Advertisement
Review article|Articles in Press

Exploring the genetic basis of coronary artery disease using functional genomics

Open AccessPublished:January 31, 2023DOI:https://doi.org/10.1016/j.atherosclerosis.2023.01.019

      Highlights

      • Genome-wide association studies (GWAS) have identified over 300 risk loci for coronary artery disease (CAD).
      • The majority of the variants are located within the non-coding regions of the genome with no known function.
      • The enrichment of GWAS variants within cis-regulatory elements of specific cell types suggests the variants exert their effects by regulating gene expression in defined tissue contexts.
      • Functional genomics approaches translate GWAS findings into mechanistic knowledge with clinical and therapeutic potential.

      Abstract

      Genome-wide Association Studies (GWAS) have identified more than 300 loci associated with coronary artery disease (CAD), defining the genetic risk map of the disease. However, the translation of the association signals into biological-pathophysiological mechanisms constitute a major challenge. Through a group of examples of studies focused on CAD, we discuss the rationale, basic principles and outcomes of the main methodologies implemented to prioritize and characterize causal variants and their target genes. Additionally, we highlight the strategies as well as the current methods that integrate association and functional genomics data to dissect the cellular specificity underlying the complexity of disease mechanisms. Despite the limitations of existing approaches, the increasing knowledge generated through functional studies helps interpret GWAS maps and opens novel avenues for the clinical usability of association data.

      Graphical abstract

      Keywords

      1. Introduction

      Coronary artery disease (CAD) remains the leading cause of death worldwide [
      • Roth G.A.
      • Mensah G.A.
      • Johnson C.O.
      • Addolorato G.
      • Ammirati E.
      • Baddour L.M.
      • Barengo N.C.
      • Beaton A.Z.
      • Benjamin E.J.
      • Benziger C.P.
      • et al.
      Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study.
      ]. It is now well established that CAD is a complex polygenic disease where genetic and environmental factors exert a joint effect over a lifetime [
      • Kessler T.
      • Schunkert H.
      Coronary artery disease genetics enlightened by genome-wide association studies.
      ]. Over the past two decades, the field has moved from single candidate gene studies to large genome wide association studies (GWAS). This has been made possible via considerable increases in sample sizes, which in the latest studies surpass a million participants, and by the development of relatively cheap genome-wide genotyping methods. Today, over 300 CAD GWAS loci have been discovered, which explains ∼30–40% of the disease heritability [
      • van der Harst P.
      • Verweij N.
      Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease.
      ,
      • Nikpay M.
      • Goel A.
      • Won H.H.
      • Hall L.M.
      • Willenborg C.
      • Kanoni S.
      • Saleheen D.
      • Kyriakou T.
      • Nelson C.P.
      • Hopewell J.C.
      • et al.
      A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease.
      ,
      • Koyama S.
      • Ito K.
      • Terao C.
      • Akiyama M.
      • Horikoshi M.
      • Momozawa Y.
      • Matsunaga H.
      • Ieki H.
      • Ozaki K.
      • Onouchi Y.
      • et al.
      Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease.
      ,
      • Tcheandjieu C.
      • Zhu X.
      • Hilliard A.T.
      • Clarke S.L.
      • Napolioni V.
      • Ma S.
      • Lee K.M.
      • Fang H.
      • Chen F.
      • Lu Y.
      • et al.
      Large-scale genome-wide association study of coronary artery disease in genetically diverse populations.
      ,

      Krishna G Aragam, Tao Jiang, Anuj Goel, Stavroula Kanoni, Brooke N Wolford, Deepak S Atri, Elle M Weeks, Minxian Wang, George Hindy, Wei Zhou, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet . 52 (12) (2022 Dec) 1803-1815, doi: 10.1038/s41588-022-01233-6.

      ,
      • Erdmann J.
      • Kessler T.
      • Munoz Venegas L.
      • Schunkert H.
      A decade of genome-wide association studies for coronary artery disease: the challenges ahead.
      ]. These associations could reveal the molecular mechanisms altered during the disease process and inform novel drug targets, biomarkers, or risk stratification. Despite the steady growth in the number of studies, the interpretation of CAD GWAS findings has remained challenging, as the majority of the risk variants are located within non-coding parts of the genome [
      • Hindorff L.A.
      • Sethupathy P.
      • Junkins H.A.
      • Ramos E.M.
      • Mehta J.P.
      • Collins F.S.
      • Manolio T.A.
      Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.
      ,
      • Won H.H.
      • Natarajan P.
      • Dobbyn A.
      • Jordan D.M.
      • Roussos P.
      • Lage K.
      • Raychaudhuri S.
      • Stahl E.
      • Do R.
      Disproportionate contributions of select genomic compartments and cell types to genetic risk for coronary artery disease.
      ]. This has spurred a lot of research in the field of functional genomics aiming to establish the causality of GWAS variants and genes.
      In this review, we summarize the progress in the field over the last decade with a particular focus on CAD GWAS loci. Firstly, we discuss examples by which the non-coding variants associated with CAD have been shown to exert their effect on nearby gene expression and cellular/organismal phenotype. Secondly, we highlight the potential of integrating GWAS results to functional genomics output to inform cell-type specific disease mechanisms. Finally, we discuss the methods that are used to explore the causality of the variants and identify their target genes that ultimately are expected to generate mechanistic knowledge about how disease susceptibility is encoded in the non-coding portion of the genome.

      2. Insights and implications of GWASs of CAD

      Despite significant advances in the catalogues linking genetic variants to CAD, we are limited in our ability to establish the functional relationship between the genotype and phenotype. Since most variants are located within the non-coding parts of the genome, there are several challenges that have limited our ability to interpret the GWAS findings to functional mechanisms. First, association signals at a given GWAS locus do not specify which variant(s) are causal, as most risk loci encompass tens to hundreds of variants in a high linkage disequilibrium (LD). Secondly, we face the limitation of conclusively linking a variant containing regulatory elements to their target genes. Therefore, a general strategy to overcome this challenge comprises the prioritization and validation of causal variants and target genes using a variety of computational and experimental methods, which then lead the way to pathway identification (Fig. 1). In the future, these methods are expected to continue shedding light into the mechanisms of action for each CAD locus.
      Fig. 1
      Fig. 1General strategy to prioritize causal variants and targets genes from GWAS data.
      (A) GWASs map trait-associated loci at a genome-wide scale. The Manhattan plot presented in the upper right panel was retrieved from the Common Diabetes Knowledge Portal by querying “Coronary Artery Disease” as phenotype (https://md.hugeamp.org/). (B and C) The most plausible causal variant is identified by integrating refined association data (through deep sequencing or whole genome sequencing) with functional genomics data (functional fine mapping defining chromatin regulatory features such as DNA accessibility, enhancer histone marks, TF binding and allele specific transcriptional activity). (D) For linking variants to target genes, cis-eQTL, splice-QTL, protein-QTLs and chromosomal architecture (chromatin looping and conformation) are employed.
      Considerable efforts have been undertaken to provide systematic fine mapping and gene prioritization across CAD GWAS loci. In Fig. 2, we summarize the information from several state-of-the-art gene prioritization tools benchmarked using curated sets of gold-standard genes and expert curation [
      • Erdmann J.
      • Kessler T.
      • Munoz Venegas L.
      • Schunkert H.
      A decade of genome-wide association studies for coronary artery disease: the challenges ahead.
      ,
      • Mountjoy E.
      • Schmidt E.M.
      • Carmona M.
      • Schwartzentruber J.
      • Peat G.
      • Miranda A.
      • Fumis L.
      • Hayhurst J.
      • Buniello A.
      • Karim M.A.
      An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci.
      ,
      • Li L.
      • Chen Z.
      • von Scheidt M.
      • Li S.
      • Steiner A.
      • Güldener U.
      • Koplev S.
      • Ma A.
      • Hao K.
      • Pan C.
      • et al.
      Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes.
      ,
      • Örd T.
      • Lönnberg T.
      • Ravindran A.
      • et al.
      Dissecting the polygenic basis of atherosclerosis using disease associated cell state signatures (preprint).
      ] generating an exhaustive list of ∼1500 candidate genes potentially associated with 321 CAD loci [
      • Chen Z.
      • Schunkert H.
      Genetics of coronary artery disease in the post-GWAS era.
      ]. These genes are particularly implicated in biological processes related to vascular development, cellular proliferation and migration, extracellular matrix organization and angiogenesis based on Enrichr analysis [
      • Xie Z.
      • Bailey A.
      • Kuleshov M.V.
      • Clarke D.J.B.
      • Evangelista J.E.
      • Jenkins S.L.
      • Lachmann A.
      • Wojciechowicz M.L.
      • Kropiwnicki E.
      • Jagodnik K.M.
      • Jeon M.
      • Ma'ayan A.
      Gene set knowledge discovery with Enrichr.
      ] (Fig. 2). In addition, another significant category is represented by genes associated with hepatic lipid metabolism including cholesterol, lipoprotein and triglyceride metabolism, in line with the findings that ∼30% of the CAD risk is mediated through alterations in lipid levels [
      • Selvarajan I.
      • Toropainen A.
      • Garske K.M.
      • López Rodríguez M.
      • Ko A.
      • Miao Z.
      • Kaminska D.
      • Õunap K.
      • Örd T.
      • Ravindran A.
      • et al.
      Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease.
      ,
      • LeBlanc M.
      • Zuber V.
      • Andreassen B.K.
      • Witoelar A.
      • Zeng L.
      • Bettella F.
      • Wang Y.
      • McEvoy L.K.
      • Thompson W.K.
      • Schork A.J.
      • et al.
      Identifying novel gene variants in coronary artery disease and shared genes with several cardiovascular risk factors.
      ,
      • Koplev S.
      • Seldin M.
      • Sukhavasi K.
      • Ermel R.
      • Pang S.
      • Zeng L.
      • Bankier S.
      • Di Narzo A.
      • Cheng H.
      • Meda V.
      • et al.
      A mechanistic framework for cardiometabolic and coronary artery diseases.
      ]. Regulation of transcription, inflammation and renal functions are also enriched, whereas a large group of genes have not been characterized or their functions are, in principle, not previously linked to CAD pathophysiology. Overall, most of GWAS loci are common single nucleotide polymorphisms (SNPs) with relatively small association effect size, suggesting the contribution of several interacting mechanisms involving various genes, pathways and cell types which together translate into a significant pathogenic effect.
      Fig. 2
      Fig. 2Gene ontology analysis of CAD associated genes.
      The list of 1463 genes was compiled as previously described [
      • Örd T.
      • Lönnberg T.
      • Ravindran A.
      • et al.
      Dissecting the polygenic basis of atherosclerosis using disease associated cell state signatures (preprint).
      ], using Open Targets Genetic Portal [
      • Ghoussaini M.
      • Mountjoy E.
      • Carmona M.
      • Peat G.
      • Schmidt E.M.
      • Hercules A.
      • Fumis L.
      • Miranda A.
      • Carvalho-Silva D.
      • Buniello A.
      • Burdett T.
      • Hayhurst J.
      • et al.
      Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics.
      ], Gene-level Polygenic Priority Score [

      Krishna G Aragam, Tao Jiang, Anuj Goel, Stavroula Kanoni, Brooke N Wolford, Deepak S Atri, Elle M Weeks, Minxian Wang, George Hindy, Wei Zhou, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet . 52 (12) (2022 Dec) 1803-1815, doi: 10.1038/s41588-022-01233-6.

      ] TWAS and expert curation [
      • Li L.
      • Chen Z.
      • von Scheidt M.
      • Li S.
      • Steiner A.
      • Güldener U.
      • Koplev S.
      • Ma A.
      • Hao K.
      • Pan C.
      • et al.
      Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes.
      ] of CAD GWAS data. The data was analyzed for “GO: Biological process” using EnrichR tool online [
      • Xie Z.
      • Bailey A.
      • Kuleshov M.V.
      • Clarke D.J.B.
      • Evangelista J.E.
      • Jenkins S.L.
      • Lachmann A.
      • Wojciechowicz M.L.
      • Kropiwnicki E.
      • Jagodnik K.M.
      • Jeon M.
      • Ma'ayan A.
      Gene set knowledge discovery with Enrichr.
      ]. The first 20 non-redundant categories were selected for the lollipop graph depicting gene count (size of the circle) and Log10 (p-adj) (colour scale) from EnrichR for each GO category. The first, most significant process was selected among the redundant categories (i.e. for several cholesterol related processes only the most significant one was used for the graph). It should be noted that the genes presented in the list (lower panel) are not necessarily validated for their causal role in CAD, but they represent candidate genes linked to CAD variants.

