Advertisement

Spatial metabolomics identifies lipid profiles of human carotid atherosclerosis

      Highlights

      • Specific lipids located in lipid-rich regions and collagen-rich regions were identified.
      • The spatial dynamic lipid metabolism footprint of atherosclerosis was delineated.
      • Different metabolic pathways between lipid-rich regions and collagen-rich regions with atherosclerosis progression were found.

      Abstract

      Background and aims

      Carotid atherosclerosis is an important cause of ischemic stroke. Lipids play a key role in the progression of atherosclerosis. To date, the spatial lipid profile of carotid atherosclerotic plaques related to histology has not been systematically investigated.

      Methods

      Carotid atherosclerosis samples from 12 patients were obtained and classified into four classical pathological stages (preatheroma, atheroma, fibroatheroma and complicated lesion) by histological staining. Desorption electrospray ionization-mass spectrometry imaging (DESI-MSI) was used to investigate the lipid profile of carotid atherosclerosis, and correlated it with histological information. Bioinformatics technology was used to process MSI data among different pathological stages of atherosclerosis lesions.

      Results

      A total of 55 lipids (26 throughout cross-section regions [TCSRs], 13 in lipid-rich regions [LRRs], and 16 in collagen-rich regions [CRRs]) were initially identified in carotid plaque from one patient. Subsequently, 32 of 55 lipids (12 in TCSRs, eight in LRRs, and 12 in CRRs) were further screened in 11 patients. Pathway enrichment analysis showed that multiple metabolic pathways, such as fat digestion and absorption, cholesterol metabolism, lipid and atherosclerosis, were enriched in TCSRs; sphingolipid signaling pathway, necroptosis pathway were enriched in LRRs; and glycerophospholipid metabolism, ether lipid metabolism pathway were mainly enriched in CRRs.

