Advertisement

Histopathological correlation of near infrared autofluorescence in human cadaver coronary arteries

      Highlights

      • Near-infrared auto-fluorescence spatially associates with both intraplaque hemorrhage and ceroid in human coronary plaque.
      • Near-infrared auto-fluorescence colocalizes more robustly with ceroid than intraplaque hemorrhage.
      • Near-infrared auto-fluorescence imaging may identify molecular feature of advanced coronary plaque progression.
      • With intravascular imaging, near-infrared auto-fluorescence imaging has a potential to detect high-risk coronary plaques.

      Abstract

      Background and aims

      Prior coronary optical coherence tomography (OCT)-near infrared auto-fluorescence (NIRAF) imaging data has shown a correlation between high-risk morphological features and NIRAF signal intensity. This study aims to understand the histopathological origins of NIRAF in human cadaver coronary arteries.

      Methods

      Ex vivo intracoronary OCT-NIRAF imaging was performed on coronary arteries prosected from 23 fresh human cadaver hearts. Arteries with elevated NIRAF were formalin-fixed and paraffin-embedded. Microscopic images of immunostained Glycophorin A (indicating intraplaque hemorrhage) and Sudan Black (indicating ceroid after fixation) stained slides were compared with confocal NIRAF images (ex. 635 nm, em. 655–755 nm) from adjacent unstained slides in each section. Different images from the same section were registered via luminal morphology. Confocal NIRAF-positive 45° sectors were compared to immunohistochemistry and colocalization between NIRAF and intraplaque hemorrhage or ceroid was quantified by Manders’ overlap and Dice similarity coefficients.

      Results

      Thirty-one coronary arteries from 14 hearts demonstrated ≥1.5 times higher NIRAF signal than background, and 429 sections were created from them, including 54 sections (12.6%) with high-risk plaques. Within 112 confocal NIRAF-positive 45° sectors, 65 sectors (58.0%) showed both Glycophorin A-positive and Sudan Black-positive, while 7 sectors (6.3%) and 40 sectors (33.6%) only showed Glycophorin A-positive or Sudan black-positive, respectively. A two-tailed McNemar's test showed that Sudan Black more closely corresponded to confocal NIRAF than Glycophorin A (p < 1.0 × 10−6). NIRAF was also found to spatially associate with both Glycophorin A and Sudan Black, with stronger colocalization between Sudan Black and NIRAF (Manders: 0.19 ± 0.15 vs. 0.13 ± 0.14, p < 0.005; Dice: 0.072 ± 0.096 vs. 0.060 ± 0.090, p < 0.01).