      3. A decade of evidence of the role of cis-regulatory elements mediating the effects of risk variants

      Understanding the biological mechanisms underlying the genetic risk of CAD is crucial to improve diagnostic and patient management and to develop more targeted therapies. However, the functional translation of association data has advanced at a significantly slower pace, limiting the clinical impact and practical usability of GWAS knowledge. In recent years, increasing efforts have been directed to overcome this asymmetry. Integration of GWAS with multidimensional genomic data generated by large consortiums such as ENCODE and Roadmap Epigenomic Project have revealed that a majority of lead association SNPs map to cell type specific cis-regulatory elements (CREs), e.g. enhancer and promoters, indicating that GWAS loci act largely through the regulation of transcription. In fact, CAD SNPs are highly enriched at cell specific enhancers pointing to enhancer-mediated regulation of transcription as a major mechanism for the genetic risk [
      • Boix C.A.
      • James B.T.
      • Park Y.P.
      • Meuleman W.
      • Kellis M.
      Regulatory genomic circuitry of human disease loci by integrative epigenomics.
      ,
      • Kundaje A.
      • Meuleman W.
      • Ernst J.
      • Bilenky M.
      • Yen A.
      • Heravi-Moussavi A.
      • Kheradpour P.
      • Zhang Z.
      • Wang J.
      • Ziller M.J.
      • Amin V.
      • et al.
      Roadmap Epigenomics Consortium
      Integrative analysis of 111 reference human epigenomes.
      ,
      • Zhang K.
      • Hocker J.D.
      • Miller M.
      • Hou X.
      • Chiou J.
      • Poirion O.B.
      • Qiu Y.
      • Li Y.E.
      • Gaulton K.J.
      • Wang A.
      • et al.
      A single-cell atlas of chromatin accessibility in the human genome.
      ].
      The molecular basis for any functionally meaningful associations is the genotype imbalance. In the specific case of SNPs within CREs, this means that a single-base mutation may disrupt transcription factor (TF) binding sites, chromatin structure and overall DNA accessibility to coregulators, thereby inducing genotype-specific bias in gene expression. One of the first post-GWAS CAD locus validation demonstrated that the SNP rs12740374 facilitates the binding of C/EBP to a regulatory site and alters the expression of nearby genes in hepatic cells. Interestingly, although the causal SNP appears to affect the expression of nearby genes, the authors of the study showed that SORT1, and not the closest genes CELSR2 and PSRC1, mediates the biological mechanisms that increase CAD risk [
      • Musunuru K.
      • Strong A.
      • Frank-Kamenetsky M.
      • Lee N.E.
      • Ahfeldt T.
      • Sachs K.V.
      • Li X.
      • Li H.
      • Kuperwasser N.
      • Ruda V.M.
      • et al.
      From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus.
      ]. Nonetheless, a later work has shown that CELSR2 and PSRC1 are also implicated in CAD pathophysiology [
      • Chai T.
      • Wang Z.
      • Yang X.
      • Qiu Z.
      • Chen L.
      PSRC1 may affect coronary artery disease risk by altering CELSR2, PSRC1, and SORT1 gene expression and circulating granulin and apolipoprotein B protein levels.
      ,
      • Tan J.
      • Che Y.
      • Liu Y.
      • Hu J.
      • Wang W.
      • Hu L.
      • Zhou Q.
      • Wang H.
      • Li J.
      CELSR2 deficiency suppresses lipid accumulation in hepatocyte by impairing the UPR and elevating ROS level.
      ]. Similarly, noncoding variant rs9349379 of the PHACTR1 locus located within a vascular-specific enhancer was shown to regulate the expression of EDN1, a gene located 600 kb upstream [
      • Gupta R.M.
      • Hadaya J.
      • Trehan A.
      • Zekavat S.M.
      • Roselli C.
      • Klarin D.
      • Emdin C.A.
      • Hilvering C.R.E.
      • Bianchi V.
      • Mueller C.
      • et al.
      A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression.
      ]. Other targeted validation studies have comprehensively demonstrated enhancer-driven effect of CAD GWAS SNPs at 1p32.2, HDAC9, LMOD1 and SMAD3 loci [
      • Krause M.D.
      • Huang R.T.
      • Wu D.
      • Shentu T.P.
      • Harrison D.L.
      • Whalen M.B.
      • Stolze L.K.
      • Di Rienzo A.
      • Moskowitz I.P.
      • Civelek M.
      • et al.
      Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics.
      ,
      • Prestel M.
      • Prell-Schicker C.
      • Webb T.
      • Malik R.
      • Lindner B.
      • Ziesch N.
      • Rex-Haffner M.
      • Röh S.
      • Viturawong T.
      • Lehm M.
      • et al.
      The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1.
      ,
      • Nanda V.
      • Wang T.
      • Pjanic M.
      • Liu B.
      • Nguyen T.
      • Matic L.P.
      • Hedin U.
      • Koplev S.
      • Ma L.
      • Franzén O.
      • et al.
      Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus.
      ,
      • Turner A.W.
      • Martinuk A.
      • Silva A.
      • Lau P.
      • Nikpay M.
      • Eriksson P.
      • Folkersen L.
      • Perisic L.
      • Hedin U.
      • Soubeyrand S.
      • McPherson R.
      Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease.
      ].
      A prototypical example of the challenges in decoding CAD association signals is the Chr9p21 locus, the most common and most strongly associated CAD locus. The genetic variants associated with CAD have been shown to be associated with allele specific methylation of the long noncoding RNA (lncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) promoter in blood cells [
      • Xu B.
      • Xu Z.
      • Chen Y.
      • Lu N.
      • Shu Z.
      • Tan X.
      Genetic and epigenetic associations of ANRIL with coronary artery disease and risk factors.
      ] and allele specific chromatin accessibility of intronic CREs in smooth muscle cells [
      • Miller C.L.
      • Pjanic M.
      • Wang T.
      • Nguyen T.
      • Cohain A.
      • Lee J.D.
      • Perisic L.
      • Hedin U.
      • Kundu R.K.
      • Majmudar D.
      • et al.
      Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci.
      ]. Notably, studies in CAD patients investigating the effect of Chr9p21.3 genotype in gene expression found that linear atherogenic RNA forms of ANRIL were upregulated in the carriers of the risk genotype, whereas the antiatherogenic circular forms were downregulated [reviewed in 32]. However, Chr9p21.3 genotype associates not only with ANRIL expression, but in specific cells or conditions, also with the CDKN2A/B tumor suppressors encoded in the locus, making it hard to disentangle the cis-regulatory mechanisms [
      • Holdt L.M.
      • Teupser D.
      Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis.
      ]. In line with this, ANRIL has been associated with dysfunction and proliferation of vascular endothelial cells and with metabolism of vascular smooth muscle cells (SMCs) and monocytes [
      • Chen L.
      • Qu H.
      • Guo M.
      • Zhang Y.
      • Cui Y.
      • Yang Q.
      • Bai R.
      • Shi D.
      ANRIL and atherosclerosis.
      ], suggesting that different mechanisms could act in different cell types. This example highlights the challenge of identifying which cell types are causal to the disease. On the other hand, disease-associated loci often contain multiple genes, making it challenging to distinguish those cells affected.
      Altogether, these examples have defined specific functional variants acting as central mediators of the genetic risk of CAD by regulating the transcription of relevant genes. However, follow-up studies are necessary to interpret GWAS results and to infer the exact disease-causal variants, the genes they regulate, and the cell types in which they act. Moreover, a more complete understanding of CAD genetic risk demands the validation of additional hundreds of susceptibility loci often requiring high-throughput based methods. In the following section, we discuss some of the most commonly used approaches for defining and validating causal variants and target genes while presenting practical examples of studies investigating notable CAD GWAS loci.

