Advertisement

Epicardial fat and coronary artery disease: Role of cardiac imaging

      Highlights

      • -
        Adversely remodelled and dysfunctional epicardial adipose tissue (EAT) secretes proinflammatory. adipokines which can promote atherogenesis in the coronary arteries.
      • -
        EAT volume can be assessed with multimodality imaging (echo, CMR and cardiac CT) and associates with CAD and MACE.
      • -
        Coronary CT angiography is the only modality able to simultaneously assess the coronary arteries and pericoronary adipose tissue (PCAT).
      • -
        PCAT attenuation quantified from CCTA is an imaging biomarker of coronary inflammation associated with CAD and MACE.
      • -
        PCAT attenuation may potentially be used to monitor the response to antinflammatory agents.

      Abstract

      Epicardial adipose tissue (EAT) represents the fat depot located between the myocardium and the visceral pericardial layer. Far from being an inert tissue, EAT has been recognized as secreting a large amount of bioactive molecules called adipokines, which have numerous exocrine and paracrine effects. Recent evidence demonstrates that pericoronary adipose tissue (PCAT) – the EAT directly surrounding the coronary arteries – has a complex bidirectional interaction with the underlying vascular wall. While in normal conditions this mutual cross-talk helps maintain the homeostasis of the vascular wall, dysfunctional PCAT produces deleterious pro-inflammatory adipokines involved in atherogenesis. Importantly, PCAT inflammation has been associated with coronary artery disease (CAD) and major cardiovascular events.
      This review aims to provide an overview of the imaging techniques used to assess EAT, with a specific focus on cardiac computed tomography (CCT), which has become the key modality in this field. In contrast to echocardiography and cardiac magnetic resonance (CMR), CCT is not only able to visualize and precisely quantify EAT, but also to assess the coronary arteries and the PCAT simultaneously. In recent years, several papers have shown the utility of using CCT-derived PCAT attenuation as a surrogate measure of coronary inflammation. This noninvasive imaging biomarker may potentially be used to monitor patient responses to new antinflammatory drugs for the treatment of CAD.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schoettl T.
        • Fischer I.P.
        • Ussar S.
        Heterogeneity of adipose tissue in development and metabolic function.
        J. Exp. Biol. 2018; 221 (Epub 2018/03/09)
        • Ortega F.B.
        • Lavie C.J.
        • Blair S.N.
        Obesity and cardiovascular disease.
        Circ. Res. 2016; 118 (Epub 2016/05/28): 1752-1770
        • Madala M.C.
        • Franklin B.A.
        • Chen A.Y.
        • Berman A.D.
        • Roe M.T.
        • Peterson E.D.
        • et al.
        Obesity and age of first non-ST-segment elevation myocardial infarction.
        J. Am. Coll. Cardiol. 2008; 52 (Epub 2008/09/13): 979-985
        • Lavie C.J.
        • Milani R.V.
        • Ventura H.O.
        Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss.
        J. Am. Coll. Cardiol. 2009; 53 (Epub 2009/05/23): 1925-1932
        • Poirier P.
        • Giles T.D.
        • Bray G.A.
        • Hong Y.
        • Stern J.S.
        • Pi-Sunyer F.X.
        • et al.
        Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American heart association scientific statement on obesity and heart disease from the obesity committee of the council on nutrition, physical activity, and metabolism.
        Circulation. 2006; 113 (Epub 2005/12/29): 898-918
        • Maachi M.
        • Pieroni L.
        • Bruckert E.
        • Jardel C.
        • Fellahi S.
        • Hainque B.
        • et al.
        Systemic low-grade inflammation is related to both circulating and adipose tissue TNFalpha, leptin and IL-6 levels in obese women.
        Int. J. Obes. Relat. Metab. Disord. : journal of the International Association for the Study of Obesity. 2004; 28 (Epub 2004/06/24): 993-997
        • Iacobellis G.
        • Bianco A.C.
        Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features.
        Trends Endocrinol. Metabol.: TEM (Trends Endocrinol. Metab.). 2011; 22 (Epub 2011/08/20): 450-457
        • Mandviwala T.