      Conclusions

      As ceroid associates with oxidative stress and intraplaque hemorrhage is implicated in rapid lesion progression, these results suggest that NIRAF provides additional, complementary information to morphologic imaging that may aid in identifying high-risk coronary plaques via translatable intracoronary OCT-NIRAF imaging.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dowe D.A.
        • Fioranelli M.
        • Pavone P.
        Imaging Croronary Arteries.
        second ed. Springer, 2013
        • Thompson C.A.
        Textbook of Cardiovascular Intervention.
        first ed. Springer, 2014https://doi.org/10.1007/978-1-4471-4528-8
        • Ali Z.A.
        • Maehara A.
        • Généreux P.
        • Shlofmitz R.A.
        • Fabbiocchi F.
        • Nazif T.M.
        • Guagliumi G.
        • Meraj P.M.
        • Alfonso F.
        • Samady H.
        • Akasaka T.
        • Carlson E.B.
        • Leesar M.A.
        • Matsumura M.
        • Ozan M.O.
        • Mintz G.S.
        • Ben-Yehuda O.
        • Stone G.W.
        Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: optimize PCI): a randomised controlled trial.
        Lancet. 2016; 388: 2618-2628https://doi.org/10.1016/S0140-6736(16)31922-5
        • Kubo T.
        • Shinke T.
        • Okamura T.
        • Hibi K.
        • Nakazawa G.
        • Morino Y.
        • Shite J.
        • Fusazaki T.
        • Otake H.
        • Kozuma K.
        • Ioji T.
        • Kaneda H.
        • Serikawa T.
        • Kataoka T.
        • Okada H.
        • Akasaka T.
        Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results.
        Eur. Heart J. 2017; 38: 3139-3147https://doi.org/10.1093/eurheartj/ehx351
        • Fitzgerald P.J.
        • Oshima A.
        • Hayase M.
        • Metz J.A.
        • Bailey S.R.
        • Baim D.S.
        • Cleman M.W.
        • Deutsch E.
        • Diver D.J.
        • Leon M.B.
        • Moses J.W.
        • Oesterle S.N.
        • Overlie P.A.
        • Pepine C.J.
        • Safian R.D.
        • Shani J.
        • Simonton C.A.
        • Smalling R.W.
        • Teirstein P.S.
        • Zidar J.P.
        • Yeung A.C.
        • Kuntz R.E.
        • Yock P.G.
        For the C. Investigators, final results of the can routine ultrasound influence stent expansion (CRUISE) study.
        Circulation. 2000; 102: 523-530https://doi.org/10.1161/01.cir.102.5.523
        • Steinvil A.
        • Zhang Y.-J.
        • Lee S.Y.
        • Pang S.
        • Waksman R.
        • Chen S.-L.
        • Garcia-Garcia H.M.
        Intravascular ultrasound-guided drug-eluting stent implantation: an updated meta-analysis of randomized control trials and observational studies.
        Int. J. Cardiol. 2016; 216: 133-139https://doi.org/10.1016/j.ijcard.2016.04.154
        • Stone G.W.
        • Maehara A.
        • Lansky A.J.
        • de Bruyne B.
        • Cristea E.
        • Mintz G.S.
        • Mehran R.
        • McPherson J.
        • Farhat N.
        • Marso S.P.
        • Parise H.
        • Templin B.
        • White R.
        • Zhang Z.
        • Serruys P.W.
        A prospective natural-history study of coronary atherosclerosis.
        N. Engl. J. Med. 2011; 364: 226-235https://doi.org/10.1056/NEJMoa1002358
        • Virmani R.
        • Burke A.P.
        • Farb A.
        • Kolodgie F.D.
        Pathology of the vulnerable plaque.
        J. Am. Coll. Cardiol. 2006; 47: C13-C18https://doi.org/10.1016/j.jacc.2005.10.065
        • Bezerra H.G.
        • Costa M.A.
        • Guagliumi G.
        • Rollins A.M.
        • Simon D.I.
        Intracoronary optical coherence tomography: a comprehensive review.
        JACC Cardiovasc. Interv. 2009; 2: 1035-1046https://doi.org/10.1016/j.jcin.2009.06.019
        • Gonzalo N.
        • Garcia-Garcia H.M.
        • Serruys P.W.
        • Commissaris K.H.
        • Bezerra H.
        • Gobbens P.
        • Costa M.
        • Regar E.
        Reproducibility of quantitative optical coherence tomography for stent analysis.
        Eurointervention. 2009; 5: 224-232
        • Murata A.
        • Wallace-Bradley D.
        • Tellez A.
        • Alviar C.
        • Aboodi M.
        • Sheehy A.
        • Coleman L.
        • Perkins L.
        • Nakazawa G.
        • Mintz G.
        • Kaluza G.L.
