H.
        • Lin P.H.
        • Yao Q.
        • Lumsden A.B.
        • Chen C.
        Neutrophil antimicrobial peptide alpha-defensin causes endothelial dysfunction in porcine coronary arteries.
        J. Vasc. Surg. 2006; 43: 357-363
        • Bdeir K.
        • Higazi A.A.
        • Kulikovskaya I.
        • Christofidou-Solomidou M.
        • Vinogradov S.A.
        • Allen T.C.
        • Idell S.
        • Linzmeier R.
        • Ganz T.
        • Cines D.B.
        Neutrophil alpha-defensins cause lung injury by disrupting the capillary-epithelial barrier.
        Am. J. Respir. Crit. Care Med. 2010; 181: 935-946
        • Craige S.M.
        • Kant S.
        • Keaney Jr., J.F.
        Reactive oxygen species in endothelial function - from disease to adaptation.
        Circ. J. 2015; 79: 1145-1155
        • Yahagi K.
        • Kolodgie F.D.
        • Otsuka F.
        • Finn A.V.
        • Davis H.R.
        • Joner M.
        • Virmani R.
        Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis.
        Nat. Rev. Cardiol. 2016; 13: 79-98
        • Rogers K.M.
        • Merrilees M.J.
        • Stehbens W.E.
        The effect of haemodynamic stress on the glycosaminoglycan content of blood vessel walls of experimental aneurysms and arteriovenous fistulae.
        Atherosclerosis. 1985; 58: 139-148
        • Kraiss L.W.
        • Kirkman T.R.
        • Kohler T.R.
        • Zierler B.
        • Clowes A.W.
        Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts.
        Arterioscler. Thromb. 1991; 11: 1844-1852
        • Maroski J.
        • Vorderwulbecke B.J.
        • Fiedorowicz K.
        • Da Silva-Azevedo L.
        • Siegel G.
        • Marki A.
        • Pries A.R.
        • Zakrzewicz A.
        Shear stress increases endothelial hyaluronan synthase 2 and hyaluronan synthesis especially in regard to an atheroprotective flow profile.
        Exp. Physiol. 2011; 96: 977-986
        • Gouverneur M.
        • Spaan J.A.
        • Pannekoek H.
        • Fontijn R.D.
        • Vink H.
        Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx.
        Am. J. Physiol. Heart Circ. Physiol. 2006; 290 (H458-2)
        • Liu J.
        • Kang H.
        • Ma X.
        • Sun A.
        • Luan H.
        • Deng X.
        • Fan Y.
        Vascular cell glycocalyx-mediated vascular remodeling induced by hemodynamic environmental alteration.
        Hypertension. 2018; 71: 1201-1209
        • Lee R.T.
        • Yamamoto C.
        • Feng Y.
        • Potter-Perigo S.
        • Briggs W.H.
        • Landschulz K.T.
        • Turi T.G.
        • Thompson J.F.
        • Libby P.
        • Wight T.N.
        Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells.
        J. Biol. Chem. 2001; 276: 13847-13851
        • Watanabe R.
        • Sato Y.
        • Ozawa N.
        • Takahashi Y.
        • Koba S.
        • Watanabe T.
        Emerging roles of tumor necrosis factor-stimulated gene-6 in the pathophysiology and treatment of atherosclerosis.
        Int. J. Mol. Sci. 2018; 19
        • Lesley J.
        • Gal I.
        • Mahoney D.J.
        • Cordell M.R.
        • Rugg M.S.
        • Hyman R.
        • Day A.J.
        • Mikecz K.
        TSG-6 modulates the interaction between hyaluronan and cell surface CD44.
        J. Biol. Chem. 2004; 279: 25745-25754
        • Tavianatou A.G.
        • Caon I.
        • Franchi M.
        • Piperigkou Z.
        • Galesso D.
        • Karamanos N.K.
        Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer.
        FEBS J. 2019; 286: 2883-2908
        • Alaniz L.
        • Garcia M.G.
        • Gallo-Rodriguez C.
        • Agusti R.
        • Sterin-Speziale N.
        • Hajos S.E.
        • Alvarez E.
        Hyaluronan oligosaccharides induce cell death through PI3-K/Akt pathway independently of NF-kappaB transcription factor.
        Glycobiology. 2006; 16: 359-367
        • Scheibner K.A.
        • Lutz M.A.
        • Boodoo S.
        • Fenton M.J.
        • Powell J.D.
        • Horton M.R.
        Hyaluronan fragments act as an endogenous danger signal by engaging TLR2.
        J. Immunol. 2006; 177: 1272-1281
        • Gariboldi S.
        • Palazzo M.
        • Zanobbio L.
        • Selleri S.
        • Sommariva M.
        • Sfondrini L.
        • Cavicchini S.
        • Balsari A.
        • Rumio C.
        Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4.
        J. Immunol. 2008; 181: 2103-2110
        • Mullick A.E.
        • Tobias P.S.
        • Curtiss L.K.
        Modulation of atherosclerosis in mice by Toll-like receptor 2.
        J. Clin. Invest. 2005; 115: 3149-3156
        • Mullick A.E.
        • Soldau K.
        • Kiosses W.B.
        • Bell 3rd, T.A.
        • Tobias P.S.
        • Curtiss L.K.
        Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events.
        J. Exp. Med. 2008; 205: 373-383
        • Bates E.J.
        • Harper G.S.
        • Lowther D.A.
        • Preston B.N.
        Effect of oxygen-derived reactive species on cartilage proteoglycan-hyaluronate aggregates.
        Biochem. Int. 1984; 8: 629-637
        • Savani R.C.
        • Turley E.A.
        The role of hyaluronan and its receptors in restenosis after balloon angioplasty: development of a potential therapy.
        Int. J. Tissue React. 1995; 17: 141-151
        • Evanko S.P.
        • Angello J.C.
        • Wight T.N.
        Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells.
        Arterioscler. Thromb. Vasc. Biol. 1999; 19: 1004-1013