        • Khalid U.
        • Deswal A.
        Obesity and cardiovascular disease: a risk factor or a risk marker?.
        Curr. Atherosclerosis Rep. 2016; 18 (Epub 2016/03/15): 21
        • Fantuzzi G.
        • Mazzone T.
        Adipose tissue and atherosclerosis: exploring the connection.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27 (Epub 2007/02/17): 996-1003
        • Mahabadi A.A.
        • Massaro J.M.
        • Rosito G.A.
        • Levy D.
        • Murabito J.M.
        • Wolf P.A.
        • et al.
        Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study.
        Eur. Heart J. 2009; 30 (Epub 2009/01/13): 850-856
        • Tamarappoo B.
        • Dey D.
        • Shmilovich H.
        • Nakazato R.
        • Gransar H.
        • Cheng V.Y.
        • et al.
        Increased pericardial fat volume measured from noncontrast CT predicts myocardial ischemia by SPECT.
        JACC Cardiovascular imaging. 2010; 3 (Epub 2010/11/13): 1104-1112
        • Xu Y.
        • Cheng X.
        • Hong K.
        • Huang C.
        • Wan L.
        How to interpret epicardial adipose tissue as a cause of coronary artery disease: a meta-analysis.
        Coron. Artery Dis. 2012; 23 (Epub 2012/03/01): 227-233
        • Bos D.
        • Shahzad R.
        • van Walsum T.
        • van Vliet L.J.
        • Franco O.H.
        • Hofman A.
        • et al.
        Epicardial fat volume is related to atherosclerotic calcification in multiple vessel beds.
        Eur Heart J Cardiovasc Imaging. 2015; 16 (Epub 2015/04/25): 1264-1269
        • Goeller M.
        • Achenbach S.
        • Cadet S.
        • Kwan A.C.
        • Commandeur F.
        • Slomka P.J.
        • et al.
        Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease.
        JAMA Cardiol. 2018; 3 (Epub 2018/07/22): 858-863
        • Iacobellis G.
        • Willens H.J.
        Echocardiographic epicardial fat: a review of research and clinical applications.
        J. Am. Soc. Echocardiogr.: official publication of the American Society of Echocardiography. 2009; 22 (quiz 417-8. Epub 2009/12/01): 1311-1319
        • Monti C.B.
        • Codari M.
        • De Cecco C.N.
        • Secchi F.
        • Sardanelli F.
        • Stillman A.E.
        Novel imaging biomarkers: epicardial adipose tissue evaluation.
        BJR (Br. J. Radiol.). 2020; 93 (Epub 2019/11/30): 20190770
        • Lin A.
        • Dey D.
        • Wong D.T.L.
        • Nerlekar N.
        Perivascular adipose tissue and coronary atherosclerosis: from biology to imaging phenotyping.
        Curr. Atherosclerosis Rep. 2019; 21 (Epub 2019/11/20): 47
        • Antonopoulos A.S.
        • Sanna F.
        • Sabharwal N.
        • Thomas S.
        • Oikonomou E.K.
        • Herdman L.
        • et al.
        Detecting human coronary inflammation by imaging perivascular fat.
        Sci. Transl. Med. 2017; 9 (Epub 2017/07/14)
        • Goeller M.
        • Achenbach S.
        • Marwan M.
        • Doris M.K.
        • Cadet S.
        • Commandeur F.
        • et al.
        Epicardial adipose tissue density and volume are related to subclinical atherosclerosis, inflammation and major adverse cardiac events in asymptomatic subjects.
        Journal of cardiovascular computed tomography. 2018; 12 (Epub 2017/12/14): 67-73
        • Shirani J.
        • Berezowski K.
        • Roberts W.C.
        Quantitative measurement of normal and excessive (cor adiposum) subepicardial adipose tissue, its clinical significance, and its effect on electrocardiographic QRS voltage.
        Am. J. Cardiol. 1995; 76 (Epub 1995/08/15): 414-418
        • Sacks H.S.
        • Fain J.N.
        Human epicardial adipose tissue: a review.
