Advertisement

Cardiovascular effects of omega-3 fatty acids: Hope or hype?

      Highlights

      • Effects of randomized clinical trials of omega-3 fatty acids are controversial.
      • We discuss different biological and clinical effects of various types of omega-3 fatty acids.
      • We discuss how to interpret different results of clinical studies that apply to patient management.

      Abstract

      Omega-3 fatty acids have emerged as a new option for controlling the residual risk for cardiovascular disease (CVD) in the statin era after a clinical trial (REDUCE-IT) reported positive results with icosapent ethyl (IPE) in patients receiving maximally tolerated statin therapy. However, another trial which used high dose eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) combination (STRENGTH) has failed. Together, these results raise clinically important questions. Are effects of omega-3 fatty acids neutral or beneficial in patients on statin therapy, or perhaps even harmful? The current contradictory results could be attributed to different types of omega-3 fatty acids (only EPA or combination of EPA + DHA), doses (higher vs. lower dose) of omega-3 fatty acids or different comparators (corn oil or mineral oil), as well as the underlying severity of the CVD risk or use of statins.
      Together with these issues, we will discuss different biological and clinical effects of various types of omega-3 fatty acids and then interpret different results of past and current clinical studies and propose practical suggestions, which could be applied in patient management.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bhatt D.L.
        • Steg P.G.
        • Miller M.
        • et al.
        Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia.
        N. Engl. J. Med. 2019; 380: 11-22
        • Investigators O.T.
        • Bosch J.
        • Gerstein H.C.
        • et al.
        n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia.
        N. Engl. J. Med. 2012; 367: 309-318
        • Bowman L.
        • Mafham M.
        • Wallendszus K.
        • et al.
        Effects of n-3 fatty acid supplements in diabetes mellitus.
        N. Engl. J. Med. 2018; 379: 1540-1550
        • Manson J.E.
        • Cook N.R.
        • Lee I.M.
        • et al.
        Marine n-3 fatty acids and prevention of cardiovascular disease and cancer.
        N. Engl. J. Med. 2019; 380: 23-32
        • Nicholls S.J.
        • Lincoff A.M.
        • Garcia M.
        • et al.
        Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial.
        Jama. 2020;
        • Koh K.K.
        • Quon M.J.
        • Shin K.C.
        • et al.
        Significant differential effects of omega-3 fatty acids and fenofibrate in patients with hypertriglyceridemia.
        Atherosclerosis. 2012; 220: 537-544
        • Shearer G.C.
        • Savinova O.V.
        • Harris W.S.
        Fish oil -- how does it reduce plasma triglycerides?.
        Biochim. Biophys. Acta. 2012; 1821: 843-851
        • Jacobson T.A.
        • Glickstein S.B.
        • Rowe J.D.
        • et al.
        Effects of eicosapentaenoic acid and docosahexaenoic acid on low-density lipoprotein cholesterol and other lipids: a review.
        J. Clin. Lipidol. 2012; 6: 5-18
        • Allaire J.
        • Vors C.
        • Tremblay A.J.
        • et al.
        High-dose DHA has more profound effects on LDL-related features than high-dose EPA: the ComparED study.
        J. Clin. Endocrinol. Metabol. 2018; 103: 2909-2917
        • Bairati I.
        • Roy L.
        • Meyer F.
        Effects of a fish oil supplement on blood pressure and serum lipids in patients treated for coronary artery disease.
        Can. J. Cardiol. 1992; 8: 41-46
        • Bairati I.
        • Roy L.
        • Meyer F.
        Double-blind, randomized, controlled trial of fish oil supplements in prevention of recurrence of stenosis after coronary angioplasty.
        Circulation. 1992; 85: 950-956
        • Minihane A.M.
        • Khan S.
        • Leigh-Firbank E.C.
        • et al.
        ApoE polymorphism and fish oil supplementation in subjects with an atherogenic lipoprotein phenotype.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1990-1997
        • Ballantyne C.M.
        • Bays H.E.
        • Braeckman R.A.
        • et al.