        • Virmani R.
        • Granada J.F.
        Accuracy of optical coherence tomography in the evaluation of neointimal coverage after stent implantation.
        JACC Cardiovasc Imaging. 2010; 3: 76-84https://doi.org/10.1016/j.jcmg.2009.09.018
        • Suzuki Y.
        • Ikeno F.
        • Koizumi T.
        • Tio F.
        • Yeung A.C.
        • Yock P.G.
        • Fitzgerald P.J.
        • Fearon W.F.
        In vivo comparison between optical coherence tomography and intravascular ultrasound for detecting small degrees of in-stent neointima after stent implantation.
        JACC Cardiovasc. Interv. 2008; 1: 168-173https://doi.org/10.1016/j.jcin.2007.12.007
        • Templin C.
        • Meyer M.
        • Muller M.F.
        • Djonov V.
        • Hlushchuk R.
        • Dimova I.
        • Flueckiger S.
        • Kronen P.
        • Sidler M.
        • Klein K.
        • Nicholls F.
        • Ghadri J.R.
        • Weber K.
        • Paunovic D.
        • Corti R.
        • Hoerstrup S.P.
        • Luscher T.F.
        • Landmesser U.
        Coronary optical frequency domain imaging (OFDI) for in vivo evaluation of stent healing: comparison with light and electron microscopy.
        Eur. Heart J. 2010; 31: 1792-1801https://doi.org/10.1093/eurheartj/ehq168
        • Guagliumi G.
        • Bezerra H.G.
        • Sirbu V.
        • Ikejima H.
        • Musumeci G.
        • Biondi-Zoccai G.
        • Lortkipanidze N.
        • Fiocca L.
        • Capodanno D.
        • Wang W.
        • Tahara S.
        • Vassileva A.
        • Matiashvili A.
        • Valsecchi O.
        • Costa M.A.
        Serial assessment of coronary artery response to paclitaxel-eluting stents using optical coherence tomography.
        Circulation-Cardiovascular Interventions. 2012; 5: 30-38https://doi.org/10.1161/circinterventions.111.965582
        • Russo M.
        • Fracassi F.
        • Kurihara O.
        • Kim H.O.
        • Thondapu V.
        • Araki M.
        • Shinohara H.
        • Sugiyama T.
        • Yamamoto E.
        • Lee H.
        • Vergallo R.
        • Crea F.
        • Biasucci L.M.
        • Yonetsu T.
        • Minami Y.
        • Soeda T.
        • Fuster V.
        • Jang I.-K.
        Healed plaques in patients with stable Angina pectoris.
        Arterioscler. Thromb. Vasc. Biol. 2020; ATVBAHA120314298https://doi.org/10.1161/ATVBAHA.120.314298
        • Kumar V.
        • Abbas A.K.
        • Fausto N.
        • Aster J.
        Robbins & Cotran Pathologic Basis of Disease.
        eighth ed. Saunders/Elsevier, Philadelphia, PA2010
        • Lilly L.S.
        Pathophysiology of Heart Disease: a Collaborative Project of Medical Students and Faculty.
        fifth ed. Lippincott Williams & Wilkins, Philadelphia2011
        • Takumi T.
        • Yang E.H.
        • Mathew V.
        • Rihal C.S.
        • Gulati R.
        • Lerman L.O.
        • Lerman A.
        Coronary endothelial dysfunction is associated with a reduction in coronary artery compliance and an increase in wall shear stress.
        Heart. 2010; 96: 773-778https://doi.org/10.1136/hrt.2009.187898
        • Stone P.H.
        • Saito S.
        • Takahashi S.
        • Makita Y.
        • Nakamura S.S.
        • Kawasaki T.
        • Takahashi A.
        • Katsuki T.
        • Nakamura S.S.
        • Namiki A.
        • Hirohata A.
        • Matsumura T.
        • Yamazaki S.
        • Yokoi H.
        • Tanaka S.
        • Otsuji S.
        • Yoshimachi F.
        • Honye J.
        • Harwood D.
        • Reitman M.
        • Coskun A.U.
        • Papafaklis M.I.
        • Feldman C.L.
        • Investigators P.
        Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study.
        Circulation. 2012; 126: 172-181https://doi.org/10.1161/CIRCULATIONAHA.112.096438
        • Kolodgie F.D.
        • Gold H.K.
        • Burke A.P.
        • Fowler D.R.
        • Kruth H.S.
        • Weber D.K.
        • Farb A.
        • Guerrero L.J.
        • Hayase M.
        • Kutys R.
        • Narula J.
        • Finn A.v.
        • Virmani R.
        Intraplaque hemorrhage and progression of coronary atheroma.
        N. Engl. J. Med. 2003; 349: 2316-2325https://doi.org/10.1056/NEJMoa035655
        • Kolodgie F.D.
        • Virmani R.
        • Burke A.P.
        • Farb A.
        • Weber D.K.