        Am. Heart J. 2007; 153 (Epub 2007/06/02): 907-917
        • Iacobellis G.
        • Corradi D.
        • Sharma A.M.
        Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart.
        Nat. Clin. Pract. Cardiovasc. Med. 2005; 2 (Epub 2005/09/28): 536-543
        • Bambace C.
        • Telesca M.
        • Zoico E.
        • Sepe A.
        • Olioso D.
        • Rossi A.
        • et al.
        Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men.
        Cardiovasc. Pathol. : the official journal of the Society for Cardiovascular Pathology. 2011; 20 (Epub 2010/09/11): e153-e156
        • Sacks H.S.
        • Fain J.N.
        • Bahouth S.W.
        • Ojha S.
        • Frontini A.
        • Budge H.
        • et al.
        Adult epicardial fat exhibits beige features.
        J. Clin. Endocrinol. Metabol. 2013; 98 (Epub 2013/07/05): E1448-E1455
        • Mazurek T.
        • Zhang L.
        • Zalewski A.
        • Mannion J.D.
        • Diehl J.T.
        • Arafat H.
        • et al.
        Human epicardial adipose tissue is a source of inflammatory mediators.
        Circulation. 2003; 108 (Epub 2003/10/29): 2460-2466
        • Rabkin S.W.
        Epicardial fat: properties, function and relationship to obesity.
        Obes. Rev. 2007; 8 (Epub 2007/04/21): 253-261
        • Gaborit B.
        • Sengenes C.
        • Ancel P.
        • Jacquier A.
        • Dutour A.
        Role of epicardial adipose tissue in health and disease: a matter of fat?.
        Comprehensive Physiology. 2017; 7 (Epub 2017/06/24): 1051-1082
        • Chechi K.
        • Richard D.
        Thermogenic potential and physiological relevance of human epicardial adipose tissue.
        Int. J. Obes. Suppl. 2015; 5 (Epub 2016/05/07): S28-S34
        • Iacobellis G.
        Epicardial adipose tissue in endocrine and metabolic diseases.
        Endocrine. 2014; 46 (Epub 2013/11/26): 8-15
        • Libby P.
        • Ridker P.M.
        • Maseri A.
        Inflammation and atherosclerosis.
        Circulation. 2002; 105 (Epub 2002/03/06): 1135-1143
        • Ridker P.M.
        • Libby P.
        • MacFadyen J.G.
        • Thuren T.
        • Ballantyne C.
        • Fonseca F.
        • et al.
        Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS).
        Eur. Heart J. 2018; 39 (Epub 2018/08/31): 3499-3507
        • Kawabe J.
        • Hasebe N.
        Role of the vasa vasorum and vascular resident stem cells in atherosclerosis.
        BioMed Res. Int. 2014; 2014 (Epub 2014/04/12): 701571
        • Britton K.A.
        • Fox C.S.
        Perivascular adipose tissue and vascular disease.
        Clin. Lipidol. 2011; 6 (Epub 2011/06/21): 79-91
        • Ansaldo A.M.
        • Montecucco F.
        • Sahebkar A.
        • Dallegri F.
        • Carbone F.
        Epicardial adipose tissue and cardiovascular diseases.
        Int. J. Cardiol. 2019; 278 (Epub 2018/10/10): 254-260
        • Knudson J.D.
        • Dick G.M.
        • Tune J.D.
        Adipokines and coronary vasomotor dysfunction.
        Exp. Biol. Med. 2007; 232 (Epub 2007/05/29): 727-736
        • Oikonomou E.K.
        • Antoniades C.
        The role of adipose tissue in cardiovascular health and disease.
        Nat. Rev. Cardiol. 2019; 16 (Epub 2018/10/06): 83-99
        • Mancio J.
        • Azevedo D.
        • Saraiva F.
        • Azevedo A.I.
        • Pires-Morais G.
        • Leite-Moreira A.
        • et al.
        Epicardial adipose tissue volume assessed by computed tomography and coronary artery disease: a systematic review and meta-analysis.
        European heart journal cardiovascular Imaging. 2018; 19 (Epub 2017/12/14): 490-497
        • Love C.
