Advertisement

Carbohydrates: Separating fact from fiction

      Highlights

      • High intakes of dietary fiber and whole grains are associated with positive effects on metabolic health while diet high in sugar, and refined carbohydrates have negative effects on cardiometabolic health.
      • Consistent evidence indicates that low fat and low carbohydrate diets at comparable energy levels have similar effects on body weight.
      • No firm conclusion can be drawn regarding low carbohydrate diet and diabetes control. Short-term dietary studies with low carbohydrate diet was associated with better fasting glucose and lower Hemoglobin A1c. However, with a longer follow-up, there was no benefit with low carbohydrate diet and diabetes control.
      • Diet high in fiber and whole grains were associated with reduction in mortality and cardiovascular events.

      Abstract

      The role of carbohydrate in a healthy diet has been controversial. The confusion over carbohydrate has come from the long standing limitation of dietary recall studies as well as inability in many of these studies to delineate between the different types of carbohydrates. It is the aim of this paper, to understand and review the data on the role of carbohydrate as pertaining to weight, insulin resistance, diabetes, inflammation, lipids, as well as epidemiological data on long-term cardiovascular outcome and all-cause mortality.
      We have reviewed the latest epidemiological and intervention studies on fiber, whole grain, and refined carbohydrates on weight, diabetes, lipids as well as major adverse cardiac events that we deemed were scientifically rigorous.
      High intakes of dietary fiber and whole grains are associated with positive effects on metabolic health while diet high in sugar and refined carbohydrates have negative effects on cardiometabolic health. Consistent evidence indicates that low fat and low carbohydrate diets at comparable energy levels have similar effects on body weight. Large epidemiological studies show when carbohydrates are substituted for animal-derived fat or protein mortality increased while carbohydrate exchanged with plant based protein was associated with mortality reduction. Types of carbohydrate appear to be critical for mortality and cardiovascular events.
      Evidence shows that quality of the carbohydrate determine cardiometabolic health and cardiovascular events. Given that most people worldwide currently consume less than 20 g of dietary fiber per day with persistently high consumption of refined carbohydrates, current evidence emphasize the need for additional measures to increase the amount and the diversity of fiber intake for improvement of cardiometabolic and cardiovascular outcomes.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jones J.M.
        Codex-aligned dietary fiber definitions help to bridge the ‘fiber gap’.
        Nutr. J. 2014; 13 (34–34)
        • Reynolds A.
        • Mann J.
        • Cummings J.
        • Winter N.
        • Mete E.
        • Te Morenga L.
        Carbohydrate quality and human health: a series of systematic reviews and meta-analyses.
        Lancet. 2019 Feb 2; 393 (Epub 2019 Jan 10. Erratum in: Lancet. 2019 Feb 2;393(10170):406. PMID: 30638909): 434-445https://doi.org/10.1016/S0140-6736(18)31809-9
        • Reynolds A.N.
        • Akerman A.P.
        • Mann J.
        Dietary fibre and whole grains in diabetes management: systematic review and meta-analyses.
        PLoS Med. 2020 Mar 6; 17 (PMID: 32142510; PMCID: PMC7059907)e1003053https://doi.org/10.1371/journal.pmed.1003053
        • Martínez-González M.A.
        • Fernandez-Lazaro C.I.
        • Toledo E.
        • et al.
        Carbohydrate quality changes and concurrent changes in cardiovascular risk factors: a longitudinal analysis in the PREDIMED-Plus randomized trial.
        Am. J. Clin. Nutr. 2020 Feb 1; 111 (PMID: 31868210): 291-306https://doi.org/10.1093/ajcn/nqz298
        • Blaak E.E.
        • Canfora E.E.
        • Theis S.
        • Frost G.
        • Groen A.K.
        • Mithieux G.
        • Nauta A.
        • Scott K.
        • Stahl B.
        • van Harsselaar J.
        • van Tol R.
        • Vaughan E.E.
        • Verbeke K.
        Short chain fatty acids in human gut and metabolic health.
        Benef. Microbes. 2020 Sep 1; 11 (Epub 2020 Aug 31. PMID: 32865024): 411-455https://doi.org/10.3920/BM2020.0057
        • Canfora E.E.
