Advertisement

PLTP deficiency-mediated atherosclerosis regression could be related to sphinogosine-1-phosphate reduction

      We appreciate the positive comment, from Drs. Menno Hoekstra, Ezra J. van der Wel, and Miranda Van Eck, on our recent work of PLTP deficiency-mediated atherosclerosis regression [
      • Zhang K.
      • Zheng J.
      • Chen Y.
      • Dong J.
      • Li Z.
      • Chiang Y.P.
      • He M.
      • Huang Q.
      • Tang H.
      • Jiang X.C.
      Inducible phospholipid transfer protein deficiency ameliorates atherosclerosis.
      ]. We agree that the lesion regression effect observed by us can also be attributed to the effect of PLTP deficiency specifically in macrophages, although the mechanism remains unclear.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zhang K.
        • Zheng J.
        • Chen Y.
        • Dong J.
        • Li Z.
        • Chiang Y.P.
        • He M.
        • Huang Q.
        • Tang H.
        • Jiang X.C.
        Inducible phospholipid transfer protein deficiency ameliorates atherosclerosis.
        Atherosclerosis. 2021; 324: 9-17
        • Fisher E.A.
        Regression of atherosclerosis: the journey from the liver to the plaque and back.
        Arterioscler. Thromb. Vasc. Biol. 2016; 36: 226-235
        • Schlitt A.
        • Liu J.
        • Yan D.
        • Mondragon-Escorpizo M.
        • Norin A.J.
        • Jiang X.C.
        Anti-inflammatory effects of phospholipid transfer protein (PLTP) deficiency in mice.
        Biochim. Biophys. Acta. 2005; 1733: 187-191
        • Shelly L.
        • Royer L.
        • Sand T.
        • Jensen H.
        • Luo Y.
        Phospholipid transfer protein deficiency ameliorates diet-induced hypercholesterolemia and inflammation in mice.
        J. Lipid Res. 2008; 49: 773-781
        • Deckert V.
        • Kretz B.
        • Habbout A.
        • Raghay K.
        • Labbe J.
        • Abello N.
        • Desrumaux C.
        • Gautier T.
        • Lemaire-Ewing S.
        • Maquart G.
        • Le Guern N.
        • Masson D.
        • Steinmetz E.
        • Lagrost L.
        Development of abdominal aortic aneurysm is decreased in mice with plasma phospholipid transfer protein deficiency.
        Am. J. Pathol. 2013; 183: 975-986
        • Kuwano T.
        • Bi X.
        • Cipollari E.
        • Yasuda T.
        • Lagor W.R.
        • Szapary H.J.
        • Tohyama J.
        • Millar J.S.
        • Billheimer J.T.
        • Lyssenko N.N.
        • Rader D.J.
        Overexpression and deletion of phospholipid transfer protein reduce HDL mass and cholesterol efflux capacity but not macrophage reverse cholesterol transport.
        J. Lipid Res. 2017; 58: 731-741
        • Yu Y.
        • Guo S.
        • Feng Y.
        • Feng L.
        • Cui Y.
        • Song G.
        • Luo T.
        • Zhang K.
        • Wang Y.
        • Jiang X.C.
        • Qin S.
        Phospholipid transfer protein deficiency decreases the content of S1P in HDL via the loss of its transfer capability.
        Lipids. 2014; 49: 183-190
        • Obinata H.
        • Hla T.
        Sphingosine 1-phosphate and inflammation.
        Int. Immunol. 2019; 31: 617-625
        • Vu T.M.
        • Ishizu A.N.
        • Foo J.C.
        • Toh X.R.
        • Zhang F.
        • Whee D.M.
        • Torta F.
        • Cazenave-Gassiot A.
        • Matsumura T.
        • Kim S.
        • Toh S.E.S.
        • Suda T.
        • Silver D.L.
        • Wenk M.R.
        • Nguyen L.N.
        Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets.
        Nature. 2017; 550: 524-528
        • Kawahara A.
        • Nishi T.
        • Hisano Y.
        • Fukui H.
        • Yamaguchi A.
        • Mochizuki N.
        The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors.
        Science. 2009; 323: 524-527
        • Weigert A.
        • Olesch C.
        • Brune B.
        Sphingosine-1-Phosphate and macrophage biology-how the sphinx tames the big eater.
        Front. Immunol. 2019; 10: 1706
        • Shatrov V.A.
        • Lehmann V.
        • Chouaib S.
        Sphingosine-1-phosphate mobilizes intracellular calcium and activates transcription factor NF-kappa B in U937 cells.
        Biochem. Biophys. Res. Commun. 1997; 234: 121-124
        • Keul P.
        • Lucke S.
        • von Wnuck Lipinski K.
        • Bode C.
        • Graler M.
        • Heusch G.
        • Levkau B.
        Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis.
        Circ. Res. 2011; 108: 314-323
        • Skoura A.
        • Michaud J.
        • Im D.S.
        • Thangada S.
        • Xiong Y.
        • Smith J.D.
        • Hla T.
        Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis.
        Arterioscler. Thromb. Vasc. Biol. 2011; 31: 81-85
        • Ishimaru N.
        • Yamada A.
        • Nitta T.
        • Arakaki R.
        • Lipp M.
        • Takahama Y.
        • Hayashi Y.
        CCR7 with S1P1 signaling through AP-1 for migration of Foxp3+ regulatory T-cells controls autoimmune exocrinopathy.
        Am. J. Pathol. 2012; 180: 199-208
        • Poti F.
        • Gualtieri F.
        • Sacchi S.
        • Weissen-Plenz G.
        • Varga G.
        • Brodde M.
        • Weber C.
        • Simoni M.
        • Nofer J.R.
        KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R-/- mice.
        Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1505-1512
        • Liao C.Y.
        • Song M.J.
        • Gao Y.
        • Mauer A.S.
        • Revzin A.
        • Malhi H.
        Hepatocyte-derived lipotoxic extracellular vesicle sphingosine 1-phosphate induces macrophage chemotaxis.
        Front. Immunol. 2018; 9: 2980
        • Murata N.
        • Sato K.
        • Kon J.
        • Tomura H.
        • Yanagita M.
        • Kuwabara A.
        • Ui M.
        • Okajima F.
        Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions.
        Biochem. J. 2000; 352 Pt 3: 809-815
        • Christoffersen C.
        • Obinata H.
        • Kumaraswamy S.B.
        • Galvani S.
        • Ahnstrom J.
        • Sevvana M.
        • Egerer-Sieber C.
        • Muller Y.A.
        • Hla T.
        • Nielsen L.B.
        • Dahlback B.
        Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M.
        Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 9613-9618
        • Christoffersen C.
        • Jauhiainen M.
        • Moser M.
        • Porse B.
        • Ehnholm C.
        • Boesl M.
        • Dahlback B.
        • Nielsen L.B.
        Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice.
        J. Biol. Chem. 2008; 283: 1839-1847
        • Bosteen M.H.
        • Madsen Svarrer E.M.
        • Bisgaard L.S.
        • Martinussen T.
        • Madsen M.
        • Nielsen L.B.
        • Christoffersen C.
        • Pedersen T.X.
        Effects of apolipoprotein M in uremic atherosclerosis.
        Atherosclerosis. 2017; 265: 93-101
        • Obinata H.
        • Kuo A.
        • Wada Y.
        • Swendeman S.
        • Liu C.H.
        • Blaho V.A.
        • Nagumo R.
        • Satoh K.
        • Izumi T.
        • Hla T.
        Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice.
        J. Lipid Res. 2019; 60: 1912-1921

      Linked Article