        • Tomas M.B.
        • Tronco G.G.
        • Palestro C.J.
        FDG PET of infection and inflammation.
        Radiographics : a review publication of the Radiological Society of North America, Inc. 2005; 25 (Epub 2005/09/15): 1357-1368
        • Mazurek T.
        • Kobylecka M.
        • Zielenkiewicz M.
        • Kurek A.
        • Kochman J.
        • Filipiak K.J.
        • et al.
        PET/CT evaluation of (18)F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: independent predictor of atherosclerotic lesions' formation?.
        J. Nucl. Cardiol. 2017; 24 (Epub 2016/03/10): 1075-1084
        • Iacobellis G.
        • Assael F.
        • Ribaudo M.C.
        • Zappaterreno A.
        • Alessi G.
        • Di Mario U.
        • et al.
        Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction.
        Obes. Res. 2003; 11 (Epub 2003/02/13): 304-310
        • Natale F.
        • Tedesco M.A.
        • Mocerino R.
        • de Simone V.
        • Di Marco G.M.
        • Aronne L.
        • et al.
        Visceral adiposity and arterial stiffness: echocardiographic epicardial fat thickness reflects, better than waist circumference, carotid arterial stiffness in a large population of hypertensives.
        Eur. J. Echocardiogr. : the journal of the Working Group on Echocardiography of the European Society of Cardiology. 2009; 10 (Epub 2009/02/13): 549-555
        • Ahn S.G.
        • Lim H.S.
        • Joe D.Y.
        • Kang S.J.
        • Choi B.J.
        • Choi S.Y.
        • et al.
        Relationship of epicardial adipose tissue by echocardiography to coronary artery disease.
        Heart. 2008; 94 (Epub 2007/10/10): e7
        • Tachibana M.
        • Miyoshi T.
        • Osawa K.
        • Toh N.
        • Oe H.
        • Nakamura K.
        • et al.
        Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques.
        Heart Ves. 2016; 31 (Epub 2016/11/01): 1758-1766
        • Le Jemtel T.H.
        • Samson R.
        • Ayinapudi K.
        • Singh T.
        • Oparil S.
        Epicardial adipose tissue and cardiovascular disease.
        Curr. Hypertens. Rep. 2019; 21 (Epub 2019/04/07): 36
        • Iacobellis G.
        • Willens H.J.
        • Barbaro G.
        • Sharma A.M.
        Threshold values of high-risk echocardiographic epicardial fat thickness.
        Obesity. 2008; 16 (Epub 2008/04/02): 887-892
        • Sade L.E.
        • Eroglu S.
        • Bozbas H.
        • Ozbicer S.
        • Hayran M.
        • Haberal A.
        • et al.
        Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries.
        Atherosclerosis. 2009; 204 (Epub 2008/11/21): 580-585
        • Jeong J.W.
        • Jeong M.H.
        • Yun K.H.
        • Oh S.K.
        • Park E.M.
        • Kim Y.K.
        • et al.
        Echocardiographic epicardial fat thickness and coronary artery disease.
        Circ. J. : official journal of the Japanese Circulation Society. 2007; 71 (Epub 2007/03/27): 536-539
        • Dey D.
        • Nakazato R.
        • Li D.
        • Berman D.S.
        Epicardial and thoracic fat - noninvasive measurement and clinical implications.
        Cardiovasc. Diagn. Ther. 2012; 2 (Epub 2012/06/01): 85-93
        • Antonini-Canterin F.
        • Pellegrinet M.
        • Marinigh R.
        • Favretto G.
        Role of cardiovascular ultrasound in the evaluation of obese subjects.
        Journal of cardiovascular echography. 2014; 24 (Epub 2014/07/01): 67-71
        • Machann J.
        • Thamer C.
        • Schnoedt B.
        • Haap M.
        • Haring H.U.
        • Claussen C.D.
        • et al.
        Standardized assessment of whole body adipose tissue topography by MRI.
        J. Magn. Reson. Imag. 2005; 21 (Epub 2005/03/22): 455-462
        • Ross R.
        • Shaw K.D.
        • Martel Y.
