Advertisement

Epigenetic BET reader inhibitor apabetalone (RVX-208) counters proinflammatory aortic gene expression in a diet induced obesity mouse model and in human endothelial cells

      Highlights

      • The HFD induced pro-inflammatory gene expression and TNFα signaling in the aorta of DIO mice.
      • BET protein inhibitors apabetalone and JQ1 reduced proinflammatory aortic gene expression in DIO mice.
      • HFD-sensitive genes are induced by TNFα in human endothelial cells and suppressed by apabetalone.
      • Apabetalone could mitigate vascular inflammation in obese patients.

      Abstract

      Background and aims

      Obese patients are at risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). A lipid-rich diet promotes arterial changes by inducing hypertension, oxidative stress, and inflammation. Bromodomain and extraterminal (BET) proteins contribute to endothelial and immune cell activation in vitro and in atherosclerosis mouse models. We aim to determine if BET inhibition can reduce lipid-rich diet-induced vascular inflammation in mice.

      Methods

      Body weight, serum glucose and lipid levels were measured in mice fed a high-fat diet (HFD) or low-fat diet (LFD) for 6 weeks and at study termination. BET inhibitors apabetalone and JQ1 were co-administered with the HFD for additional 16 weeks. Aortic gene expression was analyzed post necropsy by PCR, Nanostring nCounter® Inflammation Panel and bioinformatics pathway analysis. Transcription changes and BRD4 chromatin occupancy were analyzed in primary human endothelial cells in response to TNFα and apabetalone.

      Results

      HFD induced weight gain, visceral obesity, high fasting blood glucose, glucose intolerance and insulin resistance compared to LFD controls. HFD upregulated the aortic expression of 47 genes involved in inflammation, innate immunity, cytoskeleton and complement pathways. Apabetalone and JQ1 treatment reduced HFD-induced aortic expression of proinflammatory genes. Congruently, bioinformatics predicted enhanced signaling by TNFα in the HFD versus LFD aorta, which was countered by BETi treatment. TNFα-stimulated human endothelial cells had increased expression of HFD-sensitive genes and higher BRD4 chromatin occupancy, which was countered by apabetalone treatment.