      Conclusions

      This study comprehensively showed the spatial lipid metabolism footprint in human carotid atherosclerotic plaques. The lipid profiles and related metabolism pathways in three regions of plaque with disease progression were different markedly, suggesting that the different metabolic mechanisms in these regions of carotid plaque may be critical in atherosclerosis progression.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Feigin V.
        • Lawes C.
        • Bennett D.
        • Barker-Collo S.
        • Parag V.
        Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review.
        Lancet Neurol. 2009; 8: 355-369
        • Taussky P.
        • Hanel R.
        • Meyer F.
        Clinical considerations in the management of asymptomatic carotid artery stenosis.
        Neurosurg. Focus. 2011; 31 (2011): E7
        • Stary H.
        • Chandler A.
        • Glagov S.
        • Guyton J.
        • Insull W.
        • Rosenfeld M.
        • et al.
        A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.
        Circulation. 1994; 89: 2462-2478
        • Libby P.
        • Buring J.
        • Badimon L.
        • Hansson G.
        • Deanfield J.
        • Bittencourt M.
        • et al.
        Atherosclerosis.
        Nat. Rev. Dis. Prim. 2019; 5: 56
        • Stary H.C.
        Natural history and histological classification of atherosclerotic lesions: an update.
        Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1177-1178
        • Stary H.C.
        • Chandler A.B.
        • Dinsmore R.E.
        • Fuster V.
        • Glagov S.
        • Insull Jr., W.
        • et al.
        A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.
        Circulation. 1995; 92: 1355-1374
        • Silvestre-Roig C.
        • de Winther M.P.
        • Weber C.
        • Daemen M.J.
        • Lutgens E.
        • Soehnlein O.
        Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies.
        Circ. Res. 2014; 114: 214-226
        • Zheng G.
        • Li H.
        • Zhang T.
        • Yang L.
        • Yao S.
        • Chen S.
        • et al.
        Irisin protects macrophages from oxidized low density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress pathway.
        Saudi J. Biol. Sci. 2018; 25: 849-857
        • Amani M.
        • Darbin A.
        • Pezeshkian M.
        • Afrasiabi A.
        • Safaie N.
        • Jodati A.
        • et al.
        The role of cholesterol-enriched diet and paraoxonase 1 inhibition in atherosclerosis progression.
        J. Cardiovasc. Thorac. Res. 2017; 9: 133-139
        • de Almeida A.
        • de Almeida Rezende M.S.
        • Dantas S.H.
        • de Lima Silva S.
        • de Oliveira J.
        • de Lourdes Assunção Araújo de Azevedo F.
        • et al.
        Unveiling the role of inflammation and oxidative stress on age-related cardiovascular diseases.
        Oxid. Med. Cell. Longev. 2020; 20201954398
        • Rapp J.
        • Connor W.
        • Lin D.
        • Inahara T.
        • Porter J.
        Lipids of human atherosclerotic plaques and xanthomas: clues to the mechanism of plaque progression.
        J. Lipid Res. 1983; 24: 1329-1335
        • Small D.
        George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry.
        Arteriosclerosis. 1988; 8: 103-129
        • Watrous J.D.
        • Alexandrov T.
        • Dorrestein P.C.
        The evolving field of imaging mass spectrometry and its impact on future biological research.
        J. Mass Spectrom. 2011; 46: 209-222
        • Lee E.
        • Shon H.
        • Lee T.
        • Kim S.
        • Moon D.
        The regional ratio of cholesteryl palmitate to cholesteryl oleate measured by ToF-SIMS as a key parameter of atherosclerosis.
        Atherosclerosis. 2013; 226: 378-384
        • Lehti S.
        • Sjövall P.
        • Käkelä R.
        • Mäyränpää M.
        • Kovanen P.
        • Öörni K.
        Spatial distributions of lipids in atherosclerosis of human coronary arteries studied by time-of-flight secondary ion mass spectrometry.
        Am. J. Pathol. 2015; 185: 1216-1233
        • Li H.W.
        • Hu Z.
        • Chen X.
        • Ren J.
        • Cui H.
        • Zhang M.
        • et al.
        Investigation of lipid metabolism in dynamic progression of coronary artery atherosclerosis of humans by time-of-flight secondary ion mass spectrometry.
        Anal. Chem. 2021; 93: 3839-3847
        • Zaima N.
        • Sasaki T.
        • Tanaka H.
        • Cheng X.
        • Onoue K.
        • Hayasaka T.
        • et al.
        Imaging mass spectrometry-based histopathologic examination of atherosclerotic lesions.
        Atherosclerosis. 2011; 217: 427-432
        • Martin-Lorenzo M.
        • Balluff B.
        • Maroto A.
        • Carreira R.
        • van Zeijl R.
        • Gonzalez-Calero L.
        • et al.
        Lipid and protein maps defining arterial layers in atherosclerotic aorta.
        Data Brief. 2015; 4: 328-331
        • Patterson N.
        • Doonan R.
        • Daskalopoulou S.
        • Dufresne M.
        • Lenglet S.
        • Montecucco F.
        • et al.
        Three-dimensional imaging MS of lipids in atherosclerotic plaques: open-source methods for reconstruction and analysis.
        Proteomics. 2016; 16: 1642-1651
        • Visscher M.
        • Moerman A.
        • Burgers P.
        • Van Beusekom H.
        • Luider T.