      4. Contribution of different tissues and cell types to the genetic risk of CAD

      CREs, especially enhancers, are frequently cell type and state specific. Therefore, identification of CREs, operational cell types and tissues remains a challenge toward the functional understanding of risk loci (Fig. 3). Initial efforts to tackle this question have relied on integrating large-scale epigenomic datasets from Roadmap Epigenomics, ENCODE, and BLUEPRINT consortia [
      • Kundaje A.
      • Meuleman W.
      • Ernst J.
      • Bilenky M.
      • Yen A.
      • Heravi-Moussavi A.
      • Kheradpour P.
      • Zhang Z.
      • Wang J.
      • Ziller M.J.
      • Amin V.
      • et al.
      Roadmap Epigenomics Consortium
      Integrative analysis of 111 reference human epigenomes.
      ,
      ENCODE Project Consortium
      An integrated encyclopedia of DNA elements in the human genome.
      ,
      • Stunnenberg H.G.
      • Hirst M.
      International Human Epigenome Consortium
      The international human epigenome consortium: a blueprint for scientific collaboration and discovery.
      ] with disease-associated GWAS variants. Such studies have provided the first evidence that several cardiac traits associated variants are found enriched in heart tissue enhancers, including the PR heart repolarization interval, QRS duration, blood pressure and aortic root size [
      • Kundaje A.
      • Meuleman W.
      • Ernst J.
      • Bilenky M.
      • Yen A.
      • Heravi-Moussavi A.
      • Kheradpour P.
      • Zhang Z.
      • Wang J.
      • Ziller M.J.
      • Amin V.
      • et al.
      Roadmap Epigenomics Consortium
      Integrative analysis of 111 reference human epigenomes.
      ,
      • Maurano M.T.
      • Humbert R.
      • Rynes E.
      • Thurman R.E.
      • Haugen E.
      • Wang H.
      • Reynolds A.P.
      • Sandstrom R.
      • Qu H.
      • Brody J.
      • et al.
      Systematic localization of common disease-associated variation in regulatory DNA.
      ], whereas liver hepatocyte enhancers are enriched for blood lipid phenotypes [
      • Ernst J.
      • Kheradpour P.
      • Mikkelsen T.S.
      • Shoresh N.
      • Ward L.D.
      • Epstein C.B.
      • Zhang X.
      • Wang L.
      • Issner R.
      • Coyne M.
      • et al.
      Mapping and analysis of chromatin state dynamics in nine human cell types.
      ]. As more data has been accumulated, the resolution of predictions has also increased, which is exemplified by the EpiMap, a compendium comprising 10,000 epigenomic maps across 800 samples where the epigenomic annotations are used to investigate functional and disease enrichments for enhancer-overlapping SNPs in each enriched tissue [
      • Boix C.A.
      • James B.T.
      • Park Y.P.
      • Meuleman W.
      • Kellis M.
      Regulatory genomic circuitry of human disease loci by integrative epigenomics.
      ]. This study demonstrates that the CAD-associated SNPs are divided into heart enhancer SNPs enriched in vessel morphogenesis, endocrine enhancer SNPs in lipid homeostasis, liver enhancer SNPs in cholesterol and lipid metabolism and transport, adipose enhancer SNPs in axon guidance and focal adhesion, and embryonic stem cell-derived–muscle enhancer SNPs, enriched in aorta development. Interestingly, many of the tissue enhancers exhibited shared components, as exemplified by co-association of heart, muscle and endothelial enhancer CAD SNPs with high blood pressure and atrial fibrillation and enhancer overlaps with the top SNPs for LDLR, APOE and COL4A1 in multiple tissues, suggesting multiple mechanisms of action even at the single-locus level [
      • Boix C.A.
      • James B.T.
      • Park Y.P.
      • Meuleman W.
      • Kellis M.
      Regulatory genomic circuitry of human disease loci by integrative epigenomics.
      ].
      Fig. 3
      Fig. 3Methods used to investigate cell type specificity of GWAS associations and causal variants.
      (A) Example of a GWAS locus illustrating the association between genetic variants and a trait. The variant above the dotted line represents genome-wide significant associations. (B) Overlaying SNP information with functional genomics data such as chromatin annotations can help to identify cell type through which variants act. (C) Overview of methods used to identify causal variants with a functional effect on transcription factor binding or epigenetic mark deposition (EMSA and ChIP), allele specific enhancer activity by MPRA or target gene expression by CRISPR. Each of the methods need specific input material to visualize the functional effect of the causal variants i.e. EMSA makes use of synthetic oligos, MPRA is based on episomal naked DNA plasmids or virally integrated vectors, ChIP-Seq uses fixed or native chromatin and CRISPR targets native chromatin of cells.
      Despite the insight provided by the large epigenomic datasets, these catalogues often lack cell type resolution of regulatory sequences that would reflect the native tissue context. Recently, this has been addressed by the single cell omics technologies, which have enabled the profiling of the epigenome at single-cell resolution. To this end, we have recently profiled the chromatin accessibility of ∼7000 cells derived from human samples of endarterectomy using single cell (sc)ATAC-Seq (assay for transposase-accessible chromatin with high-throughput sequencing) [
      • Örd T.
      • Õunap K.
      • Stolze L.K.
      • Aherrahrou R.
      • Nurminen V.
      • Toropainen A.
      • Selvarajan I.
      • Lönnberg T.
      • Aavik E.
      • Ylä-Herttuala S.
      • et al.
      Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci.
      ]. Our results demonstrated that the open chromatin CREs of smooth muscle cells (SMCs) and endothelial cells (ECs) show the highest enrichment of GWAS SNPs for CAD [
      • Örd T.
      • Õunap K.
      • Stolze L.K.
      • Aherrahrou R.
      • Nurminen V.
      • Toropainen A.
      • Selvarajan I.
      • Lönnberg T.
      • Aavik E.
      • Ylä-Herttuala S.
      • et al.
      Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci.
      ], whereas SMC CREs contributed most to the polygenic risk of CAD [
      • Örd T.
      • Lönnberg T.
      • Ravindran A.
      • et al.
      Dissecting the polygenic basis of atherosclerosis using disease associated cell state signatures (preprint).
      ]. These findings were largely corroborated in a study by Turner et al., where the authors profile over 28,000 nuclei and demonstrated that the majority of CAD GWAS SNPs resided within SMC CREs followed by macrophage, fibroblast and EC CREs [
      • Turner A.W.
      • Hu S.S.
      • Mosquera J.V.
      • Ma W.F.
      • Hodonsky C.J.
      • Wong D.
      • Auguste G.
      • Song Y.
      • Sol-Church K.
      • Farber E.
      • et al.
      Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk.
      ]. These cell type associations have been also supported by the cell type specific expression of nearby candidate genes in recent scRNA-seq (single cell RNA sequencing) based studies [
      • Slenders L.
      • Landsmeer L.P.L.
      • Cui K.
      • Depuydt M.A.C.
      • Verwer M.
      • Mekke J.
      • Timmerman N.
      • van den Dungen N.A.M.
      • Kuiper J.
      • de Winther Mpj
      • et al.
      Intersecting single-cell transcriptomics and genome-wide association studies identifies crucial cell populations and candidate genes for atherosclerosis.
      ,
      • Depuydt M.A.C.
      • Prange K.H.M.
      • Slenders L.
      • Örd T.
      • Elbersen D.
      • Boltjes A.
      • de Jager S.C.A.
      • Asselbergs F.W.
      • de Borst G.J.
      • Aavik E.
      • et al.
      Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics.
      ]. Hocker et al. employed scATAC-Seq to profile the cell type specific landscape of CREs in the four chambers of the human heart demonstrating enrichment of CAD variants within SMC, fibroblast and EC CREs, enrichment of atrial fibrillation variants within cardiomyocyte CREs, and enrichment of varicose vein variants with EC CREs [
      • Hocker J.D.
      • Poirion O.B.
      • Zhu F.
      • Buchanan J.
      • Zhang K.
      • Chiou J.
      • Wang T.M.
      • Zhang Q.
      • Hou X.
      • Li Y.E.
      • et al.
      Cardiac cell type-specific gene regulatory programs and disease risk association.
      ].
      Similar approaches have now been extended across tissues to generate an atlas of scATAC-Seq in the tissue of 30 adult humans, which enabled systematic analysis of noncoding variants associated with complex human traits and diseases [
      • Zhang K.
      • Hocker J.D.
      • Miller M.
      • Hou X.
      • Chiou J.
      • Poirion O.B.
      • Qiu Y.
      • Li Y.E.
      • Gaulton K.J.
      • Wang A.
      • et al.
      A single-cell atlas of chromatin accessibility in the human genome.
      ]. This confirmed the previous cell type associations for CAD described above, while extending the analysis to other cardiometabolic traits [
      • Zhang K.
      • Hocker J.D.
      • Miller M.
      • Hou X.
      • Chiou J.
      • Poirion O.B.
      • Qiu Y.
      • Li Y.E.
      • Gaulton K.J.
      • Wang A.
      • et al.
      A single-cell atlas of chromatin accessibility in the human genome.
      ]. For example, hypertension is associated with similar cell types as CAD, whereas cholesterol traits associate with hepatocytes, type 2 diabetes with pancreatic cells, body mass index (BMI) with neurons, and waist-to-hip adjusted BMI with adipocytes and fibroblasts. Altogether, these recent resources have laid the foundation for the analysis of the genetic basis of CAD across tissues and cell types while prioritizing candidates for further laboratory experiments to determine their functions.

      5. In search of causal variants through computational fine-mapping

      The biological underpinning of GWAS variants is extremely challenging (Fig. 1). This is due not only because a given trait is often associated with several loci, but also because many variants within the same association locus are co-inherited, generating a phenomenon of non-random association between variants called linkage disequilibrium (LD) [
      • Slatkin M.
      Linkage disequilibrium--understanding the evolutionary past and mapping the medical future.
      ]. In the context of GWAS, an important practical implication of LD is that it makes it difficult or impossible to define causal variants based on association metrics. Therefore, in a first post-GWAS stage, the most plausible variants within the GWAS signals should be defined and prioritized (Fig. 1). Targeted deep sequencing or full genome sequencing complemented by genotype imputation allows for complete genotyping of target regions. Further conditional statistical analyses then use this fine-genotyping information in the refinement of the association signal within the GWAS locus (Fig. 1B). Such conditional analyses constitute iterative procedures that look for SNPs with the lowest p value of association until no additional SNP reaches the pre-assigned p value threshold [
      • Yang J.
      • Ferreira T.
      • Morris A.P.
      • Medland S.E.
      Genetic Investigation of ANthropometric Traits (GIANT) Consortium; DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium, Madden PA, Heath AC, Martin NG, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits.
      ]. Often, these approaches lead to the identification of alternative SNPs within LD that exhibit more significant association and larger effect sizes compared to the initial GWAS lead SNP, as exemplified by validation studies of several CAD loci (PHACTR1, [
      • Gupta R.M.
      • Hadaya J.
      • Trehan A.
      • Zekavat S.M.
      • Roselli C.
      • Klarin D.
      • Emdin C.A.
      • Hilvering C.R.E.
      • Bianchi V.
      • Mueller C.
      • et al.
      A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression.
      ]; 1p32.2, [
      • Krause M.D.
      • Huang R.T.
      • Wu D.
      • Shentu T.P.
      • Harrison D.L.
      • Whalen M.B.
      • Stolze L.K.
      • Di Rienzo A.
      • Moskowitz I.P.
      • Civelek M.
      • et al.
      Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics.
      ]; HDAC9, [
      • Prestel M.
      • Prell-Schicker C.
      • Webb T.
      • Malik R.
      • Lindner B.
      • Ziesch N.
      • Rex-Haffner M.
      • Röh S.
      • Viturawong T.
      • Lehm M.
      • et al.
      The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1.
      ]; and SMAD3 [
      • Turner A.W.
      • Martinuk A.
      • Silva A.
      • Lau P.
      • Nikpay M.
      • Eriksson P.
      • Folkersen L.
      • Perisic L.
      • Hedin U.
      • Soubeyrand S.
      • McPherson R.
      Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease.
      ]). However, while this is informative about the number of association signals within the GWAS locus, it fails to provide measures of causality for variants. To overcome this problem, many recent fine-mapping methods have adopted a Bayesian framework to assign posterior probabilities and credible sets of SNPs that refine the association signals of GWAS [
      • Krause M.D.
      • Huang R.T.
      • Wu D.
      • Shentu T.P.
      • Harrison D.L.
      • Whalen M.B.
      • Stolze L.K.
      • Di Rienzo A.
      • Moskowitz I.P.
      • Civelek M.
      • et al.
      Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics.
      ,
      • Maller J.B.
      • McVean G.
      • Byrnes J.
      • Vukcevic D.
      • Palin K.
      • Su Z.
      • Howson J.M.
      • Auton A.
      • Myers S.
      • Morris A.
      • et al.
      Wellcome Trust Case Control Consortium
      Bayesian refinement of association signals for 14 loci in 3 common diseases.
      ,
      • Benner C.
      • Spencer C.C.
      • Havulinna A.S.
      • Salomaa V.
      • Ripatti S.
      • Pirinen M.
      FINEMAP: efficient variable selection using summary data from genome-wide association studies.
      ,
      • Zou Y.
      • Carbonetto P.
      • Wang G.
      • Stephens M.
      Fine-mapping from summary data with the "sum of single effects" model.
      ,
      • Hormozdiari F.
      • Kostem E.
      • Kang E.Y.
      • Pasaniuc B.
      • Eskin E.
      Identifying causal variants at loci with multiple signals of association.
      ].
      In a further prioritization step, refined loci are probed for regulatory potential through SNP enrichment analyses (Fig. 1C; Fig. 3A and B). In simple terms, this looks for the co-occurrence of association with chromatin regulatory features at a given locus. Transcriptional factor binding, DNaseI hypersensitivity regions [
      • Pipkin M.E.
      • Lichtenheld M.G.
      A reliable method to display authentic DNase I hypersensitive sites at long-ranges in single-copy genes from large genomes.
      ], histone marks such as H3K27Ac [
      • Heintzman N.D.
      • Hon G.C.
      • Hawkins R.D.
      • Kheradpour P.
      • Stark A.
      • Harp L.F.
      • Ye Z.
      • Lee L.K.
      • Stuart R.K.
      • Ching C.W.
      • et al.
      Histone modifications at human enhancers reflect global cell-type-specific gene expression.
      ] and H3K4me1 [
      • Wang Z.
      • Zang C.
      • Rosenfeld J.A.
      • Schones D.E.
      • Barski A.
      • Cuddapah S.
      • Cui K.
      • Roh T.Y.
      • Peng W.
      • Zhang M.Q.
      • Zhao K.
      Combinatorial patterns of histone acetylations and methylations in the human genome.
      ], and more recently ATAC-seq data [
      • Buenrostro J.D.
      • Wu B.
      • Chang H.Y.
      • Greenleaf W.J.
      ATAC-seq: a method for assaying chromatin accessibility genome-wide.
      ] have been largely used as co-localization criteria, as they define chromatin regions harbouring cis-regulatory elements such as enhancers and promoters. In one of the pioneering studies in the field of CAD, Miller et al. overlapped CAD GWAS information with the epigenomic profiles in primary cultured human coronary artery smooth muscle cells (HCASMCs) [
      • Miller C.L.
      • Pjanic M.
      • Wang T.
      • Nguyen T.
      • Cohain A.
      • Lee J.D.
      • Perisic L.
      • Hedin U.
      • Kundu R.K.
      • Majmudar D.
      • et al.
      Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci.
      ]. Based on this intersection, the authors prioritized 64 candidate variants and performed allele-specific binding and expression analyses at seven top candidate loci: 9p21.3, SMAD3, PDGFD, IL6R, BMP1, CCDC97/TGFB1 and LMOD1 [
      • Miller C.L.
      • Pjanic M.
      • Wang T.
      • Nguyen T.
      • Cohain A.
      • Lee J.D.
      • Perisic L.
      • Hedin U.
      • Kundu R.K.
      • Majmudar D.
      • et al.
      Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci.
      ].
      Incorporating functional annotations into computational fine-mapping approaches has been shown to improve identification of likely causal variants and several methods have emerged around this concept [
      • Kichaev G.
      • Yang W.Y.
      • Lindstrom S.
      • Hormozdiari F.
      • Eskin E.
      • Price A.L.
      • Kraft P.
      • Pasaniuc B.
      Integrating functional data to prioritize causal variants in statistical fine-mapping studies.
      ,
      • Pickrell J.K.
      Joint analysis of functional genomic data and genome-wide association studies of 18 human traits.
      ,
      • Weissbrod O.
      • Hormozdiari F.
      • Benner C.
      • Cui R.
      • Ulirsch J.
      • Gazal S.
      • Schoech A.P.
      • van de Geijn B.
      • Reshef Y.
      • Márquez-Luna
      • et al.
      Functionally informed fine-mapping and polygenic localization of complex trait heritability.
      ]. Pickrell et al. applied a functionally informed fine-mapping method (FGWAS) that uses the chromatin state enrichment information to reweight GWAS summary statistics and compute variant-specific association probability [
      • Pickrell J.K.
      Joint analysis of functional genomic data and genome-wide association studies of 18 human traits.
      ]. The authors demonstrated that 13 CAD risk loci could be fine-mapped to just a single variant, including the known missense variants in PCSK9, ANGPTL4 and APOE, PHACTR1/EDN1 and HDAC9/TWIST [

      Krishna G Aragam, Tao Jiang, Anuj Goel, Stavroula Kanoni, Brooke N Wolford, Deepak S Atri, Elle M Weeks, Minxian Wang, George Hindy, Wei Zhou, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet . 52 (12) (2022 Dec) 1803-1815, doi: 10.1038/s41588-022-01233-6.