      Conclusions

      HFD induces vascular inflammation in mice through TNFα signaling. Apabetalone treatment reduces this proinflammatory phenotype, providing mechanistic insight into how BET inhibitors may reduce CVD risk in obese patients.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Maffetone P.B.
        • Laursen P.B.
        The prevalence of overfat adults and children in the US.
        Front. Public Health. 2017; 5: 290https://doi.org/10.3389/fpubh.2017.00290
        • Powell-Wiley T.M.
        • Poirier P.
        • Burke L.E.
        • Despres J.P.
        • Gordon-Larsen P.
        • Lavie C.J.
        • et al.
        Obesity and cardiovascular disease: a scientific statement from the American heart association.
        Circulation. 2021; 143: e984-e1010https://doi.org/10.1161/CIR.0000000000000973
        • Khan S.S.
        • Ning H.
        • Wilkins J.T.
        • Allen N.
        • Carnethon M.
        • Berry J.D.
        • et al.
        Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity.
        JAMA Cardiol. 2018; 3: 280-287https://doi.org/10.1001/jamacardio.2018.0022
        • Hookana E.
        • Junttila M.J.
        • Puurunen V.P.
        • Tikkanen J.T.
        • Kaikkonen K.S.
        • Kortelainen M.L.
        • et al.
        Causes of nonischemic sudden cardiac death in the current era.
        Heart Rhythm. 2011; 8: 1570-1575https://doi.org/10.1016/j.hrthm.2011.06.031
        • Aune D.
        • Schlesinger S.
        • Norat T.
        • Riboli E.
        Body mass index, abdominal fatness, and the risk of sudden cardiac death: a systematic review and dose-response meta-analysis of prospective studies.
        Eur. J. Epidemiol. 2018; 33: 711-722https://doi.org/10.1007/s10654-017-0353-9
        • Borck P.C.
        • Guo L.W.
        • Plutzky J.
        BET epigenetic reader proteins in cardiovascular transcriptional programs.
        Circ. Res. 2020; 126: 1190-1208https://doi.org/10.1161/CIRCRESAHA.120.315929
        • Filippakopoulos P.
        • Knapp S.
        Targeting bromodomains: epigenetic readers of lysine acetylation.
        Nat. Rev. Drug Discov. 2014; 13: 337-356https://doi.org/10.1038/nrd4286
        • Prasher D.
        • Greenway S.C.
        • Singh R.B.
        The impact of epigenetics on cardiovascular disease.
        Biochem. Cell. Biol. 2020; 98: 12-22https://doi.org/10.1139/bcb-2019-0045
        • McLure K.G.
        • Gesner E.M.
        • Tsujikawa L.
        • Kharenko O.A.
        • Attwell S.
        • Campeau E.
        • et al.
        RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist.
        PLoS One. 2013; 8e83190https://doi.org/10.1371/journal.pone.0083190
        • Picaud S.
        • Wells C.
        • Felletar I.
        • Brotherton D.
        • Martin S.
        • Savitsky P.
        • et al.
        RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain.
        Proc. Natl. Acad. Sci. U. S. A. 2013; 110: 19754-19759https://doi.org/10.1073/pnas.1310658110
        • Tyler D.S.
        • Vappiani J.
        • Caneque T.
        • Lam E.Y.N.
        • Ward A.
        • Gilan O.
        • et al.
        Click chemistry enables preclinical evaluation of targeted epigenetic therapies.
        Science. 2017; 356: 1397-1401https://doi.org/10.1126/science.aal2066
        • Gilan O.
        • Rioja I.
        • Knezevic K.
        • Bell M.J.
        • Yeung M.M.
        • Harker N.R.
        • et al.
        Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation.
        Science. 2020; 368: 387-394https://doi.org/10.1126/science.aaz8455
        • de Moura E.D.M.
        • Dos Reis S.A.
        • da Conceicao L.L.
        • Sediyama C.
        • Pereira S.S.
        • de Oliveira L.L.
        • et al.
        Diet-induced obesity in animal models: points to consider and influence on metabolic markers.
        Diabetol. Metab. Syndrome. 2021; 13: 32https://doi.org/10.1186/s13098-021-00647-2
        • Kim F.
        • Pham M.
        • Maloney E.
        • Rizzo N.O.
        • Morton G.J.
        • Wisse B.E.
        • et al.
        Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance.
        Arterioscler. Thromb. Vasc. Biol. 2008; 28: 1982-1988https://doi.org/10.1161/ATVBAHA.108.169722
        • Lusis A.J.
        Atherosclerosis.
        Nature. 2000; 407: 233-241https://doi.org/10.1038/35025203
        • Plump A.S.
        • Smith J.D.
        • Hayek T.
        • Aalto-Setala K.
        • Walsh A.
        • Verstuyft J.G.
        • et al.
        Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells.
        Cell. 1992; 71: 343-353https://doi.org/10.1016/0092-8674(92)90362-g
        • Jahagirdar R.
        • Zhang H.
        • Azhar S.
        • Tobin J.
        • Attwell S.
        • Yu R.