        Icosapent ethyl (eicosapentaenoic acid ethyl ester): effects on plasma apolipoprotein C-III levels in patients from the MARINE and ANCHOR studies.
        J. Clin. Lipidol. 2016; 10: 635-645.e631
        • Mason R.P.
        • Libby P.
        • Bhatt D.L.
        Emerging mechanisms of cardiovascular protection for the omega-3 fatty acid eicosapentaenoic acid.
        Arterioscler. Thromb. Vasc. Biol. 2020; 40: 1135-1147
        • Buckley R.
        • Shewring B.
        • Turner R.
        • et al.
        Circulating triacylglycerol and apoE levels in response to EPA and docosahexaenoic acid supplementation in adult human subjects.
        Br. J. Nutr. 2004; 92: 477-483
        • Allaire J.
        • Vors C.
        • Tremblay A.J.
        • et al.
        High-dose DHA has more profound effects on LDL-related features than high-dose EPA: the ComparED study.
        J. Clin. Endocrinol. Metabol. 2018; 103: 2909-2917
        • Grimsgaard S.
        • Bonaa K.H.
        • Hansen J.B.
        • et al.
        Highly purified eicosapentaenoic acid and docosahexaenoic acid in humans have similar triacylglycerol-lowering effects but divergent effects on serum fatty acids.
        Am. J. Clin. Nutr. 1997; 66: 649-659
        • Allaire J.
        • Couture P.
        • Leclerc M.
        • et al.
        A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study.
        Am. J. Clin. Nutr. 2016; 104: 280-287
        • Egert S.
        • Kannenberg F.
        • Somoza V.
        • et al.
        Dietary alpha-linolenic acid, EPA, and DHA have differential effects on LDL fatty acid composition but similar effects on serum lipid profiles in normolipidemic humans.
        J. Nutr. 2009; 139: 861-868
        • Mori T.A.
        • Burke V.
        • Puddey I.B.
        • et al.
        Purified eicosapentaenoic and docosahexaenoic acids have differential effects on serum lipids and lipoproteins, LDL particle size, glucose, and insulin in mildly hyperlipidemic men.
        Am. J. Clin. Nutr. 2000; 71: 1085-1094
        • Woodman R.J.
        • Mori T.A.
        • Burke V.
        • et al.
        Effects of purified eicosapentaenoic and docosahexaenoic acids on glycemic control, blood pressure, and serum lipids in type 2 diabetic patients with treated hypertension.
        Am. J. Clin. Nutr. 2002; 76: 1007-1015
        • Dangardt F.
        • Osika W.
        • Chen Y.
        • et al.
        Omega-3 fatty acid supplementation improves vascular function and reduces inflammation in obese adolescents.
        Atherosclerosis. 2010; 212: 580-585
        • Oh P.C.
        • Koh K.K.
        • Sakuma I.
        • et al.
        Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia.
        Int. J. Cardiol. 2014; 176: 696-702
        • Omura M.
        • Kobayashi S.
        • Mizukami Y.
        • et al.
        Eicosapentaenoic acid (EPA) induces Ca(2+)-independent activation and translocation of endothelial nitric oxide synthase and endothelium-dependent vasorelaxation.
        FEBS Lett. 2001; 487: 361-366
        • Mason R.P.
        • Dawoud H.
        • Jacob R.F.
        • et al.
        Eicosapentaenoic acid improves endothelial function and nitric oxide bioavailability in a manner that is enhanced in combination with a statin.
        Biomed. Pharmacother. 2018; 103: 1231-1237
        • Koh K.K.
        • Han S.H.
        • Quon M.J.
        Inflammatory markers and the metabolic syndrome: insights from therapeutic interventions.
        J. Am. Coll. Cardiol. 2005; 46: 1978-1985
        • Cho K.I.
        • Yu J.
        • Hayashi T.
        • et al.
        Strategies to overcome residual risk during statins era.
        Circ. J. : Off. J. Jpn Circ. Soc. 2019; 83: 1973-1979
        • De Caterina R.
        • Cybulsky M.I.
        • Clinton S.K.
        • et al.