        • de Guise J.
        • Avruch L.
        Adipose tissue distribution measured by magnetic resonance imaging in obese women.
        Am. J. Clin. Nutr. 1993; 57 (Epub 1993/04/01): 470-475
        • Bogaert J.
        • Francone M.
        Cardiovascular magnetic resonance in pericardial diseases.
        J. Cardiovasc. Magn. Reson. : official journal of the Society for Cardiovascular Magnetic Resonance. 2009; 11 (Epub 2009/05/06): 14
        • Flüchter S.
        • Haghi D.
        • Dinter D.
        • Heberlein W.
        • Kühl H.P.
        • Neff W.
        • et al.
        Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging.
        Obesity. 2007; 15 (Epub 2007/04/12): 870-878
        • Ng A.C.T.
        • Strudwick M.
        • van der Geest R.J.
        • Ng A.C.C.
        • Gillinder L.
        • Goo S.Y.
        • et al.
        Impact of epicardial adipose tissue, left ventricular myocardial fat content, and interstitial fibrosis on myocardial contractile function.
        Circulation Cardiovascular imaging. 2018; 11 (Epub 2018/10/26)e007372
        • Nelson M.R.
        • Mookadam F.
        • Thota V.
        • Emani U.
        • Al Harthi M.
        • Lester S.J.
        • et al.
        Epicardial fat: an additional measurement for subclinical atherosclerosis and cardiovascular risk stratification?.
        J. Am. Soc. Echocardiogr.: official publication of the American Society of Echocardiography. 2011; 24 (Epub 2010/12/28): 339-345
        • Cristobal-Huerta A.
        • Torrado-Carvajal A.
        • Malpica N.
        • Luaces M.
        • Hernandez-Tamames J.A.
        Automated quantification of epicardial adipose tissue in cardiac magnetic resonance imaging.
        Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2015; 2015 (Epub 2016/01/07): 7308-7311
        • Marwan M.
        • Koenig S.
        • Schreiber K.
        • Ammon F.
        • Goeller M.
        • Bittner D.
        • et al.
        Quantification of epicardial adipose tissue by cardiac CT: influence of acquisition parameters and contrast enhancement.
        Eur. J. Radiol. 2019; 121 (Epub 2019/11/12): 108732
        • Stocker T.J.
        • Deseive S.
        • Leipsic J.
        • Hadamitzky M.
        • Chen M.Y.
        • Rubinshtein R.
        • et al.
        Reduction in radiation exposure in cardiovascular computed tomography imaging: results from the PROspective multicenter registry on radiaTion dose Estimates of cardiac CT angIOgraphy iN daily practice in 2017 (PROTECTION VI).
        Eur. Heart J. 2018; 39 (Epub 2018/08/31): 3715-3723
        • Puchner S.B.
        • Ferencik M.
        • Maehara A.
        • Stolzmann P.
        • Ma S.
        • Do S.
        • et al.
        Iterative image reconstruction improves the accuracy of automated plaque burden assessment in coronary CT angiography: a comparison with intravascular ultrasound.
        Am. J. Roentgenol. 2017; 208: 777-784
        • Blanke P.
        • Naoum C.
        • Ahmadi A.
        • Cheruvu C.
        • Soon J.
        • Arepalli C.
        • et al.
        Long-Term prognostic utility of coronary CT angiography in stable patients with diabetes mellitus.
        JACC Cardiovascular imaging. 2016; 9 (Epub 2016/08/29): 1280-1288
        • Cho I.
        • Al'Aref S.J.
        • Berger A.
        • Oh B.
        • Gransar H.
        • Valenti V.
        • et al.
        Prognostic value of coronary computed tomographic angiography findings in asymptomatic individuals: a 6-year follow-up from the prospective multicentre international CONFIRM study.
        Eur. Heart J. 2018; 39 (Epub 2018/01/25): 934-941
        • Conte E.
        • Annoni A.
        • Pontone G.
        • Mushtaq S.
        • Guglielmo M.
        • Baggiano A.
        • et al.
        Evaluation of coronary plaque characteristics with coronary computed tomography angiography in patients with non-obstructive coronary artery disease: a long-term follow-up study.