      ,
      • Gupta R.M.
      • Hadaya J.
      • Trehan A.
      • Zekavat S.M.
      • Roselli C.
      • Klarin D.
      • Emdin C.A.
      • Hilvering C.R.E.
      • Bianchi V.
      • Mueller C.
      • et al.
      A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression.
      ,
      • Krause M.D.
      • Huang R.T.
      • Wu D.
      • Shentu T.P.
      • Harrison D.L.
      • Whalen M.B.
      • Stolze L.K.
      • Di Rienzo A.
      • Moskowitz I.P.
      • Civelek M.
      • et al.
      Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics.
      ,
      • Prestel M.
      • Prell-Schicker C.
      • Webb T.
      • Malik R.
      • Lindner B.
      • Ziesch N.
      • Rex-Haffner M.
      • Röh S.
      • Viturawong T.
      • Lehm M.
      • et al.
      The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1.
      ,
      • Nanda V.
      • Wang T.
      • Pjanic M.
      • Liu B.
      • Nguyen T.
      • Matic L.P.
      • Hedin U.
      • Koplev S.
      • Ma L.
      • Franzén O.
      • et al.
      Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus.
      ,
      • Turner A.W.
      • Martinuk A.
      • Silva A.
      • Lau P.
      • Nikpay M.
      • Eriksson P.
      • Folkersen L.
      • Perisic L.
      • Hedin U.
      • Soubeyrand S.
      • McPherson R.
      Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease.
      ]. In the future, such methods could be further improved by incorporating functional genomic data generated in the actual diseased tissue [
      • Örd T.
      • Lönnberg T.
      • Ravindran A.
      • et al.
      Dissecting the polygenic basis of atherosclerosis using disease associated cell state signatures (preprint).
      ,
      • Turner A.W.
      • Hu S.S.
      • Mosquera J.V.
      • Ma W.F.
      • Hodonsky C.J.
      • Wong D.
      • Auguste G.
      • Song Y.
      • Sol-Church K.
      • Farber E.
      • et al.
      Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk.
      ,
      • Ma W.F.
      • Turner A.W.
      • Gancayco C.
      • Wong D.
      • Song Y.
      • Mosquera J.V.
      • Auguste G.
      • Hodonsky C.J.
      • Prabhakar A.
      • Ekiz H.A.
      • et al.
      PlaqView 2.0: a comprehensive web portal for cardiovascular single-cell genomics.
      ].
      Several integrative computational resources are available for analysing the effect of genetic variation on genomic functions, providing both analytical and predictive outcome for scientists working in the field and generating their own functional data. For example, BaalChIP [
      • de Santiago I.
      • Liu W.
      • Yuan K.
      • O'Reilly M.
      • Chilamakuri C.S.
      • Ponder B.A.
      • Meyer K.B.
      • Markowetz F.
      BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes.
      ] and ABC [
      • Bailey S.D.
      • Virtanen C.
      • Haibe-Kains B.
      • Lupien M.
      ABC: a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-Seq experiments.
      ] can be used to analyze multiple ChIP-seq datasets and calculate allele specific TF binding [
      • Selvarajan I.
      • Toropainen A.
      • Garske K.M.
      • López Rodríguez M.
      • Ko A.
      • Miao Z.
      • Kaminska D.
      • Õunap K.
      • Örd T.
      • Ravindran A.
      • et al.
      Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease.
      ]. On the other hand, portals such as DeepSEA [
      • Zhou J.
      • Troyanskaya O.G.
      Predicting effects of noncoding variants with deep learning-based sequence model.
      ] and RegulomeDB (https://regulomedb.org/) integrate multiple TF binding, chromatin accessibility, histone marks and other functional data to predict functional effects of genetic variation on epigenetic landscape (Fig. 3C). Open Target Genetics portal [
      • Ghoussaini M.
      • Mountjoy E.
      • Carmona M.
      • Peat G.
      • Schmidt E.M.
      • Hercules A.
      • Fumis L.
      • Miranda A.
      • Carvalho-Silva D.
      • Buniello A.
      • Burdett T.
      • Hayhurst J.
      • et al.
      Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics.
      ] (https://genetics.opentargets.org/), Common Metabolic Diseases Knowledge Portal (https://md.hugeamp.org/) and HaploReg [
      • Ward L.D.
      • Kellis M.
      HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants.
      ] are also excellent resources for variant prioritization that inform not only about epigenetic features, but also provide association data integrated from large number of subjects from various demographics. Even when the outcome of the methods and the information summarized by these portals may be predictive, the fact that they use experimental data helps researchers to expand the number of variants or loci that may be subject to targeted validation (Fig. 1).

      6. Experimental strategies to identify causal variants

      As valuable as the computational methods are in prioritizing and fine-mapping CAD relevant variants, experimental strategies are often encouraged to complement the predictions with functional validations (Table 1). Given their impact on transcriptional processes, a majority of CAD functional risk variants are thought to act by disrupting TF binding to the DNA (Fig. 3C). One of the oldest methods to measure allelic differences in TF binding to DNA is the electrophoresis mobility shift assay (EMSA) [
      • Fried M.G.
      • Crothers D.M.
      Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis.
      ,
      • Hellman L.M.
      • Fried M.G.
      Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions.
      ]. In this method, allele-specific synthetic DNA oligonucleotides are probed with TF or protein extracts from relevant cell types or tissue; if one of the alleles disrupts binding, this is detected by a shift in migration of the DNA-protein complex in an electrophoresis gel [
      • Hellman L.M.
      • Fried M.G.
      Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions.
      ]. Although the technique was first described over forty years ago [
      • Fried M.G.
      • Crothers D.M.
      Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis.
      ], the fact that it provides a fast and direct interaction readout has made it a popular method even today. For example, as part of our analysis of liver-specific CRE variants associated with CAD risk [
      • Selvarajan I.
      • Toropainen A.
      • Garske K.M.
      • López Rodríguez M.
      • Ko A.
      • Miao Z.
      • Kaminska D.
      • Õunap K.
      • Örd T.
      • Ravindran A.
      • et al.
      Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease.
      ], we used EMSA to detect the effect of rs9591145 SNP predicted to affect CEBP binding, allowing for a direct measure of allelic effect on TF binding and robust evidence of allelic imbalance in the N4BP2L2 locus. Similarly, EMSA was recently used to demonstrate that one of two regulatory variants associated with allele specific expression of FURIN and FES in monocytes and vascular SMCs, rs17514846 and rs1894401, interacted with monocyte nuclear proteins in an allele specific manner [
      • Zhao G.
      • Yang W.
      • Wu J.
      • Chen B.
      • Yang X.
      • Chen J.
      • McVey D.G.
      • Andreadi C.
      • Gong P.
      • Webb T.R.
      • et al.
      Influence of a coronary artery disease-associated genetic variant on FURIN expression and effect of furin on macrophage behavior.
      ,
      • Karamanavi E.
      • McVey D.G.
      • van der Laan S.W.
      • Stanczyk P.J.
      • Morris G.E.
      • Wang Y.
      • Yang W.
      • Chan K.
      • Poston R.N.
      • Luo J.
      • et al.
      The FES gene at the 15q26 coronary-artery-disease locus inhibits atherosclerosis.
      ]. The authors further performed a super-shift assay to demonstrate that PRDM1 TF preferentially interacted with the rs1894401 risk allele. Leveraging on the same principle of DNA-protein interaction, Prestel et al. used proteome wide analysis of SNPs to identify metabolically labelled nuclear factors interacting with synthetic oligonucleotides followed by mass spectrometry [
      • Prestel M.
      • Prell-Schicker C.
      • Webb T.
      • Malik R.
      • Lindner B.
      • Ziesch N.
      • Rex-Haffner M.
      • Röh S.
      • Viturawong T.
      • Lehm M.
      • et al.
      The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1.
      ]. This allowed identification of six transcription factors of which E2F3 was demonstrated to result in allele-specific binding at HDAC9 locus harbouring rs2107595 regulatory variant.
      Table 1Non-exhaustive list of the functional characterization studies involving experimental validation of CAD loci.
      LocusTarget Gene(s)Experimental MethodSummary Functional MechanismRef.
      1p13/rs12740374SORT1 (Sortilin 1)EMSA, Reporter assay, ChIP-qPCRVariant creates of a C/EBP binding site and alters the hepatic expression of the SORT1 gene, which regulates plasma levels of LDL and VLDL.[
      • Musunuru K.
      • Strong A.
      • Frank-Kamenetsky M.
      • Lee N.E.
      • Ahfeldt T.
      • Sachs K.V.
      • Li X.
      • Li H.
      • Kuperwasser N.
      • Ruda V.M.
      • et al.
      From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus.
      ]
      PHACTR1 (phosphatase and actin regulator 1)

      /rs9349379
      EDN1 (Endothelin 1)Reporter assay, 4C-Seq, CRISPR deletion and variant editingThe SNP resides in an aorta specific enhancer. Enhancer deletion and variant editing leads to increased expression of EDN1 and Big ET-1 protein, through mechanisms that does not involve long-range chromatin loops.[
      • Gupta R.M.
      • Hadaya J.
      • Trehan A.
      • Zekavat S.M.
      • Roselli C.
      • Klarin D.
      • Emdin C.A.
      • Hilvering C.R.E.
      • Bianchi V.
      • Mueller C.
      • et al.
      A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression.
      ]
      1p32.2/rs17114036PLPP3 (Phospholipid phosphatase 3)Reporter assay, CRISPRi and deletion, ATAC-seq (caQTL), eQTLThe risk variant creates KLF2 binding site which increases enhancer activity under unidirectional flow to promote PLPP3 expression (mechanosensing role).[
      • Krause M.D.
      • Huang R.T.
      • Wu D.
      • Shentu T.P.
      • Harrison D.L.
      • Whalen M.B.
      • Stolze L.K.
      • Di Rienzo A.
      • Moskowitz I.P.
      • Civelek M.
      • et al.
      Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics.
      ,
      • Stolze L.K.
      • Conklin A.C.
      • Whalen M.B.
      • López Rodríguez M.
      • Õunap K.
      • Selvarajan I.
      • Toropainen A.
      • Örd T.
      • Li J.
      • Eshghi A.
      • et al.
      Systems genetics in human endothelial cells identifies non-coding variants modifying enhancers, expression, and complex disease traits.
      ]
      rs2107595HDAC9 (Histone deacetylase 9)Reporter assay, 4C-Seq, ChIP-qPCRThe risk allele disrupts the consensus binding site for E2F3, has higher transcriptional activity and associates with increased expression of HDAC9.[
      • Prestel M.
      • Prell-Schicker C.
      • Webb T.
      • Malik R.
      • Lindner B.
      • Ziesch N.
      • Rex-Haffner M.
      • Röh S.
      • Viturawong T.
      • Lehm M.
      • et al.
      The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1.
      ]
      rs34091558LMOD1 (leiomodin 1)ChIP-qPCR, reporter assay, allelic expression imbalance, eQTLThe risk allele disrupts the binding of Forkhead box O3 (FOXO3), leading to downregulation of LMOD1, which results in increased proliferation and migration and decreased cell contraction of HCASMCs.[
      • Nanda V.
      • Wang T.
      • Pjanic M.
      • Liu B.
      • Nguyen T.
      • Matic L.P.
      • Hedin U.
      • Koplev S.
      • Ma L.
      • Franzén O.
      • et al.
      Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus.
      ,
      • Miller C.L.
      • Pjanic M.
      • Wang T.
      • Nguyen T.
      • Cohain A.
      • Lee J.D.
      • Perisic L.
      • Hedin U.
      • Kundu R.K.
      • Majmudar D.
      • et al.
      Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci.
      ]
      Chr9p21/rs1537373ANRIL, (CDKN2B antisense RNA 1)