        • Kutys R.
        • V Finn A.
        • Gold H.K.
        Pathologic Assessment of the Vulnerable Human Coronary plaque., Heart. vol. 90. British Cardiac Society, 2004: 1385-1391https://doi.org/10.1136/hrt.2004.041798
        • Cornelissen A.
        • Guo L.
        • Sakamoto A.
        • Virmani R.
        • Finn A.V.
        New insights into the role of iron in inflammation and atherosclerosis.
        EBioMedicine. 2019; 47: 598-606https://doi.org/10.1016/J.EBIOM.2019.08.014
        • Wang H.
        • Gardecki J.A.
        • Ughi G.J.
        • Jacques P.V.
        • Hamidi E.
        • Tearney G.J.
        Ex vivo catheter-based imaging of coronary atherosclerosis using multimodality OCT and NIRAF excited at 633 nm.
        Biomed. Opt Express. 2015; 6: 1363https://doi.org/10.1364/BOE.6.001363
        • Ughi G.J.
        • Wang H.
        • Gerbaud E.
        • Gardecki J.A.
        • Fard A.M.
        • Hamidi E.
        • Vacas-Jacques P.
        • Rosenberg M.
        • Jaffer F.A.
        • Tearney G.J.
        Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging.
        JACC (J. Am. Coll. Cardiol.): Cardiovascular Imaging. 2016; 9: 1304-1314https://doi.org/10.1016/j.jcmg.2015.11.020
        • Htun N.M.
        • Chen Y.C.
        • Lim B.
        • Schiller T.
        • Maghzal G.J.
        • Huang A.L.
        • Elgass K.D.
        • Rivera J.
        • Schneider H.G.
        • Wood B.R.
        • Stocker R.
        • Peter K.
        Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques.
        Nat. Commun. 2017; 8: 75https://doi.org/10.1038/s41467-017-00138-x
        • van de Poll S.W.E.
        • Bakker Schut T.C.
        • van der Laarse A.
        • Puppels G.J.
        In situ investigation of the chemical composition of ceroid in human atherosclerosis by Raman spectroscopy.
        J. Raman Spectrosc. 2002; 33: 544-551https://doi.org/10.1002/jrs.865
        • Yin D.
        Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores.
        Free Radic. Biol. Med. 1996; 21: 871-888https://doi.org/10.1016/0891-5849(96)00175-X
        • Haka A.S.
        • Kramer J.R.
        • Dasari R.R.
        • Fitzmaurice M.
        Mechanism of ceroid formation in atherosclerotic plaque: in situ studies using a combination of Raman and fluorescence spectroscopy.
        J. Biomed. Opt. 2011; 16011011https://doi.org/10.1117/1.3524304
        • Albaghdadi M.S.
        • Ikegami R.
        • Kassab M.B.
        • Gardecki J.A.
        • Kunio M.
        • Chowdhury M.M.
        • Khamis R.
        • Libby P.
        • Tearney G.J.
        • Jaffer F.A.
        Near-infrared autofluorescence in atherosclerosis associates with ceroid and is generated by oxidized lipid-induced oxidative stress.
        Arterioscler. Thromb. Vasc. Biol. 2021; https://doi.org/10.1161/ATVBAHA.120.315612
        • Georgakopoulou E.A.
        • Tsimaratou K.
        • Evangelou K.
        • Fernandez Marcos P.J.
        • Zoumpourlis V.
        • Trougakos I.P.
        • Kletsas D.
        • Bartek J.
        • Serrano M.
        • Gorgoulis V.G.
        Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues.
        Aging. 2013; 5: 37-50https://doi.org/10.18632/aging.100527
        • Schindelin J.
        • Arganda-Carreras I.
        • Frise E.
        • Kaynig V.
        • Longair M.
        • Pietzsch T.
        • Preibisch S.
        • Rueden C.
        • Saalfeld S.
        • Schmid B.
        • Tinevez J.-Y.
        • White D.J.
        • Hartenstein V.
        • Eliceiri K.
        • Tomancak P.
        • Cardona A.
        Fiji: an open-source platform for biological-image analysis.
        Nat. Methods. 2012; 9: 676-682https://doi.org/10.1038/nmeth.2019
        • Crum W.R.
        • Camara O.
        • Hill D.L.G.
        Generalized overlap measures for evaluation and validation in medical image analysis.
        IEEE Trans. Med. Imag. 2006; 25: 1451-1461https://doi.org/10.1109/TMI.2006.880587
        • Dunn K.W.
        • Kamocka M.M.
        • McDonald J.H.
        A practical guide to evaluating colocalization in biological microscopy.
        Am. J. Physiol. Cell Physiol. 2011; 300: C723-C742https://doi.org/10.1152/ajpcell.00462.2010
        • Dice L.R.
        Measures of the amount of ecologic association between species.