        European heart journal cardiovascular Imaging. 2017; 18 (Epub 2016/09/30): 1170-1178
        • Andreini D.
        • Magnoni M.
        • Conte E.
        • Masson S.
        • Mushtaq S.
        • Berti S.
        • et al.
        Coronary plaque features on CTA can identify patients at increased risk of cardiovascular events.
        JACC Cardiovascular imaging. 2020; 13 (Epub 2019/08/20): 1704-1717
        • Pontone G.
        • Andreini D.
        • Guaricci A.I.
        • Baggiano A.
        • Fazzari F.
        • Guglielmo M.
        • et al.
        Incremental diagnostic value of stress computed tomography myocardial perfusion with whole-heart coverage CT scanner in intermediate- to high-risk symptomatic patients suspected of coronary artery disease.
        JACC Cardiovascular imaging. 2019; 12 (Epub 2018/02/20): 338-349
        • Hell M.M.
        • Achenbach S.
        • Schuhbaeck A.
        • Klinghammer L.
        • May M.S.
        • Marwan M.
        CT-based analysis of pericoronary adipose tissue density: relation to cardiovascular risk factors and epicardial adipose tissue volume.
        Journal of cardiovascular computed tomography. 2016; 10 (Epub 2015/08/11): 52-60
        • Nerlekar N.
        • Baey Y.W.
        • Brown A.J.
        • Muthalaly R.G.
        • Dey D.
        • Tamarappoo B.
        • et al.
        Poor correlation, reproducibility, and agreement between volumetric versus linear epicardial adipose tissue measurement: a 3D computed tomography versus 2D echocardiography comparison.
        JACC Cardiovascular imaging. 2018; 11 (Epub 2018/01/24): 1035-1036
        • Nerlekar N.
        • Brown A.J.
        • Muthalaly R.G.
        • Talman A.
        • Hettige T.
        • Cameron J.D.
        • et al.
        Association of epicardial adipose tissue and high-risk plaque characteristics: a systematic review and meta-analysis.
        Journal of the American Heart Association. 2017; 6 (Epub 2017/08/26)
        • Spearman J.V.
        • Renker M.
        • Schoepf U.J.
        • Krazinski A.W.
        • Herbert T.L.
        • De Cecco C.N.
        • et al.
        Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature.
        Eur. Radiol. 2015; 25 (Epub 2015/05/01): 3372-3381
        • Eisenberg E.
        • McElhinney P.A.
        • Commandeur F.
        • Chen X.
        • Cadet S.
        • Goeller M.
        • et al.
        Deep learning-based quantification of epicardial adipose tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects.
        Circulation Cardiovascular imaging. 2020; 13 (Epub 2020/02/18)e009829
        • Mahabadi A.A.
        • Balcer B.
        • Dykun I.
        • Forsting M.
        • Schlosser T.
        • Heusch G.
        • et al.
        Cardiac computed tomography-derived epicardial fat volume and attenuation independently distinguish patients with and without myocardial infarction.
        PloS One. 2017; 12 (Epub 2017/08/25)e0183514
        • Raggi P.
        • Gadiyaram V.
        • Zhang C.
        • Chen Z.
        • Lopaschuk G.
        • Stillman A.E.
        Statins reduce epicardial adipose tissue attenuation independent of lipid lowering: a potential pleiotropic effect.
        Journal of the American Heart Association. 2019; 8 (Epub 2019/06/14)e013104
        • Ding X.
        • Terzopoulos D.
        • Diaz-Zamudio M.
        • Berman D.S.
        • Slomka P.J.
        • Dey D.
        Automated pericardium delineation and epicardial fat volume quantification from noncontrast CT.
        Med. Phys. 2015; 42 (Epub 2015/09/04): 5015-5026
        • Militello C.
        • Rundo L.
        • Toia P.
        • Conti V.
        • Russo G.
        • Filorizzo C.
        • et al.
        A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans.
        Comput. Biol. Med. 2019; 114 (Epub 2019/09/16): 103424
        • Commandeur F.
        • Goeller M.