        • Meex R.C.R.
        • Venema K.
        • Blaak E.E.
        Gut microbial metabolites in obesity, NAFLD and T2DM.
        Nat. Rev. Endocrinol. 2019 May; 15 (PMID: 30670819): 261-273https://doi.org/10.1038/s41574-019-0156-z
        • Müller M.
        • Hermes G.D.A.
        • Emanuel E.C.
        • Holst J.J.
        • Zoetendal E.G.
        • Smidt H.
        • Troost F.
        • Schaap F.G.
        • Damink S.O.
        • Jocken J.W.E.
        • Lenaerts K.
        • Masclee A.A.M.
        • Blaak E.E.
        Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: a randomized controlled trial in healthy adults with a slow gut transit.
        Gut Microb. 2020 Nov 9; 12 (Epub 2020 Jan 25. PMID: 31983281; PMCID: PMC7524158): 1704141https://doi.org/10.1080/19490976.2019.1704141
        • Müller M.
        • Canfora E.E.
        • Blaak E.E.
        Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers.
        Nutrients. 2018 Feb 28; 10 (PMID: 29495569; PMCID: PMC5872693): 275https://doi.org/10.3390/nu10030275
        • McKee L.H.
        • Latner T.A.
        Underutilized sources of dietary fiber: a review.
        Plant Foods Hum. Nutr. 2000; 55: 285-304
        • Gibson G.R.
        • Hutkins R.
        • Sanders M.E.
        • Prescott S.L.
        • Reimer R.A.
        • Salminen S.J.
        • Scott K.
        • Stanton C.
        • Swanson K.S.
        • Cani P.D.
        • et al.
        Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.
        Nat. Rev. Gastroenterol. Hepatol. 2017; 14: 491-502
        • Kellow N.J.
        • Coughlan M.T.
        • Reid C.M.
        Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials.
        Br. J. Nutr. 2014 Apr 14; 111 (Epub 2013 Nov 13. PMID: 24230488): 1147-1161https://doi.org/10.1017/S0007114513003607
        • Qu H.
        • Song L.
        • Zhang Y.
        • Gao Z.Y.
        • Shi D.Z.
        The lacking effects of prebiotic products on decreasing adiposity parameters in overweight and obese individuals: a systematic review and meta-analysis.
        Curr. Med. Chem. 2019 Dec 29; (Epub ahead of print. PMID: 31886746)https://doi.org/10.2174/0929867327666191230110128
        • John G.K.
        • Wang L.
        • Nanavati J.
        • Twose C.
        • Singh R.
        • Mullin G.
        Dietary alteration of the gut microbiome and its impact on weight and fat mass: a systematic review and meta-analysis.
        Genes. 2018 Mar 16; 9 (PMID: 29547587; PMCID: PMC5867888): 167https://doi.org/10.3390/genes9030167
        • Chambers E.S.
        • Viardot A.
        • Psichas A.
        • Morrison D.J.
        • Murphy K.G.
        • Zac-varghese S.E.K.
        • Macdougall K.
        • Preston T.
        • Tedford C.
        • Finlayson G.S.
        • Blundell J.E.
        • Bell J.D.
        • Thomas E.L.
        • Mt-isa S.
        • Ashby D.
        • Gibson G.R.
        • Dhillo W.S.
        • Bloom S.R.
        • Morley W.
        • Clegg S.
        • Frost G.
        Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults.
        BMJ. 2015; 64: 1744-1754https://doi.org/10.1136/gutjnl-2014-307913
        • van der Beek C.M.
        • et al.
        Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men.
        Clin. Sci. 2016; 130: 2073-2082
        • Blaak E.E.
        • Canfora E.E.
        • Theis S.
        • Frost G.
        • Groen A.K.
        • Mithieux G.
        • Nauta A.
        • Scott K.
        • Stahl B.
        • van Harsselaar J.
        • van Tol R.
        • Vaughan E.E.
        • Verbeke K.
        Short chain fatty acids in human gut and metabolic health.