      CDKN2B (cyclin dependent kinase inhibitor 2 B)
      ChIP-qPCR, reporter assay, enhancer-trap, cis-eQTLAllele specific binding of AP-1 and TCF21 to CRE in HCASMCs. The risk genotype increases the expression of the linear atherogenic RNA forms of ANRIL.[
      • Holdt L.M.
      • Teupser D.
      Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis.
      ]
      rs17293632SMAD3 (SMAD family member 3)ChIP-qPCR, Reporter assayThe non-risk allele disrupts AP-1 binding site in an intronic enhancer leading to reduced SMAD3 expression and impaired proliferation of HASMCs.[
      • Turner A.W.
      • Martinuk A.
      • Silva A.
      • Lau P.
      • Nikpay M.
      • Eriksson P.
      • Folkersen L.
      • Perisic L.
      • Hedin U.
      • Soubeyrand S.
      • McPherson R.
      Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease.
      ]
      rs17293632SMAD3STARR-Seq, eQTL, molQTL (p65, ATAC), CRISPR deletionStrong allele specific enhancer activity features. Deletion of the intronic enhancer at this locus inhibits SMAD3 expression in HAECs.[
      • Toropainen A.
      • Stolze L.K.
      • Örd T.
      • Whalen M.B.
      • Torrell P.M.
      • Link V.M.
      • Kaikkonen M.U.
      • Romanoski C.E.
      Functional noncoding SNPs in human endothelial cells fine-map vascular trait associations.
      ]
      GUCY1A1GUCY1A1 (guanylate cyclase 1 soluble subunit alpha 1)ChIP-qPCR, Reporter assayThe risk variant interferes with ZEB1 binding within intronic CRE which impaired GUCY1A3 expression and leads to reduced migration of HASMCs.[
      • Kessler T.
      • Wobst J.
      • Wolf B.
      • Eckhold J.
      • Vilne B.
      • Hollstein R.
      • von Ameln S.
      • Dang T.A.
      • Sager H.B.
      • Moritz Rumpf P.
      • et al.
      Functional characterization of the GUCY1A3 coronary artery disease risk locus.
      ]
      rs585967

      rs2250644/45

      rs17680741

      rs2297787

      rs1965983
      APOB (apolipoprotein B)

      LIPA (lipase A, lysosomal acid type)

      TSPAN14 (tetraspanin 14)

      SFXN2 (sideroflexin 2)