        The omega-3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells,.
        Arterioscler. Thromb. : J. Vasc. Biol. 1994; 14: 1829-1836
        • Bays H.E.
        • Ballantyne C.M.
        • Kastelein J.J.
        • et al.
        Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi-center, plAcebo-controlled, Randomized, double-blINd, 12-week study with an open-label Extension [MARINE] trial).
        Am. J. Cardiol. 2011; 108: 682-690
        • Innes J.K.
        • Calder P.C.
        The differential effects of eicosapentaenoic acid and docosahexaenoic acid on cardiometabolic risk factors: a systematic review.
        Int. J. Mol. Sci. 2018; 19
        • Guo X.F.
        • Li K.L.
        • Li J.M.
        • et al.
        Effects of EPA and DHA on blood pressure and inflammatory factors: a meta-analysis of randomized controlled trials.
        Crit. Rev. Food Sci. Nutr. 2019; 59: 3380-3393
        • Tanaka N.
        • Irino Y.
        • Shinohara M.
        • et al.
        Eicosapentaenoic acid-enriched high-density lipoproteins exhibit anti-atherogenic properties.
        Circ. J. : Off. J. Jpn Circ. Soc. 2018; 82: 596-601
        • Zhuang P.
        • Zhang Y.
        • He W.
        • et al.
        Dietary fats in relation to total and cause-specific mortality in a prospective cohort of 521 120 individuals with 16 Years of follow-up.
        Circ. Res. 2019; 124: 757-768
        • Heshmati J.
        • Morvaridzadeh M.
        • Maroufizadeh S.
        • et al.
        Omega-3 fatty acids supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials.
        Pharmacol. Res. 2019; 104462
        • Mori T.A.
        • Woodman R.J.
        • Burke V.
        • et al.
        Effect of eicosapentaenoic acid and docosahexaenoic acid on oxidative stress and inflammatory markers in treated-hypertensive type 2 diabetic subjects.
        Free Radical Biol. Med. 2003; 35: 772-781
        • Mason R.P.
        • Sherratt S.C.
        • Jacob R.F.
        Eicosapentaenoic acid inhibits oxidation of ApoB-containing lipoprotein particles of different size in vitro when administered alone or in combination with atorvastatin active metabolite compared with other triglyceride-lowering agents.
        J. Cardiovasc. Pharmacol. 2016; 68: 33-40
        • Tanaka N.
        • Ishida T.
        • Nagao M.
        • et al.
        Administration of high dose eicosapentaenoic acid enhances anti-inflammatory properties of high-density lipoprotein in Japanese patients with dyslipidemia.
        Atherosclerosis. 2014; 237: 577-583
        • Sherratt S.C.R.
        • Mason R.P.
        Eicosapentaenoic acid inhibits oxidation of high density lipoprotein particles in a manner distinct from docosahexaenoic acid.
        Biochem. Biophys. Res. Commun. 2018; 496: 335-338
        • Phang M.
        • Sinclair A.J.
        • Lincz L.F.
        • et al.
        Gender-specific inhibition of platelet aggregation following omega-3 fatty acid supplementation.
        Nutr. Metabol. Cardiovasc. Dis. 2012; 22: 109-114
        • Woodman R.J.
        • Mori T.A.
        • Burke V.
        • et al.
        Effects of purified eicosapentaenoic acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in hypertensive type 2 diabetic patients.
        Atherosclerosis. 2003; 166: 85-93
        • Moertl D.
        • Berger R.
        • Hammer A.
        • et al.
        Dose-dependent decrease of platelet activation and tissue factor by omega-3 polyunsaturated fatty acids in patients with advanced chronic heart failure.
        Thromb. Haemostasis. 2011; 106: 457-465
        • Moertl D.
        • Hammer A.
        • Steiner S.
        • et al.
        Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study.
        Am. Heart J. 2011; 161: 915 e911-919
        • Preston Mason R.
        New insights into mechanisms of action for omega-3 fatty acids in atherothrombotic cardiovascular disease.
        Curr. Atherosclerosis Rep. 2019; 21: 2
        • Soubias O.