        Benef. Microbes. 2020 Sep 1; 11 (Epub 2020 Aug 31. PMID: 32865024): 411-455https://doi.org/10.3920/BM2020.0057
        • Hjorth M.F.
        • Roager H.M.
        • Larsen T.M.
        • Poulsen S.K.
        • Licht T.R.
        • Bahl M.I.
        • Zohar Y.
        • Astrup A.
        Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention.
        Int. J. Obes. 2018 Feb; 42 (Epub 2018 Feb 6. Erratum for: Int J Obes (Lond). 2017 Sep 08;: PMID: 29406520; PMCID: PMC7609312): 284https://doi.org/10.1038/ijo.2018.1
        • Liu F.
        • Prabhakar M.
        • Ju J.
        • Long H.
        • Zhou H.W.
        Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials.
        Eur. J. Clin. Nutr. 2017; 71: 9-20
        • Vulevic J.
        • Juric A.
        • Tzortzis G.
        • Gibson G.R.
        A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults.
        J. Nutr. 2013; 143: 324-331
        • Canfora E.E.
        • Blaak E.E.
        The role of polydextrosein body weight control and glucose regulation.
        Curr. Opin. Clin. Nutr. Metab. Care. 2015; 18: 395-400
        • Canfora E.E.
        • van der Beek C.M.
        Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals.
        Gastroenterology. 2017; 153: 87-97
        • Liu F.
        • et al.
        Fructooligosaccharide (FOS) and galactooligosaccharide (GOS) increase Bifidobacterium but reduce butyrate producing bacteria with adverse glycemic metabolism in healthy young population.
        Sci. Rep. 2017; 7: 11789
        • Bouter K.
        • et al.
        Differential metabolic effects of oral butyrate treatment in lean versus metabolicsyndrome subjects.
        Clin. Transl. Gastroenterol. 2018; 9: 155
        • Zhao L.
        • et al.
        Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.
        Science. 2018; 359: 1151-1156
        • Dikeman C.L.
        • Fahey G.C.
        Viscosity as related to dietary fiber: a review.
        Crit. Rev. Food Sci. Nutr. 2006; 46: 649-663
        • Jenkins D.J.
        • Marchie A.
        • Augustin L.S.
        • Ros E.
        • Kendall C.W.
        Viscous dietary fibre and metabolic effects.
        Clin. Nutr. Suppl. 2004; 1: 39-49
        • Jovanovski E.
        • Mazhar N.
        • Komishon A.
        • Khayyat R.
        • Li D.
        • Blanco Mejia S.
        • Khan T.
        • Jenkins A L.
        • Smircic-Duvnjak L.
        • L Sievenpiper J.
        • Vuksan V.
        Can dietary viscous fiber affect body weight independently of an energy-restrictive diet? A systematic review and meta-analysis of randomized controlled trials.
        Am. J. Clin. Nutr. 2020 Feb 1; 111 (PMID: 31897475): 471-485https://doi.org/10.1093/ajcn/nqz292
        • Jovanovski E.
        • Khayyat R.
        • Zurbau A.
        • Komishon A.
        • Mazhar N.
        • Sievenpiper J.L.
        • Blanco Mejia S.
        • Ho H.V.T.
        • Li D.
        • Jenkins A.L.
        • Duvnjak L.
        • Vuksan V.
        Should viscous fiber supplements Be considered in diabetes control? Results from a systematic review and meta-analysis of randomized controlled trials.
        Diabetes Care. 2019 May; 42 (Epub 2019 Jan 7. Erratum in: Diabetes Care. 2019 Aug;42(8):1604. PMID: 30617143): 755-766https://doi.org/10.2337/dc18-1126
        • Pal S.
        • Radavelli-Bagatini S.
        Effects of psyllium on metabolic syndrome risk factors.
        Obes. Rev. 2012; 13: 1034-1047
        • Gibb R.D.
        • McRorie Jr., J.W.
        • Russell D.A.
        • Hasselblad V.
        • D'Alessio D.A.
        Psyllium fiber improves glycemic control proportional to loss of glycemic control: a meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus.
        Am. J. Clin. Nutr. 2015; 102: 1604-1614
        • Landin K.