      UBE2Z (ubiquitin conjugating enzyme E2 Z)
      STARR-Seq, CRISPR deletion,

      CRISPRa, eQTL, PCHiC
      CAD risk variants located in hepatocyte specific CREs located within 3D chromatin interaction hubs that regulate expression of many genes (only top one shown) in the liver.[
      • Selvarajan I.
      • Toropainen A.
      • Garske K.M.
      • López Rodríguez M.
      • Ko A.
      • Miao Z.
      • Kaminska D.
      • Õunap K.
      • Örd T.
      • Ravindran A.
      • et al.
      Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease.
      ]
      rs17514846FURIN (furin, paired basic amino acid cleaving enzyme)Allelic expression imbalance, reporter assay, EMSA, CRISPR editingCAD risk allele increases FURIN expression. FURIN promotes monocyte/macrophage migration and proliferation while inhibiting apoptosis.[
      • Zhao G.
      • Yang W.
      • Wu J.
      • Chen B.
      • Yang X.
      • Chen J.
      • McVey D.G.
      • Andreadi C.
      • Gong P.
      • Webb T.R.
      • et al.
      Influence of a coronary artery disease-associated genetic variant on FURIN expression and effect of furin on macrophage behavior.
      ]
      rs17514846 rs1894401 15q26.1FES (FES proto-oncogene, tyrosine kinase)EMSA, CRISPR editing, eQTLTwo CRE variants reduce FES expression in monocytes which promotes their migration. FES depletion results in larger plaques with more monocyte/macrophages and SMCs.[
      • Karamanavi E.
      • McVey D.G.
      • van der Laan S.W.
      • Stanczyk P.J.
      • Morris G.E.
      • Wang Y.
      • Yang W.
      • Chan K.
      • Poston R.N.
      • Luo J.
      • et al.
      The FES gene at the 15q26 coronary-artery-disease locus inhibits atherosclerosis.
      ]
      Abbreviations: EMSA (Electrophoretic Mobility Shift Assays); ChIP-qPCR (Chromatin Immunoprecipitation Coupled with quantitative PCR); CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats); ATAC (Assay for Transposase-Accessible Chromatin with high-throughput sequencing); caQTL (Chromatin Accessibility QTL); eQTL (Expression QTL); 4C-Seq (Circular Chromosome Conformation Capture, coupled to high-throughput Sequencing), STARR-Seq (self-transcribing active regulatory region sequencing).
      Miller et al. [
      • Miller C.L.
      • Pjanic M.
      • Wang T.
      • Nguyen T.
      • Cohain A.
      • Lee J.D.
      • Perisic L.
      • Hedin U.
      • Kundu R.K.
      • Majmudar D.
      • et al.
      Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci.
      ], Turner et al. [
      • Turner A.W.
      • Martinuk A.
      • Silva A.
      • Lau P.
      • Nikpay M.
      • Eriksson P.
      • Folkersen L.
      • Perisic L.
      • Hedin U.
      • Soubeyrand S.
      • McPherson R.
      Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease.
      ] Nanda et al. [
      • Nanda V.
      • Wang T.
      • Pjanic M.
      • Liu B.
      • Nguyen T.
      • Matic L.P.
      • Hedin U.
      • Koplev S.
      • Ma L.
      • Franzén O.
      • et al.
      Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus.
      ] and Kessler et al. [
      • Kessler T.
      • Wobst J.
      • Wolf B.
      • Eckhold J.
      • Vilne B.
      • Hollstein R.
      • von Ameln S.
      • Dang T.A.
      • Sager H.B.
      • Moritz Rumpf P.
      • et al.
      Functional characterization of the GUCY1A3 coronary artery disease risk locus.
      ] have on the other hand used chromatin immunoprecipitation followed by qPCR in their respective studies of 9p21, SMAD3, LMOD1, PDGFD, IL6R and GUCY1A3 CAD loci to demonstrate allele specific TF activity. In this method, the binding of the TF can be detected in an allele-specific manner using TaqMan SNP genotyping assays (Fig. 3C). By combining allele-specific probes labelled with different fluorescent dyes and PCR primers for the desired region, these assays allow the multiplexed detection of two signals from the same qPCR reaction mix. This is particularly interesting, and useful, because the allelic differences are measured within the sample, somewhat minimizing experimental errors while increasing consistency and sensitivity [
      • López Rodríguez M.
      • Kaminska D.
      • Lappalainen K.
      • Pihlajamäki J.
      • Kaikkonen M.U.
      • Laakso M.
      Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells.
      ,
      • Locke J.M.
      • Wei F.Y.
      • Tomizawa K.
      • Weedon M.N.
      • Harries L.W.
      A cautionary tale: the non-causal association between type 2 diabetes risk SNP, rs7756992, and levels of non-coding RNA, CDKAL1-v1.
      ]. However, the premise of “both alleles in the same reaction” conditions the assay to be used mainly in heterozygous cells and the probes used to detect the allelic imbalance may have inherent bias towards one allele and thus require calibration before conducting the experiment, as done previously [
      • Miller C.L.
      • Pjanic M.
      • Wang T.
      • Nguyen T.
      • Cohain A.
      • Lee J.D.
      • Perisic L.
      • Hedin U.
      • Kundu R.K.
      • Majmudar D.
      • et al.
      Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci.
      ]. Interestingly, these studies have further validated the TF effect on reporter and/or endogenous gene expression using TF knockdown as exemplified by FOXO3-mediated regulation of LMOD1 [
      • Nanda V.
      • Wang T.
      • Pjanic M.
      • Liu B.
      • Nguyen T.
      • Matic L.P.
      • Hedin U.
      • Koplev S.
      • Ma L.
      • Franzén O.
      • et al.
      Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus.
      ], AP-1 regulated expression of SMAD3 [
      • Miller C.L.
      • Pjanic M.
      • Wang T.
      • Nguyen T.
      • Cohain A.
      • Lee J.D.
      • Perisic L.
      • Hedin U.
      • Kundu R.K.
      • Majmudar D.
      • et al.
      Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci.
      ] and ZEB1 regulated GUCY1A3 [
      • Kessler T.
      • Wobst J.
      • Wolf B.
      • Eckhold J.
      • Vilne B.
      • Hollstein R.
      • von Ameln S.
      • Dang T.A.
      • Sager H.B.
      • Moritz Rumpf P.
      • et al.
      Functional characterization of the GUCY1A3 coronary artery disease risk locus.
      ].
      High-throughput methods to analyze allele specific CRE activity have also been applied to identify the causal variants, including genome-wide ChIP-Seq or ATAC-Seq analysis across many donor samples (Fig. 3C). Here, molecular quantitative trait loci (molQTL) analysis is used to identify statistically significant associations between the epigenetic phenotypes and the genotype. To this end, in a study by Stolze et al., human aortic endothelial (HAEC) donors were used to investigate the associations between genotype and the quantitative abundance of ATAC-Seq or H3K27ac ChIP-Seq signal as well as binding of ERG and NF-κB transcription factors [
      • Stolze L.K.
      • Conklin A.C.
      • Whalen M.B.
      • López Rodríguez M.
      • Õunap K.
      • Selvarajan I.
      • Toropainen A.
      • Örd T.
      • Li J.
      • Eshghi A.
      • et al.
      Systems genetics in human endothelial cells identifies non-coding variants modifying enhancers, expression, and complex disease traits.
      ]. We discovered over 3000 CREs whose activity was modulated by genetic variants that most frequently mutated ETS, AP-1, and NF-kB binding motifs [
      • Stolze L.K.
      • Conklin A.C.
      • Whalen M.B.
      • López Rodríguez M.
      • Õunap K.
      • Selvarajan I.
      • Toropainen A.
      • Örd T.
      • Li J.
      • Eshghi A.
      • et al.
      Systems genetics in human endothelial cells identifies non-coding variants modifying enhancers, expression, and complex disease traits.
      ]. Among them, several regulatory variants were found enriched in CAD and blood pressure loci, including PECAM1, FES, AXL and MFAP2 [
      • Stolze L.K.
      • Conklin A.C.
      • Whalen M.B.
      • López Rodríguez M.
      • Õunap K.
      • Selvarajan I.
      • Toropainen A.
      • Örd T.
      • Li J.
      • Eshghi A.
      • et al.
      Systems genetics in human endothelial cells identifies non-coding variants modifying enhancers, expression, and complex disease traits.
      ]. Of important note, we also demonstrated that proinflammatory stimulus of HAECs resulted in a large set of novel molQTLs, in line with a context specific effect of functional variants. In addition, this study added to the growing evidence indicating that variants are more likely to influence the binding of cell type specific transcription factors, which then indirectly alter the binding of stimulus-specific transcription factors, such as NF-κB [
      • Stolze L.K.
      • Conklin A.C.
      • Whalen M.B.
      • López Rodríguez M.
      • Õunap K.
      • Selvarajan I.
      • Toropainen A.
      • Örd T.
      • Li J.
      • Eshghi A.
      • et al.
      Systems genetics in human endothelial cells identifies non-coding variants modifying enhancers, expression, and complex disease traits.
      ,
      • Alasoo K.
      • Rodrigues J.
      • Mukhopadhyay S.
      • Knights A.J.
      • Mann A.L.
      • Kundu K.
      • Hale C.
      • Dougan G.
      • Gaffney D.J.
      HIPSCI Consortium
      Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response.
      ,
      • Romanoski C.E.
      • Lee S
      • Kim M.J.
      • Ingram-Drake L
      • Plaisier C.L.
      • Yordanova R.
      • Tilford C.
      • Guan B.
      • He A.
      • Gargalovic P.S.
      • et al.
      Systems genetics analysis of gene-by-environment interactions in human cells,.
      ].
      Single cell technologies are also highly useful for molQTL discovery. A pioneering study in the field by Turner et al. recently calculated chromatin accessibility (ca)QTLs across 41 patients profiled using scATAC-Seq [
      • Turner A.W.
      • Hu S.S.
      • Mosquera J.V.
      • Ma W.F.
      • Hodonsky C.J.
      • Wong D.
      • Auguste G.
      • Song Y.
      • Sol-Church K.
      • Farber E.
      • et al.
      Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk.
      ]. The authors identified caQTLs in four major coronary cell types, including SMCs (1984 caQTLs), macrophages (1210), fibroblasts (510) and endothelial cells (49), of which over 90% were specific to one cell type. This highlights the importance of investigating the molQTLs in the disease-relevant cell types. Unfortunately, molQTL discovery from bulk or single cell data is currently restricted by the limited study sample sizes which demand a higher threshold of minor allele frequency and thereby causes loss of associations especially in rare cell types. In the future, larger sample sizes across a spectrum of disease stages are needed to increase the power of discovery and to identify context-specific regulatory mechanisms.
      A complement to the discovery of the molecular functions of regulatory risk variants consists of exploring their effect on transcription. To this end, transcriptional reporter assay represents the most generalized technique, which has been employed in most CAD variant studies exemplified and discussed throughout the previous sections [
      • Zhang K.
      • Hocker J.D.
      • Miller M.
      • Hou X.
      • Chiou J.
      • Poirion O.B.
      • Qiu Y.
      • Li Y.E.
      • Gaulton K.J.
      • Wang A.
      • et al.
      A single-cell atlas of chromatin accessibility in the human genome.
      ,
      • Gupta R.M.
      • Hadaya J.
      • Trehan A.
      • Zekavat S.M.
      • Roselli C.
      • Klarin D.
      • Emdin C.A.
      • Hilvering C.R.E.
      • Bianchi V.
      • Mueller C.
      • et al.
      A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression.
      ,
      • Krause M.D.
      • Huang R.T.
      • Wu D.
      • Shentu T.P.
      • Harrison D.L.
      • Whalen M.B.
      • Stolze L.K.
      • Di Rienzo A.
      • Moskowitz I.P.
      • Civelek M.
      • et al.
      Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics.
      ,
      • Prestel M.
      • Prell-Schicker C.
      • Webb T.
      • Malik R.
      • Lindner B.
      • Ziesch N.
      • Rex-Haffner M.
      • Röh S.
      • Viturawong T.
      • Lehm M.
      • et al.
      The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1.
      ,
      • Nanda V.
      • Wang T.
      • Pjanic M.
      • Liu B.
      • Nguyen T.
      • Matic L.P.
      • Hedin U.
      • Koplev S.
      • Ma L.
      • Franzén O.
      • et al.
      Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus.
      ,
      • Turner A.W.
      • Martinuk A.
      • Silva A.
      • Lau P.
      • Nikpay M.
      • Eriksson P.
      • Folkersen L.
      • Perisic L.
      • Hedin U.
      • Soubeyrand S.
      • McPherson R.
      Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease.
      ] (Fig. 1C). In its targeted version, allele-specific DNA fragments encompassing putative enhancer or other regulatory sequences are cloned into bacterial plasmid vectors expressing a reporter gene, usually firefly luciferase or green fluorescent protein. By transfecting these vectors in relevant cell types, researchers can answer i) whether the regulatory element harbouring the candidate variant is indeed functional and ii) whether alternative genotypes result in differential transcriptional activity. However, targeted strategies are not viable for working with a large number of loci, at least not in their classical setting. To this end, one approach to systematically identify causal variants in a high-throughput manner is to apply massive parallel reporter assays (MPRA) to measure the effects of synthetic DNA libraries representing both alleles on the expression of the reporter gene (Fig. 3C). We have recently used a particular type of MPRA, called self-transcribing active regulatory region sequencing (STARR-seq), to analyze the allele specific activity of thousands of CAD variants representing over 200 CAD loci in hepatocytes, endothelial cells and smooth muscle cells [
      • Örd T.
      • Lönnberg T.
      • Ravindran A.
      • et al.
      Dissecting the polygenic basis of atherosclerosis using disease associated cell state signatures (preprint).
      ,
      • Selvarajan I.
      • Toropainen A.
      • Garske K.M.
      • López Rodríguez M.
      • Ko A.
      • Miao Z.
      • Kaminska D.
      • Õunap K.
      • Örd T.
      • Ravindran A.
      • et al.
      Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease.
      ,
      • Toropainen A.
      • Stolze L.K.
      • Örd T.
      • Whalen M.B.
      • Torrell P.M.
      • Link V.M.
      • Kaikkonen M.U.
      • Romanoski C.E.
      Functional noncoding SNPs in human endothelial cells fine-map vascular trait associations.
      ], allowing the prioritization of causal variants for over 50 CAD loci. By providing integration of STARR-Seq results with molQTL analysis for transcription factor binding, chromatin accessibility, and H3K27 acetylation in HAECs we also provide evidence that functional variants are more likely to be located within accessible/active chromatin, exhibit an allelic mutation in a TF binding motif for a factor with an important role in the cell type and/or cell state of interest and associate to a molQTL [
      • Toropainen A.
      • Stolze L.K.
      • Örd T.
      • Whalen M.B.
      • Torrell P.M.
      • Link V.M.
      • Kaikkonen M.U.
      • Romanoski C.E.
      Functional noncoding SNPs in human endothelial cells fine-map vascular trait associations.
      ]. Notably, a large majority of allele specific variant effects were cell or context specific. However, these also include several cases where different variants within the same GWAS locus exhibit allele specific enhancer activity in different cell types or where multiple, tightly linked causal variants mediate a similar effect, challenging the view that a single causal variant would underlie the association [
      • Abell N.S.
      • DeGorter M.K.
      • Gloudemans M.J.
      • Greenwald E.
      • Smith K.S.
      • He Z.
      • Montgomery S.B.
      Multiple causal variants underlie genetic associations in humans.
      ].
      Finally, RNA-guided (gRNA) Clustered Regularly Interspaced Short Palindromic systems (CRISPR) [
      • Perez-Pinera P.
      • Kocak D.D.
      • Vockley C.M.
      • Adler A.F.
      • Kabadi A.M.
      • Polstein L.R.
      • Thakore P.I.
      • Glass K.A.
      • Ousterout D.G.
      • Leong K.W.
      • et al.
      RNA-guided gene activation by CRISPR-Cas9-based transcription factors.
      ,
      • Chavez A.
      • Scheiman J.
      • Vora S.
      • Pruitt B.W.
      • Tuttle M.
      • Iyer E P.R.
      • Lin S.
      • Kiani S.
      • Guzman C.D.
      • Wiegand D.J.
      • et al.
      Highly efficient Cas9-mediated transcriptional programming.
      ] have been situated at the forefront of experimental tools for the deep characterization of DNA regulatory elements (Fig. 3C). The possibilities for applications are multiple. We recently used a CRISPR derived epigenetic activation system (CRISPR-dCas9-VPR [
      • Chavez A.
      • Scheiman J.
      • Vora S.
      • Pruitt B.W.
      • Tuttle M.
      • Iyer E P.R.
      • Lin S.
      • Kiani S.
      • Guzman C.D.
      • Wiegand D.J.
      • et al.
      Highly efficient Cas9-mediated transcriptional programming.
      ]) to investigate the endogenous transcriptional function of 6 enhancer hubs harbouring CAD SNPs which were prioritized by allele specific TF binding evidence and STARR-seq allele specific activity in liver cells [
      • Selvarajan I.
      • Toropainen A.
      • Garske K.M.
      • López Rodríguez M.
      • Ko A.
      • Miao Z.
      • Kaminska D.
      • Õunap K.
      • Örd T.
      • Ravindran A.
      • et al.
      Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease.
      ]. This approach enabled us to unambiguously identify APOB, LIPA, FAS, CLTCL1, UBE2Z, and SNF8 as target genes of these CAD enhancer hubs. In the same study, we further used gRNA CRISPR-Cas9 system to delete two enhancers defined by rs17680741 and rs2297787 CAD SNPs, identifying MAT1A, TSPAN14, FAM213A, AS3MT, NT5C2, SFXN2, ARL3, CNNM2 and CYP17A1 as target genes. These results have two remarkable implications, both at the biological and at the methodological levels. Firstly, although some lipid metabolism targets such as APOB, LIPA or FAS represent plausible CAD candidate genes, our analysis also identified other genes that could play a role in mediating variants effect through alternative pathways. Secondly, the fact that one variant may be functionally linked to several genes demonstrates that the regulation of gene expression by transcriptional enhancers is redundant and, in turn, single association signals operate through a network of genes [
      • Talukdar H.A.
      • Foroughi Asl H.
      • Jain R.K.
      • Ermel R.
      • Ruusalepp A.
      • Franzén O.
      • Kidd B.A.
      • Readhead B.
      • Giannarelli C.
      • Kovacic J.C.
      • et al.
      Cross-tissue regulatory gene networks in coronary artery disease.
      ]. In an iteration of these tools, we recently used a gRNA CRISPR-Cas9 system to delete an enhancer at rs17293632 locus, which resulted in reduced expression of SMAD3 in teloHAEC cells [
      • Toropainen A.
      • Stolze L.K.
      • Örd T.
      • Whalen M.B.
      • Torrell P.M.
      • Link V.M.
      • Kaikkonen M.U.
      • Romanoski C.E.
      Functional noncoding SNPs in human endothelial cells fine-map vascular trait associations.
      ] and suggests that SMAD3 might also exert its effect through endothelial cells in addition to the previously established role in SMCs [
      • Turner A.W.
      • Martinuk A.
      • Silva A.
      • Lau P.
      • Nikpay M.
      • Eriksson P.
      • Folkersen L.
      • Perisic L.
      • Hedin U.
      • Soubeyrand S.
      • McPherson R.
      Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease.
      ,
      • Turner A.W.
      • Hu S.S.
      • Mosquera J.V.
      • Ma W.F.
      • Hodonsky C.J.
      • Wong D.
      • Auguste G.
      • Song Y.
      • Sol-Church K.
      • Farber E.
      • et al.
      Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk.
      ].
      As with other classical methodologies, such as overexpression and RNA silencing, CRISPR derived tools can be coupled with functional assays to investigate pathway and integrative effects beyond gene expression. However, CRISPR may be considered an experimental “hinge” that has the added value of linking integrative phenotypes with molecular processes being executed at the transcriptional level and affected by human genetic variation. Two elegant studies exemplified this from-genotype-to-function usage of CRISPR tools. In the first of these, Krause et al. demonstrated that the deletion of rs17114036 SNP promotes endothelial quiescence under unidirectional shear stress by regulating PLPP3 gene in endothelial cells [
      • Krause M.D.
      • Huang R.T.
      • Wu D.
      • Shentu T.P.
      • Harrison D.L.
      • Whalen M.B.
      • Stolze L.K.
      • Di Rienzo A.
      • Moskowitz I.P.
      • Civelek M.
      • et al.
      Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics.
      ]. In the second study, Gacita et al. identified enhancer modifying variants for MYH6 cardiomyopathy gene that upon CRISPR-Cas9 mediated deletion resulted in a dose-dependent increase in MYH6 and faster contractile rate in engineered heart tissues [
      • Gacita A.M.
      • Fullenkamp D.E.
      • Ohiri J.
      • Pottinger T.
      • Puckelwartz M.J.
      • Nobrega M.A.
      • McNally E.M.
      Genetic variation in enhancers modifies cardiomyopathy gene expression and progression.
      ]. Altogether, although the studies discussed above are examples of targeted use, we expect that CRISPR tools will continue to be employed at high-throughput resolution, allowing the functional assessment of hundreds of genomic loci in CAD relevant models and systems [
      • von der Heyde B.
      • Emmanouilidou A.
      • Mazzaferro E.
      • Vicenzi S.
      • Höijer I.
      • Klingström T.
      • Jumaa S.
      • Dethlefsen O.
      • Snieder H.
      • de Geus E.
      • et al.
      Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach.
      ,
      • Wünnemann F.
      • Fotsing Tadjo T.
      • Beaudoin M.
      • Lalonde S.
      • Sin Lo K.
      • Lettre G.
      CRISPR perturbations at many coronary artery disease loci impair vascular endothelial cell functions.
      ,
      • Schraivogel D.
      • Gschwind A.R.
      • Milbank J.H.
      • Leonce D.R.
      • Jakob P.
      • Mathur L.
      • Korbel J.O.
      • Merten C.A.
      • Velten L.
      • Steinmetz L.M.
      Targeted Perturb-seq enables genome-scale genetic screens in single cells.
      ].