        • Verhagen H.
        • et al.
        Data processing pipeline for lipid profiling of carotid atherosclerotic plaque with mass spectrometry imaging.
        J. Am. Soc. Mass Spectrom. 2019; 30: 1790-1800
        • Moerman A.M.
        • Visscher M.
        • Slijkhuis N.
        • Van Gaalen K.
        • Heijs B.
        • Klein T.
        • et al.
        Lipid signature of advanced human carotid atherosclerosis assessed by mass spectrometry imaging.
        J. Lipid Res. 2021; 62100020
        • Manicke N.
        • Nefliu M.
        • Wu C.
        • Woods J.
        • Reiser V.
        • Hendrickson R.
        • et al.
        Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry.
        Anal. Chem. 2009; 81: 8702-8707
        • Sarafian M.H.
        • Gaudin M.
        • Lewis M.R.
        • Martin F.P.
        • Holmes E.
        • Nicholson J.K.
        • et al.
        Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry.
        Anal. Chem. 2014; 86: 5766-5774
        • Katz S.
        • Shipley G.
        • Small D.
        Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques.
        J. Clin. Invest. 1976; 58: 200-211
        • Spector A.
        • Haynes W.
        LDL cholesteryl oleate: a biomarker for atherosclerosis?.
        Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1228-1230
        • Duan Y.
        • Gong K.
        • Xu S.
        • Zhang F.
        • Meng X.
        • Han J.
        Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics.
        Signal Transduct. Targeted Ther. 2022; 7: 265
        • Halonen J.
        • Zanobetti A.
        • Sparrow D.
        • Vokonas P.
        • Schwartz J.
        Outdoor temperature is associated with serum HDL and LDL.
        Environ. Res. 2011; 111: 281-287
        • Augé N.
        • Nègre-Salvayre A.
        • Salvayre R.
        • Levade T.
        Sphingomyelin metabolites in vascular cell signaling and atherogenesis.
        Prog. Lipid Res. 2000; 39: 207-229
        • Park T.
        • Panek R.
        • Mueller S.
        • Hanselman J.
        • Rosebury W.
        • Robertson A.
        • et al.
        Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice.
        Circulation. 2004; 110: 3465-3471
        • Li Y.
        • Huang T.
        • Lou B.
        • Ye D.
        • Qi X.
        • Li X.
        • et al.
        Discovery, synthesis and anti-atherosclerotic activities of a novel selective sphingomyelin synthase 2 inhibitor.
        Eur. J. Med. Chem. 2019; 163: 864-882
        • Gargiulo S.
        • Gamba P.
        • Testa G.
        • Leonarduzzi G.
        • Poli G.
        The role of oxysterols in vascular ageing.
        J. Physiol. 2016; 594: 2095-2113
        • Mathias S.
        • Peña L.
        • Kolesnick R.
        Signal transduction of stress via ceramide.
        Biochem. J. 1998; : 465-480
        • Ruuth M.
        • Nguyen S.
        • Vihervaara T.
        • Hilvo M.
        • Laajala T.
        • Kondadi P.
        • et al.
        Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths.
        Eur. Heart J. 2018; 39: 2562-2573
        • Wang Z.
        • Klipfell E.
        • Bennett B.
        • Koeth R.
        • Levison B.
        • Dugar B.
        • et al.
        Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease.
        Nature. 2011; 472: 57-63
        • Tang W.
        • Wang Z.
        • Levison B.
        • Koeth R.
        • Britt E.
        • Fu X.
        • et al.
        Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.
        N. Engl. J. Med. 2013; 368: 1575-1584
        • Faustino R.
        • Stronger L.
        • Richard M.
        • Czubryt M.
        • Ford D.
        • Prociuk M.
        • et al.
        RanGAP-mediated nuclear protein import in vascular smooth muscle cells is augmented by lysophosphatidylcholine.
        Mol. Pharmacol. 2007; 71: 438-445
        • Li X.
        • Fang P.
        • Li Y.
        • Kuo Y.
        • Andrews A.
        • Nanayakkara G.
        • et al.
        Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation. Activation.
        Arterioscler. Thromb. Vasc. Biol. 2016; 36: 1090-1100
        • Castro-Perez J.
        • Hatcher N.
        • Kofi Karikari N.
        • Wang S.
        • Mendoza V.
        • Shion H.
        • et al.
        In vivo isotopically labeled atherosclerotic aorta plaques in ApoE KO mice and molecular profiling by matrix-assisted laser desorption/ionization mass spectrometric imaging.
        Rapid Commun. Mass Spectrom. 2014; 28: 2471-2479
        • Martin-Lorenzo M.
        • Balluff B.
        • Maroto A.S.
        • Carreira R.J.
        • van Zeijl R.J.
        • Gonzalez-Calero L.
        • et al.
        Molecular anatomy of ascending aorta in atherosclerosis by MS Imaging: specific lipid and protein patterns reflect pathology.
        J. Proteonomics. 2015; 126: 245-251
        • Malmberg P.
        • Borner K.
        • Chen Y.
        • Friberg P.
        • Hagenhoff B.
        • Mansson J.E.
        • et al.
        Localization of lipids in the aortic wall with imaging TOF-SIMS.
        Biochim. Biophys. Acta. 2007; 1771: 185-195
        • Mas S.
        • Touboul D.
        • Brunelle A.
        • Aragoncillo P.
        • Egido J.
        • Laprevote O.
        • et al.
        Lipid cartography of atherosclerotic plaque by cluster-TOF-SIMS imaging.
        Analyst. 2007; 132: 24-26