        • Holm G.
        • Tengborn L.
        • Smith U.
        Guar gum improves insulin sensitivity, blood lipids, blood pressure, and fibrinolysis in healthy men.
        Am. J. Clin. Nutr. 1992; 56: 1061-1065
        • Dall'Alba V.
        • Silva F.M.
        • Antonio J.P.
        • Steemburgo T.
        • Royer C.P.
        • Almeida J.C.
        • Gross J.L.
        • Azevedo M.J.
        Improvement of the metabolic syndrome profile by soluble fibre—guar gum—in patients with type 2 diabetes: a randomised clinical trial.
        Br. J. Nutr. 2013; 110: 1601-1610
        • Niemi M.K.
        • Keinanen-Kiukaanniemi S.M.
        • Salmela P.I.
        Long-term effects of guar gum and microcrystalline cellulose on glycaemic control and serum lipids in type 2 diabetes.
        Eur. J. Clin. Pharmacol. 1988; 34: 427-429
        • Uusitupa M.
        • Tuomilehto J.
        • Karttunen P.
        • Wolf E.
        Long term effects of guar gum on metabolic control, serum cholesterol and blood pressure levels in type 2 (non-insulin-dependent) diabetic patients with high blood pressure.
        Ann. Clin. Res. 1984; 16: 126-131
        • Wanders A.J.
        • van den Borne J.J.
        • de Graaf C.
        • Hulshof T.
        • Jonathan M.C.
        • Kristensen M.
        • Mars M.
        • Schols H.A.
        • Feskens E.J.
        Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials.
        Obes. Rev. 2011; 12: 724-739
        • EFSA Panel on Dietetic Products
        • Nutrition and Allergies (NDA)
        Scientific opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood ldl-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and “digestive function” (ID 850) pursuant to article 13(1) of regulation (EC) no 1924/2006.
        EFSA J. 2011; 9: 2207
        • Vuksan V.
        • Jenkins A.L.
        • Rogovik A.L.
        • Fairgrieve C.D.
        • Jovanovski E.
        • Leiter L.A.
        Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals.
        Br. J. Nutr. 2011 Nov; 106 (Epub 2011 May 31. PMID: 21736815): 1349-1352https://doi.org/10.1017/S0007114511001711
        • Giacco R.
        • Della Pepa G.
        • Luongo D.
        • Riccardi G.
        Whole grain intake in relation to body weight: from epidemiological evidence to clinical trials.
        Nutr. Metabol. Cardiovasc. Dis. 2011 Dec; 21 (Epub 2011 Oct 28. PMID: 22036468): 901-908https://doi.org/10.1016/j.numecd.2011.07.003
        • Kissock K.R.
        • Neale E.P.
        • Beck E.J.
        Whole grain food definition effects on determining associations of whole grain intake and body weight changes: a systematic review.
        Adv. Nutr. 2020 Oct 17; (nmaa122, Epub ahead of print. PMID: 33070194)https://doi.org/10.1093/advances/nmaa122
        • Weickert M.O.
        • Mohlig M.
        • Koebnick C.
        • Holst J.J.
        • Namsolleck P.
        • Ristow M.
        • Osterhoff M.
        • Rochlitz H.
        • Rudovich N.
        • Spranger J.
        • et al.
        Impact of cereal fibre on glucose-regulating factors.
        Diabetologia. 2005; 48: 2343-2353
        • Sartorius K.
        • Sartorius B.
        • Madiba T.E.
        • Stefan C.
        Does high-carbohydrate intake lead to increased risk of obesity? A systematic review and meta-analysis.
        B MJ Open. 2018 Feb 8; 8e018449
        • Mozaffarian D.
        • Hao T.
        • Rimm E.B.
        • Willett W.C.
        • Hu F.B.
        Changes in diet and lifestyle and long-term weight gain in women and men.
        N. Engl. J. Med. 2011 Jun 23; 364: 2392-2404
        • Te Morenga L.
        • Mallard S.
        • Mann J.
        Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies.
        BMJ. 2012 Jan 15; 346e7492
        • Luger M.
        • Lafontan M.
        • Bes-Rastrollo M.