        • et al.
        A novel BET bromodomain inhibitor, RVX-208, shows reduction of atherosclerosis in hyperlipidemic ApoE deficient mice.
        Atherosclerosis. 2014; 236: 91-100https://doi.org/10.1016/j.atherosclerosis.2014.06.008
        • Brown J.D.
        • Lin C.Y.
        • Duan Q.
        • Griffin G.
        • Federation A.
        • Paranal R.M.
        • et al.
        NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis.
        Mol. Cell. 2014; 56: 219-231https://doi.org/10.1016/j.molcel.2014.08.024
        • Shishikura D.
        • Kataoka Y.
        • Honda S.
        • Takata K.
        • Kim S.W.
        • Andrews J.
        • et al.
        The effect of bromodomain and extra-terminal inhibitor apabetalone on attenuated coronary atherosclerotic plaque: insights from the ASSURE trial.
        Am. J. Cardiovasc. Drugs. 2019; 19: 49-57https://doi.org/10.1007/s40256-018-0298-8
        • Tsujikawa L.M.
        • Fu L.
        • Das S.
        • Halliday C.
        • Rakai B.D.
        • Stotz S.C.
        • et al.
        Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism.
        Clin. Epigenet. 2019; 11: 102https://doi.org/10.1186/s13148-019-0696-z
        • Nicholls S.J.
        • Ray K.K.
        • Johansson J.O.
        • Gordon A.
        • Sweeney M.
        • Halliday C.
        • et al.
        Selective BET protein inhibition with apabetalone and cardiovascular events: a pooled analysis of trials in patients with coronary artery disease.
        Am. J. Cardiovasc. Drugs. 2018; 18: 109-115https://doi.org/10.1007/s40256-017-0250-3
        • Ray K.K.
        • Nicholls S.J.
        • Buhr K.A.
        • Ginsberg H.N.
        • Johansson J.O.
        • Kalantar-Zadeh K.
        • et al.
        Effect of apabetalone added to standard therapy on major adverse cardiovascular events in patients with recent acute coronary syndrome and type 2 diabetes: a randomized clinical trial.
        JAMA, ePub Date: March. 2020; 27: 2020https://doi.org/10.1001/jama.2020.3308
        • Nicholls S.J.
        • Schwartz G.G.
        • Buhr K.A.
        • Ginsberg H.N.
        • Johansson J.O.
        • Kalantar-Zadeh K.
        • et al.
        Apabetalone and hospitalization for heart failure in patients following an acute coronary syndrome: a prespecified analysis of the BETonMACE study.
        Cardiovasc. Diabetol. 2021; 20: 13https://doi.org/10.1186/s12933-020-01199-x
        • Filippakopoulos P.
        • Qi J.
        • Picaud S.
        • Shen Y.
        • Smith W.B.
        • Fedorov O.
        • et al.
        Selective inhibition of BET bromodomains.
        Nature. 2010; 468: 1067-1073https://doi.org/10.1038/nature09504
        • Hariri N.
        • Thibault L.
        High-fat diet-induced obesity in animal models.
        Nutr. Res. Rev. 2010; 23: 270-299https://doi.org/10.1017/S0954422410000168
        • Mu J.
        • Zhang D.
        • Tian Y.
        • Xie Z.
        • Zou M.H.
        BRD4 inhibition by JQ1 prevents high-fat diet-induced diabetic cardiomyopathy by activating PINK1/Parkin-mediated mitophagy in vivo.
        J. Mol. Cell. Cardiol. 2020; 149: 1-14https://doi.org/10.1016/j.yjmcc.2020.09.003
        • Duan Q.
        • Wu P.
        • Liu Z.
        • Xia F.
        • Zhu L.
        • Zheng Z.
        • et al.
        BET bromodomain inhibition suppresses adipogenesis in mice.
        Endocrine. 2020; 67: 264-267https://doi.org/10.1007/s12020-019-02115-4
        • Hu X.
        • Dong X.
        • Li G.
        • Chen Y.
        • Chen J.
        • He X.
        • et al.
        Brd4 modulates diet-induced obesity via PPARgamma-dependent Gdf3 expression in adipose tissue macrophages.
        JCI Insight. 2021; 6https://doi.org/10.1172/jci.insight.143379
        • Halder T.G.
        • Soldi R.
        • Sharma S.
        Bromodomain and extraterminal domain protein bromodomain inhibitor based cancer therapeutics.
        Curr. Opin. Oncol. 2021; 33: 526-531https://doi.org/10.1097/CCO.0000000000000763
        • Kozuka C.
        • Efthymiou V.
        • Sales V.M.
        • Zhou L.
        • Osataphan S.
        • Yuchi Y.
        • et al.
        Bromodomain inhibition reveals FGF15/19 as a target of epigenetic regulation and metabolic control.
        Diabetes. 2022; 71: 1023-1033https://doi.org/10.2337/db21-0574
        • Tsujikawa L.M.
        • Kharenko O.A.
        • Stotz S.C.
        • Rakai B.D.
        • Sarsons C.D.
        • Gilham D.
        • et al.
        Breaking boundaries: Pan BETi disrupt 3D chromatin structure, BD2-selective BETi are strictly epigenetic transcriptional regulators.
        Biomed. Pharmacother. 2022; 152113230https://doi.org/10.1016/j.biopha.2022.113230
        • Kulikowski E.
        • Rakai B.D.
        • Wong N.C.W.
        Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases.
        Med. Res. Rev. 2021; 41: 223-245https://doi.org/10.1002/med.21730
        • Lin P.
        • Ji H.H.
        • Li Y.J.
        • Guo S.D.
        Macrophage plasticity and atherosclerosis therapy.
        Front. Mol. Biosci. 2021; 8679797https://doi.org/10.3389/fmolb.2021.679797
        • Gencer S.
        • Evans B.R.
        • van der Vorst E.P.C.
        • Doring Y.
        • Weber C.
        Inflammatory chemokines in atherosclerosis.
        Cells. 2021; 10https://doi.org/10.3390/cells10020226
        • Hansson G.K.
        • Jonasson L.
        • Holm J.
        • Claesson-Welsh L.
        Class II MHC antigen expression in the atherosclerotic plaque: smooth muscle cells express HLA-DR, HLA-DQ and the invariant gamma chain.
        Clin. Exp. Immunol. 1986; 64: 261-268
        • Wei L.L.
        • Ma N.
        • Wu K.Y.
        • Wang J.X.
        • Diao T.Y.
        • Zhao S.J.
        • et al.
        Protective role of C3aR (C3a anaphylatoxin receptor) against atherosclerosis in atherosclerosis-prone mice.
        Arterioscler. Thromb. Vasc. Biol. 2020; 40: 2070-2083https://doi.org/10.1161/ATVBAHA.120.314150
        • Wasiak S.
        • Dzobo K.E.
        • Rakai B.D.
        • Kaiser Y.
        • Versloot M.
        • Bahjat M.
        • et al.
        BET protein inhibitor apabetalone (RVX-208) suppresses pro-inflammatory hyper-activation of monocytes from patients with cardiovascular disease and type 2 diabetes.
        Clin. Epigenet. 2020; 12: 166https://doi.org/10.1186/s13148-020-00943-0
        • Hardwick J.P.
        • Eckman K.
        • Lee Y.K.
        • Abdelmegeed M.A.
        • Esterle A.
        • Chilian W.M.
        • et al.
        Eicosanoids in metabolic syndrome.
        Adv. Pharmacol. 2013; 66: 157-266https://doi.org/10.1016/B978-0-12-404717-4.00005-6
        • Stitham J.
        • Midgett C.
        • Martin K.A.
        • Hwa J.
        Prostacyclin: an inflammatory paradox.
        Front. Pharmacol. 2011; 2: 24https://doi.org/10.3389/fphar.2011.00024
        • Back M.
        • Hansson G.K.
        Leukotriene receptors in atherosclerosis.
        Ann. Med. 2006; 38: 493-502https://doi.org/10.1080/07853890600982737
        • Merle N.S.
        • Church S.E.
        • Fremeaux-Bacchi V.
        • Roumenina L.T.
        Complement system Part I - molecular mechanisms of activation and regulation.
        Front. Immunol. 2015; 6: 262https://doi.org/10.3389/fimmu.2015.00262
        • Merle N.S.
        • Noe R.
        • Halbwachs-Mecarelli L.
        • Fremeaux-Bacchi V.
        • Roumenina L.T.
        Complement system Part II: role in immunity.
        Front. Immunol. 2015; 6: 257https://doi.org/10.3389/fimmu.2015.00257
        • Dai S.
        • Liu F.
        • Ren M.
        • Qin Z.
        • Rout N.
        • Yang X.F.
        • et al.
        Complement inhibition targeted to injury specific neoepitopes attenuates atherogenesis in mice.
        Front Cardiovasc Med. 2021; 8731315https://doi.org/10.3389/fcvm.2021.731315
        • Speidl W.S.
        • Kastl S.P.
        • Huber K.
        • Wojta J.
        Complement in atherosclerosis: friend or foe?.
        J. Thromb. Haemostasis. 2011; 9: 428-440https://doi.org/10.1111/j.1538-7836.2010.04172.x
        • Pan Y.
        • Yu C.
        • Huang J.
        • Rong Y.
        • Chen J.
        • Chen M.
        Bioinformatics analysis of vascular RNA-seq data revealed hub genes and pathways in a novel Tibetan minipig atherosclerosis model induced by a high fat/cholesterol diet.
        Lipids Health Dis. 2020; 19: 54https://doi.org/10.1186/s12944-020-01222-w
        • Brown J.D.
        • Feldman Z.B.
        • Doherty S.P.
        • Reyes J.M.
        • Rahl P.B.
        • Lin C.Y.
        • et al.
        BET bromodomain proteins regulate enhancer function during adipogenesis.
        Proc. Natl. Acad. Sci. U. S. A. 2018; 115: 2144-2149https://doi.org/10.1073/pnas.1711155115
        • Baker R.G.
        • Hayden M.S.
        • Ghosh S.
        NF-kappaB, inflammation, and metabolic disease.
        Cell Metabol. 2011; 13: 11-22https://doi.org/10.1016/j.cmet.2010.12.008
        • Matthijs Blankesteijn W.
        • Hermans K.C.
        Wnt signaling in atherosclerosis.
        Eur. J. Pharmacol. 2015; 763: 122-130https://doi.org/10.1016/j.ejphar.2015.05.023
        • Steven S.
        • Dib M.
        • Hausding M.
        • Kashani F.
        • Oelze M.
        • Kroller-Schon S.
        • et al.
        CD40L controls obesity-associated vascular inflammation, oxidative stress, and endothelial dysfunction in high fat diet-treated and db/db mice.
        Cardiovasc. Res. 2018; 114: 312-323https://doi.org/10.1093/cvr/cvx197