      7. Linking variants to genes

      Genes, and ultimately proteins, are the major executors of cellular programs in health and diseases. Identification of causal genes is therefore crucial to understand the biological processes underlying genetic associations. The proximity between a GWAS signal and a gene has been used as the first criteria for causal gene prediction. However, while this approach may yield relatively high prediction quality for variants mapping to protein coding regions, experimental characterization has proven that gene prediction based on the “closest gene” approach fails for many non-coding variants. Nonetheless, the structure of the genome and the physical organization of the chromatin means that gene prediction is more feasible within certain proximity. The association of QTLs with proximal molecular features is commonly and increasingly used to identify target-causal genes (Fig. 1D). Cis-expression QTL (cis-eQTL) is the most commonly employed method that measures the association between genetic variants and gene expression. Even when proximity is still a constraint of the method, the fact that it uses expression levels enables one to discriminate target genes even in heavily gene dense regions. The causality is further strengthened if there is a significant colocalization between GWAS and eQTL signals in a locus (Fig. 4A). Today, eQTL has become a routine criterion in gene linking due to the public availability of large datasets representing a wide array of tissue types. In this context, GTEx consortium enables researchers to access gene expression and eQTL data from 49 tissues representing healthy and diseased individuals [
      • Kim-Hellmuth S.
      • Aguet F.
      • Oliva M.
      • Muñoz-Aguirre M.
      • Kasela S.
      • Wucher V.
      • Castel S.E.
      • Hamel A.R.
      • Viñuela A.
      • Roberts A.L.
      • et al.
      Cell type-specific genetic regulation of gene expression across human tissues.
      ] (https://www.gtexportal.org/). Another valuable resource, specifically for CAD studies, is the “Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task study” (STARNET) [
      • Koplev S.
      • Seldin M.
      • Sukhavasi K.
      • Ermel R.
      • Pang S.
      • Zeng L.
      • Bankier S.
      • Di Narzo A.
      • Cheng H.
      • Meda V.
      • et al.
      A mechanistic framework for cardiometabolic and coronary artery diseases.
      ], as it provides RNA-seq data from patients with cardiovascular disease across disease relevant tissues, including liver, adipose tissue and aorta. Accordingly, STARNET arterial samples have been shown to contribute most to the identification of trait-associated genes for CAD [
      • Hauberg M.E.
      • Zhang W.
      • Giambartolomei C.
      • Franzén O.
      • Morris D.L.
      • Vyse T.J.
      • Ruusalepp A.
      • Consortium CommonMind
      • Sklar P.
      • Schadt E.E.
      • et al.
      Large-scale identification of common trait and disease variants affecting gene expression.
      ]. In this particular study, the authors further generated directional coexpression networks anchored in cis-eQTL associations to model the integrative effects of cardiometabolic on gene expression levels. Their results are now available through the STARNET portal, allowing for eQTL mining as well as gene-gene network visualization (http://starnet.mssm.edu/).
      Fig. 4
      Fig. 4Overview of methods used to identify non-coding variant target genes.
      Functionally annotated SNPs are mapped to target genes based on (A) eQTL associations that are often supported by colocalization analysis which evaluates if both eQTL/molQTL and GWAS signals are driven by the same causal variant(s); (B) 3D chromatin interactions based in Hi-C methods; (C) Correlation in accessibility between enhancer variant and promoter across many single cells or experiments, or (D) Correlation between peak accessibility and gene expression.
      As exemplified by several CAD loci studies, cis-eQTL are highly cell type specific, which may limit their detection for CAD variants in heterogeneous tissues such as the vascular wall [
      • Kim-Hellmuth S.
      • Aguet F.
      • Oliva M.
      • Muñoz-Aguirre M.
      • Kasela S.
      • Wucher V.
      • Castel S.E.
      • Hamel A.R.
      • Viñuela A.
      • Roberts A.L.
      • et al.
      Cell type-specific genetic regulation of gene expression across human tissues.
      ]. To address this limitation, several cell type specific cohorts have been established in CAD relevant cell types. Among the first, a cohort of ∼150 HAECs was established by Romanoski et al. where over 10,000 cis-eQTLs were discovered in basal and oxPAPC stimulated conditions [
      • Romanoski C.E.
      • Lee S
      • Kim M.J.
      • Ingram-Drake L
      • Plaisier C.L.
      • Yordanova R.
      • Tilford C.
      • Guan B.
      • He A.
      • Gargalovic P.S.
      • et al.
      Systems genetics analysis of gene-by-environment interactions in human cells,.
      ]. Importantly, half of the endothelial eQTLs were not detected in GTEX and thus would be lost when studied in the tissue context. The same resource has also been used by Ref. [
      • Wu C.
      • Huang R.T.
      • Kuo C.H.
      • Kumar S.
      • Kim C.W.
      • Lin Y.C.
      • Chen Y.J.
      • Birukova A.
      • et al.
      Mechanosensitive PPAP2B regulates endothelial responses to atherorelevant hemodynamic forces.
      ] to demonstrate that rs17114036 CAD-associated SNP was a cis-eQTL for PPAP2B in HAECs from human donors. Further, in this example, the authors did not find genotype-expression association in other tissues in publicly available datasets, indicating that eQTLs act through endothelial specific regulatory elements.
      Similar analysis has been conducted in three cohorts of SMCs. First, Miller et al. identified cis-eQTL SNPs for CDKN2B, PDGFD, SMAD3 and LMOD1 using qPCR based expression analysis from 64 independent HCASMC donors [
      • Miller C.L.
      • Pjanic M.
      • Wang T.
      • Nguyen T.
      • Cohain A.
      • Lee J.D.
      • Perisic L.
      • Hedin U.
      • Kundu R.K.
      • Majmudar D.
      • et al.
      Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci.
      ]. This study was later extended to a genome-wide transcriptome analysis of 52 donor samples that led to the identification of 1220 cis-eQTLs, among which FES, SMAD3, TCF21, PDGFRA, and SIPA1 also demonstrated significant colocalization with CAD GWAS variants [
      • Liu B.
      • Pjanic M.
      • Wang T.
      • Nguyen T.
      • Gloudemans M.
      • Rao A.
      • Castano V.G.
      • Nurnberg S.
      • Rader D.J.
      • Elwyn S.
      • et al.
      Genetic regulatory mechanisms of smooth muscle cells map to coronary artery disease risk loci.
      ]. Recently, Aherrahrou et al. used a cohort of human aortic SMCs from ∼150 donors and discovered ∼4900 eQTLs, ∼4400 splice QTLs (sQTL) and 96 circular RNA QTL (circQTL), among which ∼3700 cis-eQTLs were not previously observed in the GTEX dataset [
      • Aherrahrou R.
      • Lue D.
      • Perry R.N.
      • Aberra Y.T.
      • Khan M.D.
      • Soh J.Y.
      • Örd T.
      • Singha P.
      • Yang Q.
      • Gilani H.
      • et al.
      Genetic regulation of human aortic smooth muscle cell gene expression and splicing predict causal CAD genes.
      ,

      R. Aherrahrou, D. Lue, M. Civelek, Genetic regulation of circular RNA expression in human aortic smooth muscle cells and vascular traits, HGG Adv. 4 (1) (2022 Nov 30) 100164. doi: 10.1016/j.xhgg.2022.100164.

      ]. Of these, 84 eQTL, 164 sQTLs and 3 circQTLs colocalized with CAD loci, highlighting especially the importance of genetic regulation of mRNA splicing as a molecular mechanism for CAD genetic risk. Interestingly, the most significantly associated CAD locus, 9p21, was now additionally demonstrated to represent a sQTL for ANRIL in proliferative SMCs. In another recent study, a large biobank of SMCs isolated from umbilical cords of 1499 donors extended the discovery of cis-eQTLs to 42,000 eQTLs and 12,000 sQTLs, of which 84 demonstrated significant colocalization with CAD GWAS signals, including SEMA5A, NBEAL1, CARF, CARM1 and SNF8 [

      C.U. Solomon, D.G. McVey, C. Andreadi, P. Gong, L. Turner, P.J. Stanczyk, S. Khemiri, J.C. Chamberlain, W. Yang, T.R. Webb, et al., Effects of coronary artery disease-associated variants on vascular smooth muscle cells, Circulation146 (12) (2022 Sep 20) 917-929, doi: 10.1161/CIRCULATIONAHA.121.058389.