        • Winzer E.
        • Yumuk V.
        • Farpour-Lambert N.
        Sugar-sweetened beverages and weight gain in children and adults: a systematic review from 2013 to 2015 and a comparison with previous studies.
        Obes. Facts. 2017; 10: 674-693
        • Sievenpiper J.L.
        Low-carbohydrate diets and cardiometabolic health: the importance of carbohydrate quality over quantity.
        Nutr. Rev. 2020 Aug 1; 78: 69-77
        • Churuangsuk C.
        • Kherouf M.
        • Combet E.
        • Lean M.
        Low-carbohydrate diets for overweight and obesity: a systematic review of the systematic reviews.
        Obes. Rev. 2018 Dec; 19: 1700-1718
        • Bueno N.B.
        • de Melo I.S.
        • de Oliveira S.L.
        • da Rocha Ataide T.
        Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials.
        Br. J. Nutr. 2013 Oct; 110: 1178-1187
        • Gardner C.D.
        • Trepanowski J.F.
        • Del Gobbo L.C.
        • et al.
        Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS randomized clinical trial.
        J. Am. Med. Assoc. 2018; 319: 667-679
        • Hamdy O.
        • Tasabehji M.W.
        • Elseaidy T.
        • Tomah S.
        • Ashrafzadeh S.
        • Mottalib A.
        Fat versus carbohydrate-based energy-restricted diets for weight loss in patients with type 2 diabetes.
        Curr. Diabetes Rep. 2018 Oct 17; 18: 128
        • Fechner E.
        • Smeets E.T.H.C.
        • Schrauwen P.
        • Mensink R.P.
        The effects of different degrees of carbohydrate restriction and carbohydrate replacement on cardiometabolic risk markers in humans-A systematic review and meta-analysis.
        Nutrients. 2020 Apr 2; 12: 991
        • Ge L.
        • Sadeghirad B.
        • Ball G.D.C.
        • da Costa B.R.
        • Hitchcock C.L.
        • Svendrovski A.
        • Kiflen R.
        • Quadri K.
        • Kwon H.Y.
        • Karamouzian M.
        • Adams-Webber T.
        • Ahmed W.
        • Damanhoury S.
        • Zeraatkar D.
        • Nikolakopoulou A.
        • Tsuyuki R.T.
        • Tian J.
        • Yang K.
        • Guyatt G.H.
        • Johnston B.C.
        Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials.
        BMJ. 2020 Apr 1; 369: m696
        • American College of Cardiology/American Heart Association Task Force on Practice Guidelines
        Obesity expert panel, 2013. Executive summary: guidelines (2013) for the management of overweight and obesity in adults: a report of the American College of Cardiology/American heart association task force on practice guidelines and the obesity society published by the obesity society and American College of Cardiology/American heart association task force on practice guidelines. Based on a systematic review from the the obesity expert panel, 2013.
        Obesity. 2014 Jul; 22: S5-S39
        • Mente A.
        • Dehghan M.
        • Rangarajan S.
        • McQueen M.
        • Dagenais G.
        • Wielgosz A.
        • Lear S.
        • Li W.
        • Chen H.
        • Yi S.
        • Wang Y.
        • Diaz R.
        • Avezum A.
        • Lopez-Jaramillo P.
        • Seron P.
        • Kumar R.
        • Gupta R.
        • Mohan V.
        • Swaminathan S.
        • Kutty R.
        • Zatonska K.
        • Iqbal R.
        • Yusuf R.
        • Mohammadifard N.
        • Khatib R.
        • Nasir N.M.
        • Ismail N.
        • Oguz A.
        • Rosengren A.
        • Yusufali A.
        • Wentzel-Viljoen E.
        • Puoane T.
        • Chifamba J.
        • Teo K.
        • Anand S.S.
        • Yusuf S.
        Prospective Urban Rural Epidemiology (PURE) study investigators. Association of dietary nutrients with blood lipids and blood pressure in 18 countries: a cross-sectional analysis from the PURE study.
        Lancet Diabetes Endocrinol. 2017 Oct; 5: 774-787
        • Nettleton J.A.