        • Gawrisch K.
        Docosahexaenoyl chains isomerize on the sub-nanosecond time scale.
        J. Am. Chem. Soc. 2007; 129: 6678-6679
        • Sherratt S.C.R.
        • Mason R.P.
        Eicosapentaenoic acid and docosahexaenoic acid have distinct membrane locations and lipid interactions as determined by X-ray diffraction.
        Chem. Phys. Lipids. 2018; 212: 73-79
        • Borow K.M.
        • Nelson J.R.
        • Mason R.P.
        Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis.
        Atherosclerosis. 2015; 242: 357-366
        • Mason R.P.
        • Jacob R.F.
        • Shrivastava S.
        • et al.
        Eicosapentaenoic acid reduces membrane fluidity, inhibits cholesterol domain formation, and normalizes bilayer width in atherosclerotic-like model membranes.
        Biochim. Biophys. Acta. 2016; 1858: 3131-3140
        • Mason R.P.
        • Jacob R.F.
        Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism.
        Biochim. Biophys. Acta. 2015; 1848: 502-509
        • Han S.H.
        • Quon M.J.
        • Kim J.A.
        • et al.
        Adiponectin and cardiovascular disease: response to therapeutic interventions.
        J. Am. Coll. Cardiol. 2007; 49: 531-538
        • Lim S.
        • Quon M.J.
        • Koh K.K.
        Modulation of adiponectin as a potential therapeutic strategy.
        Atherosclerosis. 2014; 233: 721-728
        • Neschen S.
        • Morino K.
        • Rossbacher J.C.
        • et al.
        Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-gamma-dependent mechanism in mice.
        Diabetes. 2006; 55: 924-928
        • Duda M.K.
        • O'Shea K.M.
        • Lei B.
        • et al.
        Dietary supplementation with omega-3 PUFA increases adiponectin and attenuates ventricular remodeling and dysfunction with pressure overload.
        Cardiovasc. Res. 2007; 76: 303-310
        • Kaushik M.
        • Mozaffarian D.
        • Spiegelman D.
        • et al.
        Long-chain omega-3 fatty acids, fish intake, and the risk of type 2 diabetes mellitus.
        Am. J. Clin. Nutr. 2009; 90: 613-620
        • Djoussé L.
        • Gaziano J.M.
        • Buring J.E.
        • et al.
        Dietary omega-3 fatty acids and fish consumption and risk of type 2 diabetes.
        Am. J. Clin. Nutr. 2011; 93: 143-150
        • Brown T.J.
        • Brainard J.
        • Song F.
        • et al.
        Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials.
        Br. Med. J. 2019; 366: l4697
        • Lorente-Cebrian S.
        • Perez-Matute P.
        • Martinez J.A.
        • et al.
        Effects of eicosapentaenoic acid (EPA) on adiponectin gene expression and secretion in primary cultured rat adipocytes.
        J. Physiol. Biochem. 2006; 62: 61-69
        • Kelley D.S.
        • Adkins Y.
        • Woodhouse L.R.
        • et al.
        Docosahexaenoic acid supplementation improved lipocentric but not glucocentric markers of insulin sensitivity in hypertriglyceridemic men.
        Metab. Syndr. Relat. Disord. 2012; 10: 32-38
        • Han S.H.
        • Oh P.C.
        • Lim S.
        • et al.
        Comparative cardiometabolic effects of fibrates and omega-3 fatty acids.
        Int. J. Cardiol. 2013; 167: 2404-2411
        • Yokoyama M.
        • Origasa H.
        • Matsuzaki M.
        • et al.
        Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis.
        Lancet. 2007; 369: 1090-1098
        • Budoff M.J.
        • Bhatt D.L.
        • Kinninger A.
        • et al.
        Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial.
        Eur. Heart J. 2020; 41: 3925-3932
        • Kromhout D.
        • Giltay E.J.
        • Geleijnse J.M.
        • et al.
        n-3 fatty acids and cardiovascular events after myocardial infarction.
        N. Engl. J. Med. 2010; 363: 2015-2026
        • Galan P.