        • Betancur J.
        • Cadet S.
        • Doris M.
        • Chen X.
        • et al.
        Deep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CT.
        IEEE Trans. Med. Imag. 2018; 37 (Epub 2018/07/12): 1835-1846
        • Dey D.
        • Slomka P.J.
        • Leeson P.
        • Comaniciu D.
        • Shrestha S.
        • Sengupta P.P.
        • et al.
        Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review.
        J. Am. Coll. Cardiol. 2019; 73 (Epub 2019/03/23): 1317-1335
        • Hassan M.
        • Said K.
        • Rizk H.
        • ElMogy F.
        • Donya M.
        • Houseni M.
        • et al.
        Segmental peri-coronary epicardial adipose tissue volume and coronary plaque characteristics.
        European heart journal cardiovascular Imaging. 2016; 17 (Epub 2015/11/22): 1169-1177
        • Antoniades C.
        • Kotanidis C.P.
        • Berman D.S.
        State-of-the-art review article. Atherosclerosis affecting fat: what can we learn by imaging perivascular adipose tissue?.
        Journal of cardiovascular computed tomography. 2019; 13 (Epub 2019/04/07): 288-296
        • Kwiecinski J.
        • Dey D.
        • Cadet S.
        • Lee S.E.
        • Otaki Y.
        • Huynh P.T.
        • et al.
        Peri-coronary adipose tissue density is associated with (18)F-sodium fluoride coronary uptake in stable patients with high-risk plaques.
        JACC Cardiovascular imaging. 2019; 12 (Epub 2019/02/18): 2000-2010
        • Goeller M.
        • Tamarappoo B.K.
        • Kwan A.C.
        • Cadet S.
        • Commandeur F.
        • Razipour A.
        • et al.
        Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography.
        Eur Heart J Cardiovasc Imaging. 2019; 20 (Epub 2019/02/23): 636-643
        • Lin A.
        • Nerlekar N.
        • Rajagopalan A.
        • Yuvaraj J.
        • Modi R.
        • Mirzaee S.
        • et al.
        Remnant cholesterol and coronary atherosclerotic plaque burden assessed by computed tomography coronary angiography.
        Atherosclerosis. 2019; 284 (Epub 2019/03/15): 24-30
        • Oikonomou E.K.
        • Marwan M.
        • Desai M.Y.
        • Mancio J.
        • Alashi A.
        • Hutt Centeno E.
        • et al.
        Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data.
        Lancet. 2018; 392 (Epub 2018/09/02): 929-939
        • Oikonomou E.K.
        • Desai M.Y.
        • Marwan M.
        • Kotanidis C.P.
        • Antonopoulos A.S.
        • Schottlander D.
        • et al.
        Perivascular fat attenuation index stratifies cardiac risk associated with high-risk plaques in the CRISP-CT study.
        J. Am. Coll. Cardiol. 2020; 76 (Epub 2020/08/09): 755-757
        • Ma R.
        • Ties D.
        • van Assen M.
        • Pelgrim G.J.
        • Sidorenkov G.
        • van Ooijen P.M.A.
        • et al.
        Towards reference values of pericoronary adipose tissue attenuation: impact of coronary artery and tube voltage in coronary computed tomography angiography.
        Eur. Radiol. 2020; 30 (Epub 2020/07/24): 6838-6846
        • Goeller M.
        • Rahman Ihdayhid A.
        • Cadet S.
        • Lin A.
        • Adams D.
        • Thakur U.
        • et al.
        Pericoronary adipose tissue and quantitative global non-calcified plaque characteristics from CT angiography do not differ in matched South Asian, East Asian and European-origin Caucasian patients with stable chest pain.
        Eur. J. Radiol. 2020; 125 (Epub 2020/02/23): 108874
        • Bittner D.O.
        • Goeller M.
        • Dey D.
        • Zopf Y.
        • Achenbach S.
        • Marwan M.
        High levels of eicosapentaenoic acid are associated with lower pericoronary adipose tissue attenuation as measured by coronary CTA.
        Atherosclerosis. 2021; 316 (Epub 2020/11/02): 73-78