        • Rock C.L.
        • Wang Y.
        • Jenny N.S.
        • Jacobs D.R.
        Associations between dietary macronutrient intake and plasma lipids demonstrate criterion performance of the Multi-Ethnic Study of Atherosclerosis (MESA) food-frequency questionnaire.
        Br. J. Nutr. 2009 Oct; 102: 1220-1227
        • Newby P.K.
        • Maras J.
        • Bakun P.
        • Muller D.
        • Ferrucci L.
        • Tucker K.L.
        Intake of whole grains, refined grains, and cereal fiber measured with 7-d diet records and associations with risk factors for chronic disease.
        Am. J. Clin. Nutr. 2007 Dec; 86: 1745-1753
        • Haslam D.E.
        • Peloso G.M.
        • Herman M.A.
        • Dupuis J.
        • Lichtenstein A.H.
        • Smith C.E.
        • McKeown N.M.
        Beverage consumption and longitudinal changes in lipoprotein concentrations and incident dyslipidemia in US adults: the framingham heart study.
        J. Am. Heart Assoc. 2020 Mar 3; 9e014083
        • Kim Y.
        • Je Y.
        Prospective association of sugar-sweetened and artificially sweetened beverage intake with risk of hypertension.
        Arch. Cardiovasc. Dis. 2016 Apr; 109: 242-253
        • Lu M.
        • Wan Y.
        • Yang B.
        • Huggins C.E.
        • Li D.
        Effects of low-fat compared with high-fat diet on cardiometabolic indicators in people with overweight and obesity without overt metabolic disturbance: a systematic review and meta-analysis of randomised controlled trials.
        Br. J. Nutr. 2018 Jan; 119: 96-108
        • Dong T.
        • Guo M.
        • Zhang P.
        • Sun G.
        • Chen B.
        The effects of low-carbohydrate diets on cardiovascular risk factors: a meta-analysis.
        PloS One. 2020 Jan 14; 15e0225348
        • Gjuladin-Hellon T.
        • Davies I.G.
        • Penson P.
        • Amiri Baghbadorani R.
        Effects of carbohydrate-restricted diets on low-density lipoprotein cholesterol levels in overweight and obese adults: a systematic review and meta-analysis.
        Nutr. Rev. 2019 Mar 1; 77: 161-180
        • Naude C.E.
        • Schoonees A.
        • Senekal M.
        • Young T.
        • Garner P.
        • Volmink J.
        Low carbohydrate versus isoenergetic balanced diets for reducing weight and cardiovascular risk: a systematic review and meta-analysis.
        PloS One. 2014 Jul 9; 9e100652
        • Imamura F.
        • Micha R.
        • Wu J.H.
        • de Oliveira Otto M.C.
        • Otite F.O.
        • Abioye A.I.
        • Mozaffarian D.
        Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials.
        PLoS Med. 2016 Jul 19; 13e1002087
        • Clifton P.
        Metabolic syndrome-role of dietary fat type and quantity.
        Nutrients. 2019 Jun 26; 11: 1438
        • Bulotta S.
        • Celano M.
        • Lepore S.M.
        • Montalcini T.
        • Pujia A.
        • Russo D.
        Beneficial effects of the olive oil phenolic components oleuropein and hydroxytyrosol: focus on protection against cardiovascular and metabolic diseases.
        J. Transl. Med. 2014; 12: 219
        • Annuzzi G.
        • Bozzetto L.
        • Costabile G.
        • Giacco R.
        • Mangione A.
        • Anniballi G.
        • Vitale M.
        • Vetrani C.
        • Cipriano P.
        • Della Corte G.
        • Pasanisi F.
        • Riccardi G.
        • Rivellese A.A.
        Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial.
        Am. J. Clin. Nutr. 2014 Mar; 99: 463-471
        • Sievenpiper J.L.
        • de Souza R.J.
        • Mirrahimi A.
        • Yu M.E.
        • Carleton A.J.
        • Beyene J.
        • Chiavaroli L.
        • Di Buono M.
        • Jenkins A.L.
        • Leiter L.A.
        • Wolever T.M.
        • Kendall C.W.