        Ecology. 1945; 26: 297-302https://doi.org/10.2307/1932409
        • Pereira S.
        • Pinto A.
        • Alves V.
        • Silva C.A.
        Brain tumor segmentation using convolutional neural networks in MRI images.
        IEEE Trans. Med. Imag. 2016; 35: 1240-1251https://doi.org/10.1109/TMI.2016.2538465
        • Sakakura K.
        • Nakano M.
        • Otsuka F.
        • Ladich E.
        • Kolodgie F.D.
        • Virmani R.
        Pathophysiology of atherosclerosis plaque progression.
        Heart Lung Circ. 2013; 22: 399-411https://doi.org/10.1016/j.hlc.2013.03.001
        • Michel J.-B.
        • Virmani R.
        • Arbustini E.
        • Pasterkamp G.
        Intraplaque haemorrhages as the trigger of plaque vulnerability.
        Eur. Heart J. 2011; 32 (1977–85, 1985a, 1985b, 1985c)https://doi.org/10.1093/eurheartj/ehr054
        • Mitchinson M.J.
        • Hothersall D.C.
        • Brooks P.N.
        • de Burbure C.Y.
        The distribution of ceroid in human atherosclerosis.
        J. Pathol. 1985; 145: 177-183https://doi.org/10.1002/path.1711450205
        • Mitchinson M.J.
        Insoluble lipids in human atherosclerotic plaques.
        Atherosclerosis. 1982; 45: 11-15https://doi.org/10.1016/0021-9150(82)90167-8
        • Perrotta I.
        Occurrence and characterization of lipofuscin and ceroid in human atherosclerotic plaque.
        Ultrastruct. Pathol. 2018; 42: 477-488https://doi.org/10.1080/01913123.2018.1544953
        • Marchio P.
        • Guerra-Ojeda S.
        • Vila J.M.
        • Aldasoro M.
        • Victor V.M.
        • Mauricio M.D.
        Targeting early atherosclerosis: a focus on oxidative stress and inflammation.
        Oxid. Med. Cell. Longev. 2019; (2019): 8563845https://doi.org/10.1155/2019/8563845
        • Vinchi F.
        • Muckenthaler M.U.
        • Da Silva M.C.
        • Balla G.
        • Balla J.
        • Jeney V.
        Atherogenesis and iron: from epidemiology to cellular level.
        Front. Pharmacol. 2014; 5: 94https://doi.org/10.3389/fphar.2014.00094
        • Gardner C.M.
        • Tan H.
        • Hull E.L.
        • Lisauskas J.B.
        • Sum S.T.
        • Meese T.M.
        • Jiang C.
        • Madden S.P.
        • Caplan J.D.
        • Burke A.P.
        • Virmani R.
        • Goldstein J.
        • Muller J.E.
        Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system.
        JACC (J. Am. Coll. Cardiol.): Cardiovascular Imaging. 2008; 1: 638-648https://doi.org/10.1016/J.JCMG.2008.06.001
        • Kakimoto Y.
        • Okada C.
        • Kawabe N.
        • Sasaki A.
        • Tsukamoto H.
        • Nagao R.
        • Osawa M.
        Myocardial lipofuscin accumulation in ageing and sudden cardiac death.
        Sci. Rep. 2019; 9: 3304https://doi.org/10.1038/s41598-019-40250-0
        • Mury P.
        • Chirico E.N.
        • Mura M.
        • Millon A.
        • Canet-Soulas E.
        • Pialoux V.
        Oxidative stress and inflammation, key targets of atherosclerotic plaque progression and vulnerability: potential impact of physical activity.
        Sports Med. 2018; 48 (E): 2725-2741https://doi.org/10.1007/s40279-018-0996-z
        • Camaré C.
        • Pucelle M.
        • Nègre-Salvayre A.
        • Salvayre R.
        Angiogenesis in the atherosclerotic plaque.
        Redox Biol. 2017; 12: 18-34https://doi.org/10.1016/J.REDOX.2017.01.007
        • Virmani R.
        • Kolodgie F.D.
        • Burke A.P.
        • et al.
        Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage.
        Arterioscler. Thromb. Vasc. Biol. 2005; 25: 2054-2061https://doi.org/10.1161/01.ATV.0000178991.71605.18
        • Cornelissen A.
        • Guo L.
        • Sakamoto A.
        • Virmani R.
        • Finn A.V.
        New insights into the role of iron in inflammation and atherosclerosis.
        EBioMedicine. 2019; 47: 598-606https://doi.org/10.1016/J.EBIOM.2019.08.014
        • Takaya N.
        • Yuan C.
        • Chu B.
        • Saam T.
        • Polissar N.L.
        • Jarvik G.P.
        • Isaac C.
        • McDonough J.
        • Natiello C.
        • Small R.
        • Ferguson M.S.
        • Hatsukami T.S.
        Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study.
        Circulation. 2005; 111: 2768-2775https://doi.org/10.1161/CIRCULATIONAHA.104.504167