        • Kesse-Guyot E.
        • Czernichow S.
        • et al.
        Effects of B vitamins and omega 3 fatty acids on cardiovascular diseases: a randomised placebo controlled trial.
        BMJ. 2010; 341: c6273
        • Kwak S.M.
        • Myung S.K.
        • Lee Y.J.
        • et al.
        Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials.
        Arch. Intern. Med. 2012; 172: 686-694
        • He K.
        • Song Y.
        • Daviglus M.L.
        • et al.
        Accumulated evidence on fish consumption and coronary heart disease mortality: a meta-analysis of cohort studies.
        Circulation. 2004; 109: 2705-2711
        • Wang C.
        • Harris W.S.
        • Chung M.
        • et al.
        n-3 Fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review.
        Am. J. Clin. Nutr. 2006; 84: 5-17
        • Nicholls S.J.
        • Lincoff A.M.
        • Bash D.
        • et al.
        Assessment of omega-3 carboxylic acids in statin-treated patients with high levels of triglycerides and low levels of high-density lipoprotein cholesterol: rationale and design of the STRENGTH trial.
        Clin. Cardiol. 2018; 41: 1281-1288
        • Marston N.A.
        • Giugliano R.P.
        • Im K.
        • et al.
        Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: a systematic review and meta-regression analysis of randomized controlled trials.
        Circulation. 2019; 140: 1308-1317
        • Mason R.P.
        • Sherratt S.C.R.
        Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits.
        Biochem. Biophys. Res. Commun. 2017; 483: 425-429
        • Sato T.
        • Horikawa M.
        • Takei S.
        • et al.
        Preferential incorporation of administered eicosapentaenoic acid into thin-cap atherosclerotic plaques.
        Arterioscler. Thromb. Vasc. Biol. 2019; Atvbaha119313093
        • Kuroda K.
        • Otake H.
        • Shinohara M.
        • et al.
        Effect of rosuvastatin and eicosapentaenoic acid on neoatherosclerosis: the LINK-IT trial, EuroIntervention.
        J. EuroPCR Collab. Working Group Intervent. Cardiol. Eur. Soc. Cardiol. 2019;
        • Perez-Martinez P.
        • Katsiki N.
        • Mikhailidis D.P.
        The role of n-3 fatty acids in cardiovascular disease: back to the future.
        Angiology. 2020; 71: 10-16
        • Aung T.
        • Halsey J.
        • Kromhout D.
        • et al.
        Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals.
        JAMA Cardiol. 2018; 3: 225-234
        • Boden W.E.
        • Probstfield J.L.
        • Anderson T.
        • et al.
        Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy.
        N. Engl. J. Med. 2011; 365: 2255-2267
        • Landray M.J.
        • Haynes R.
        • Hopewell J.C.
        • et al.
        Effects of extended-release niacin with laropiprant in high-risk patients.
        N. Engl. J. Med. 2014; 371: 203-212
        • Skulas-Ray A.C.
        • Wilson P.W.F.
        • Harris W.S.
        • et al.
        Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American heart association.
        Circulation. 2019; 140: e673-e691
        • Mach F.
        • Baigent C.
        • Catapano A.L.
        • et al.
        2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk.
        Eur. Heart J. 2020; 41: 111-188
        • Lawler P.R.
        • Kotrri G.
        • Koh M.
        • et al.
        Real-world risk of cardiovascular outcomes associated with hypertriglyceridaemia among individuals with atherosclerotic cardiovascular disease and potential eligibility for emerging therapies.
        Eur. Heart J. 2020; 41: 86-94
        • Itakura H.
        • Yokoyama M.
        • Matsuzaki M.
        • et al.
        Relationships between plasma fatty acid composition and coronary artery disease.
        J. Atherosclerosis Thromb. 2011; 18: 99-107
        • Bays H.E.
        • Ballantyne C.M.
        • Doyle Jr., R.T.
        • et al.
        Icosapent ethyl: eicosapentaenoic acid concentration and triglyceride-lowering effects across clinical studies.
        Prostag. Other Lipid Mediat. 2016; 125: 57-64