        • Jenkins D.J.
        Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis.
        Ann. Intern. Med. 2012 Feb 21; 156: 291-304
        • Te Morenga L.A.
        • Howatson A.J.
        • Jones R.M.
        • Mann J.
        Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids.
        Am. J. Clin. Nutr. 2014 Jul; 100: 65-79
        • Chiavaroli L.
        • de Souza R.J.
        • Ha V.
        • Cozma A.I.
        • Mirrahimi A.
        • Wang D.D.
        • Yu M.
        • Carleton A.J.
        • Di Buono M.
        • Jenkins A.L.
        • Leiter L.A.
        • Wolever T.M.
        • Beyene J.
        • Kendall C.W.
        • Jenkins D.J.
        • Sievenpiper J.L.
        Effect of fructose on established lipid targets: a systematic review and meta-analysis of controlled feeding trials.
        J. Am. Heart Assoc. 2015 Sep 10; 4e001700
        • Choo V.L.
        • Viguiliouk E.
        • Blanco Mejia S.
        • Cozma A.I.
        • Khan T.A.
        • Ha V.
        • Wolever T.M.S.
        • Leiter L.A.
        • Vuksan V.
        • Kendall C.W.C.
        • de Souza R.J.
        • Jenkins D.J.A.
        • Sievenpiper J.L.
        Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies.
        BMJ. 2018 Nov 21; 363 (Erratum in: BMJ. 2019 Oct 9;367:l5524)k4644https://doi.org/10.1136/bmj.k4644
        • Stanhope K.L.
        • Schwarz J.M.
        • Keim N.L.
        • Griffen S.C.
        • Bremer A.A.
        • Graham J.L.
        • Hatcher B.
        • Cox C.L.
        • Dyachenko A.
        • Zhang W.
        • McGahan J.P.
        • Seibert A.
        • Krauss R.M.
        • Chiu S.
        • Schaefer E.J.
        • Ai M.
        • Otokozawa S.
        • Nakajima K.
        • Nakano T.
        • Beysen C.
        • Hellerstein M.K.
        • Berglund L.
        • Havel P.J.
        Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans.
        J. Clin. Invest. 2009 May; 119: 1322-1334
        • Schwingshackl L.
        • Neuenschwander M.
        • Hoffmann G.
        • Buyken A.E.
        • Schlesinger S.
        Dietary sugars and cardiometabolic risk factors: a network meta-analysis on isocaloric substitution interventions.
        Am. J. Clin. Nutr. 2020 Jan 1; 111: 187-196
        • Matikainen N.
        • Söderlund S.
        • Björnson E.
        • Bogl L.H.
        • Pietiläinen K.H.
        • Hakkarainen A.
        • Lundbom N.
        • Eliasson B.
        • Räsänen S.M.
        • Rivellese A.
        • Patti L.
        • Prinster A.
        • Riccardi G.
        • Després J.P.
        • Alméras N.
        • Holst J.J.
        • Deacon C.F.
        • Borén J.
        • Taskinen M.R.
        Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men.
        Nutr. Metabol. Cardiovasc. Dis. 2017 Jun; 27: 534-542
        • Malik V.S.
        • Hu F.B.
        Fructose and cardiometabolic health: what the evidence from sugar-sweetened beverages tells us.
        J. Am. Coll. Cardiol. 2015 Oct 6; 66: 1615-1624
        • Van Zuuren E.J.
        • Fedorowicz Z.
        • Kuijpers T.
        • Pijl H.
        Effects of low-carbohydrate- compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: a systematic review including GRADE assessments.
        Am. J. Clin. Nutr. 2018 Aug 1; 108: 300-331
        • Qian F.
        • Korat A.A.
        • Malik V.
        • Hu F.B.
        Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials.
        Diabetes Care. 2016 Aug; 39: 1448-1457
        • Korsmo-Haugen H.K.
        • Brurberg K.G.
        • Mann J.
        • Aas A.M.
        Carbohydrate quantity in the dietary management of type 2 diabetes: a systematic review and meta-analysis.
        Diabetes Obes. Metabol. 2019 Jan; 21: 15-27
        • Parillo M.
        • Giacco R.
        • Ciardullo A.V.
        • Rivellese A.A.
        • Riccardi G.
        Does a high-carbohydrate diet have different effects in NIDDM patients treated with diet alone or hypoglycemic drugs?.
        Diabetes Care. 1996 May; 19: 498-500
        • Vitale M.
        • Masulli M.
        • Rivellese A.A.
        • Babini A.C.
        • Boemi M.
        • Bonora E.
        • Buzzetti R.
        • Ciano O.
        • Cignarelli M.
        • Cigolini M.
        • Clemente G.
        • Citro G.
        • Corsi L.
        • Dall'Aglio E.
        • Del Prato S.
        • Di Cianni G.
        • Dolci M.A.
        • Giordano C.
        • Iannarelli R.
        • Iovine C.
        • Lapolla A.
        • Lauro D.
        • Leotta S.
        • Mazzucchelli C.
        • Montani V.
        • Perriello G.
        • Romano G.
        • Romeo F.
        • Santarelli L.
        • di Cola R.S.
        • Squatrito S.
        • Tonutti L.
        • Trevisan R.
        • Turco A.A.
        • Zamboni C.
        • Riccardi G.
        • Vaccaro O.
        Influence of dietary fat and carbohydrates proportions on plasma lipids, glucose control and low-grade inflammation in patients with type 2 diabetes-The TOSCA.IT Study.
        Eur. J. Nutr. 2016 Jun; 55: 1645-1651
        • De Natale C.
        • Annuzzi G.
        • Bozzetto L.
        • Mazzarella R.
        • Costabile G.
        • Ciano O.
        • Riccardi G.
        • Rivellese A.A.
        Effects of a plant-based high-carbohydrate/high-fiber diet versus high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients.
        Diabetes Care. 2009 Dec; 32: 2168-2173
        • Mach F.
        • Baigent C.
        • Catapano A.L.
        • et al.
        2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk.
        Eur. Heart J. 2020; 41: 111-188
        • Arnett D.K.
        • Blumenthal R.S.
        • Albert M.A.
        • et al.
        ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American heart association task force on clinical practice guidelines.
        J. Am. Coll. Cardiol. 2019; 74 (2019): 1376-1414
        • Dehghan M.
        • Mente A.
        • Zhang X.
        • Swaminathan S.
        • Li W.
        • Mohan V.
        • et al.
        Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study.
        Lancet. 2017; 390: 2050-2062
        • Seidelmann S.B.
        • Claggett B.
        • Cheng S.
        • Henglin M.
        • Shah A.
        • Steffen L.M.
        • et al.
        Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis.
        Lancet Public Health. 2018; 3: e419-e428
        • Huang J.
        • Liao L.M.
        • Weinstein S.J.
        • Sinha R.
        • Graubard B.I.
        • Albanes D.
        Association between plant and animal protein intake and overall and cause-specific mortality.
        JAMA Intern. Med. 2020 Sep 1; 180: 1173-1184
        • Zong G.
        • Gao A.
        • Hu F.B.
        • Sun Q.
        Whole grain intake and mortality from all causes, cardiovascular disease, and cancer: a meta-analysis of prospective cohort studies.
        Circulation. 2016; 133: 2370-2380
        • Jenkins D.J.A.
        • Dehghan M.
        • Mente A.
        • et al.
        PURE investigators glycemic index, glycemic load, and cardiovascular disease and mortality.
        N. Engl. J. Med. 2021 Feb 24; https://doi.org/10.1056/NEJMoa2007123
        • Levitan E.B.
        • Mittleman M.A.
        • Håkansson N.
        • Wolk A.
        Dietary glycemic index, dietary glycemic load, and cardiovascular disease in middle-aged and older Swedish men.
        Am. J. Clin. Nutr. 2007; 85: 1521-1526
        • Nagata C.
        • Wada K.
        • Tsuji M.
        • Kawachi T.
        • Nakamura K.
        Dietary glycaemic index and glycaemic load in relation to all-cause and cause-specific mortality in a Japanese community: the Takayama study.
        Br. J. Nutr. 2014; 112: 2010-2017