      ]. Altogether, this evidence has contributed immensely to the characterization of cell type specific loci by refining the link between CAD GWAS variants and target genes while providing excellent resources allowing dive into the biological basis of CAD.
      Another functional milieu affected by disease-associated variants is the looping of chromatin, which facilitates the physical contact between the promoter of the gene and distal enhancers (Figs. 1 and 4B). Several conformation capture methods have been developed to assess the mechanisms that regulate these three-dimensional regulatory interactions. Prestel et al. used circular chromosome conformation capture to assess the effect of alternative alleles on enhancer-promoter binding at HDAC9 locus [
      • Prestel M.
      • Prell-Schicker C.
      • Webb T.
      • Malik R.
      • Lindner B.
      • Ziesch N.
      • Rex-Haffner M.
      • Röh S.
      • Viturawong T.
      • Lehm M.
      • et al.
      The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1.
      ]. As for ChIP approaches, combining capture methods with sequencing (Hi-C) have enabled determination of chromosomal architecture at genome-wide scale. Mumbach et al. were among the first to study chromatin interactions between CAD GWAS variants and target gene promoters using H3K27 centric chromosome conformation capture, HiChIP, in HCASMCs [
      • Mumbach M.R.
      • Satpathy A.T.
      • Boyle E.A.
      • Dai C.
      • Gowen B.G.
      • Cho S.W.
      • Nguyen M.L.
      • Rubin A.J.
      • Granja J.M.
      • Kazane K.R.
      • et al.
      Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements.
      ]. They identified 1062 gene targets and showed that in 90% of the cases, the nearest gene was not the interacting target genes. Additionally, the authors also demonstrated that HCASMC chromatin interactions were enriched in CAD-associated SNPs compared to T-cells. Similarly, Åkerborg et al. generated a catalogue of 423 CAD causal genes based on the intersection of Hi-C maps, GWAS signals and enhancer histone marks in aortic endothelial, smooth muscle cells and macrophages [
      • Ö Åkerborg
      • Spalinskas R.
      • Pradhananga S.
      • Anil A.
      • Höjer P.
      • Poujade F.A.
      • Folkersen L.
      • Eriksson P.P.
      • Sahlén P.
      High-resolution regulatory maps connect vascular risk variants to disease-related pathways.
      ]. Finally, Lalonde et al., performed Hi-C assay in teloHAECs and identified 991 combinations of open chromatin regions and gene promoters that mapped to 38 CAD and 92 blood pressure GWAS loci [
      • Lalonde S.
      • Codina-Fauteux V.A.
      • de Bellefon S.M.
      • Leblanc F.
      • Beaudoin M.
      • Simon M.M.
      • Dali R.
      • Kwan T.
      • Lo K.S.
      • Pastinen T.
      • Lettre G.
      Integrative analysis of vascular endothelial cell genomic features identifies AIDA as a coronary artery disease candidate gene.
      ]. Together, these three studies experimentally demonstrated that GWAS variants often interact with the promoters of several genes, providing molecular basis for the multiple-gene, redundant function of enhancers.
      However, instead of solely providing a measure of a direct functional interaction, Hi-C might also detect random interactions, bystander interactions and interactions due to sharing of the same nuclear structure [
      • Dekker J.
      • Marti-Renom M.A.
      • Mirny L.A.
      Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data.
      ]. To improve the prediction accuracy, new statistical models that consider the CRE activity have been developed. For example, the activity-by-contact (ABC) model computes a score for each CRE-gene pairs as the product of enhancer activity (epigenetic marks) and contact (Hi-C) [
      • Bailey S.D.
      • Virtanen C.
      • Haibe-Kains B.
      • Lupien M.
      ABC: a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-Seq experiments.
      ]. Importantly, this was shown to significantly improve the precision of GWAS target gene prediction compared to Hi-C alone. Open target genetics platform has created a ‘locus to gene’ L2G model that further combines in silico pathogenicity prediction from VEP and PolyPhen, colocalization of molQTLs, gene distance to credible set variants weighted by their fine-mapping probabilities and chromatin interaction [
      • Ghoussaini M.
      • Mountjoy E.
      • Carmona M.
      • Peat G.
      • Schmidt E.M.
      • Hercules A.
      • Fumis L.
      • Miranda A.
      • Carvalho-Silva D.
      • Buniello A.
      • Burdett T.
      • Hayhurst J.
      • et al.
      Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics.
      ]. Here, chromatin interaction data was complemented with enhancer-promoter activity correlation based on TSS expression or DNase hypersensitivity based on the premise that physically interacting CREs are likely to correlate in activity [
      • Nasser J.
      • Bergman D.T.
      • Fulco C.P.
      • Guckelberger P.
      • Doughty B.R.
      • Patwardhan T.A.
      • Jones T.R.
      • Nguyen T.H.
      • Ulirsch J.C.
      • Lekschas F.
      • et al.
      Genome-wide enhancer maps link risk variants to disease genes.
      ]. Importantly, a similar principle can now be applied to scRNA- and scATAC-Seq data to identify target genes based on enhancer-to-promoter co-accessibility (scATAC data alone) or enhancer accessibility to mRNA expression correlation (scATAC and scRNA-Seq data) for which several computational tools have been recently developed (Fig. 4C–D) [
      • Andersson R.
      • Gebhard C.
      • Miguel-Escalada I.
      • Hoof I.
      • Bornholdt J.
      • Boyd M.
      • Chen Y.
      • Zhao X.
      • Schmidl C.
      • Suzuki T.
      • et al.
      An atlas of active enhancers across human cell types and tissues.
      ,
      • Pliner H.A.
      • Packer J.S.
      • McFaline-Figueroa J.L.
      • Cusanovich D.A.
      • Daza R.M.
      • Aghamirzaie D.
      • Srivatsan S.
      • Qiu X.
      • Jackson D.
      • Minkina A.
      • et al.
      Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data.
      ,
      • Granja J.M.
      • Corces M.R.
      • Pierce S.E.
      • Bagdatli S.T.
      • Choudhry H.
      • Chang H.Y.
      • Greenleaf W.J.
      ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis.
      ,
      • Fang R.
      • Preissl S.
      • Li Y.
      • Hou X.
      • Lucero J.
      • Wang X.
      • Motamedi A.
      • Shiau A.K.
      • Zhou X.
      • Xie F.
      • et al.
      Comprehensive analysis of single cell ATAC-seq data with SnapATAC.
      ]. Application of such tools in recent studies profiling human atherosclerotic lesions using scATAC-Seq has allowed prioritization of hundreds of cell type specific target genes [
      • Örd T.
      • Lönnberg T.
      • Ravindran A.
      • et al.
      Dissecting the polygenic basis of atherosclerosis using disease associated cell state signatures (preprint).
      ,
      • Turner A.W.
      • Hu S.S.
      • Mosquera J.V.
      • Ma W.F.
      • Hodonsky C.J.
      • Wong D.
      • Auguste G.
      • Song Y.
      • Sol-Church K.
      • Farber E.
      • et al.
      Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk.
      ]. Further statistical and/or functional fine-mapping of selected to CAD loci have revealed a growing list of genes potentially acting through SMCs (e.g. MFGE8, TBX2, PRDM16, COL4A1, SEMA5A, SNHG18 and BMP1), ECs (PECAM1, CLCN6, PLPP3, BCAR1, LDAH, POU4F1, ETV1 and NOS3) and macrophages (GGCX, FCHO1, SREBF1, DAGLB and IL6R) [
      • Örd T.
      • Lönnberg T.
      • Ravindran A.
      • et al.
      Dissecting the polygenic basis of atherosclerosis using disease associated cell state signatures (preprint).
      ,
      • Turner A.W.
      • Hu S.S.
      • Mosquera J.V.
      • Ma W.F.
      • Hodonsky C.J.
      • Wong D.
      • Auguste G.
      • Song Y.
      • Sol-Church K.
      • Farber E.
      • et al.
      Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk.
      ,
      • Toropainen A.
      • Stolze L.K.
      • Örd T.
      • Whalen M.B.
      • Torrell P.M.
      • Link V.M.
      • Kaikkonen M.U.
      • Romanoski C.E.
      Functional noncoding SNPs in human endothelial cells fine-map vascular trait associations.
      ]. We anticipate these and future larger datasets will provide a valuable resource to interrogate causal disease processes.

      8. Conclusions and perspectives

      The integration of functional genomics approaches, such as those exemplified and discussed in this review, are beginning to define the cell types and genes operating in CAD pathophysiology. Despite the limitations of existing approaches, integrating an increasing amount of functional knowledge helps define the mechanisms that link genetic variation to human biology, funding an ever-growing base for the translation of GWAS findings into clinically actionable gene sets. In this context, incorporating functional priors emerging from experimental approaches can be used to improve the polygenic risk prediction and population transferability of the polygenic risk score, strengthening its future clinical utility [
      • Amariuta T.
      • Ishigaki K.
      • Sugishita H.
      • Ohta T.
      • Koido M.
      • Dey K.K.
      • Matsuda K.
      • Murakami Y.
      • Price A.L.
      • Kawakami E.
      • et al.
      Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements.
      ,
      • Márquez-Luna C.
      • Gazal S.
      • Loh P.R.
      • Kim S.S.
      • Furlotte N.
      • Auton A.
      • Price A.L.
      23andMe Research Team
      Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets.
      ]. In parallel, we anticipate that the integration of GWAS with large single-cell datasets will improve our understanding of cell-type and context specific effects of genetic variation [
      • Zhang K.
      • Hocker J.D.
      • Miller M.
      • Hou X.
      • Chiou J.
      • Poirion O.B.
      • Qiu Y.
      • Li Y.E.
      • Gaulton K.J.
      • Wang A.
      • et al.
      A single-cell atlas of chromatin accessibility in the human genome.
      ,
      • Slenders L.
      • Landsmeer L.P.L.
      • Cui K.
      • Depuydt M.A.C.
      • Verwer M.
      • Mekke J.
      • Timmerman N.
      • van den Dungen N.A.M.
      • Kuiper J.
      • de Winther Mpj
      • et al.
      Intersecting single-cell transcriptomics and genome-wide association studies identifies crucial cell populations and candidate genes for atherosclerosis.
      ,
      • Jagadeesh K.A.
      • Dey K.K.
      • Montoro D.T.
      • Mohan R.
      • Gazal S.
      • Engreitz J.M.
      • Xavier R.J.
      • Price A.L.
      • Regev A.
      Identifying disease-critical cell types and cellular processes across the human body by integration of single-cell profiles and human genetics.
      ]. Ultimately, the functional dissection of genetic risk opens the door to strategies for the pharmacological manipulation of molecular and cellular processes implicated in human diseases, including CAD.

      Declaration of competing interest

      The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

      Acknowledgements

      We thank Dr. Tiit Örd for his support in generating the list of ∼1500 candidate genes represented in Fig. 2 [
      • Örd T.
      • Lönnberg T.
      • Ravindran A.
      • et al.
      Dissecting the polygenic basis of atherosclerosis using disease associated cell state signatures (preprint).
      ]. Fig. 3, Fig. 4 were created with BioRender.com. This study was funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. 802825 to M.U.K), Academy of Finland, the Sigrid Juselius Foundation, the Finnish Foundation for Cardiovascular Research, and the Aarne Koskelo Foundation. Personal grants to UTA and MLR were received from the Matti and Vappu Maukonen foundation (UTA), Ella och Georg Ehrnrooths Stiftelse (UTA), the Finnish Foundation for cardiovascular Research (UTA and MLR), Instrumentrium Foundation (MLR) and Sigird Jusélius Foundation (MLR).

      References

        • Roth G.A.
        • Mensah G.A.
        • Johnson C.O.
        • Addolorato G.
        • Ammirati E.
        • Baddour L.M.
        • Barengo N.C.
        • Beaton A.Z.
        • Benjamin E.J.
        • Benziger C.P.
        • et al.
        Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study.
        J. Am. Coll. Cardiol. 2020 Dec 22; 76: 2982-3021https://doi.org/10.1016/j.jacc.2020.11.010
        • Kessler T.
        • Schunkert H.
        Coronary artery disease genetics enlightened by genome-wide association studies.
        JACC Basic Transl Sci. 2021 Jul 26; 6: 610-623https://doi.org/10.1016/j.jacbts.2021.04.001
        • van der Harst P.
        • Verweij N.
        Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease.
        Circ. Res. 2018 Feb 2; 122: 433-443https://doi.org/10.1161/CIRCRESAHA.117.312086
        • Nikpay M.
        • Goel A.
        • Won H.H.
        • Hall L.M.
        • Willenborg C.
        • Kanoni S.
        • Saleheen D.
        • Kyriakou T.
        • Nelson C.P.
        • Hopewell J.C.
        • et al.
        A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease.
        Nat. Genet. 2015 Oct; 47: 1121-1130https://doi.org/10.1038/ng.3396
        • Koyama S.
        • Ito K.
        • Terao C.
        • Akiyama M.
        • Horikoshi M.
        • Momozawa Y.
        • Matsunaga H.
        • Ieki H.
        • Ozaki K.
        • Onouchi Y.
        • et al.
        Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease.
        Nat. Genet. 2020 Nov; 52: 1169-1177https://doi.org/10.1038/s41588-020-0705-3
        • Tcheandjieu C.
        • Zhu X.
        • Hilliard A.T.
        • Clarke S.L.
        • Napolioni V.
        • Ma S.
        • Lee K.M.
        • Fang H.
        • Chen F.
        • Lu Y.
        • et al.
        Large-scale genome-wide association study of coronary artery disease in genetically diverse populations.
        Nat. Med. 2022 Aug; 28: 1679-1692https://doi.org/10.1038/s41591-022-01891-3
      1. Krishna G Aragam, Tao Jiang, Anuj Goel, Stavroula Kanoni, Brooke N Wolford, Deepak S Atri, Elle M Weeks, Minxian Wang, George Hindy, Wei Zhou, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet . 52 (12) (2022 Dec) 1803-1815, doi: 10.1038/s41588-022-01233-6.

        • Erdmann J.
        • Kessler T.
        • Munoz Venegas L.
        • Schunkert H.
        A decade of genome-wide association studies for coronary artery disease: the challenges ahead.
        Cardiovasc. Res. 2018 Jul 15; 114: 1241-1257https://doi.org/10.1093/cvr/cvy084
        • Hindorff L.A.
        • Sethupathy P.
        • Junkins H.A.
        • Ramos E.M.
        • Mehta J.P.
        • Collins F.S.
        • Manolio T.A.
        Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.
        Proc. Natl. Acad. Sci. U. S. A. 2009 Jun 9; 106: 9362-9367https://doi.org/10.1073/pnas.0903103106
        • Won H.H.
        • Natarajan P.
        • Dobbyn A.
        • Jordan D.M.
        • Roussos P.
        • Lage K.
        • Raychaudhuri S.
        • Stahl E.
        • Do R.
        Disproportionate contributions of select genomic compartments and cell types to genetic risk for coronary artery disease.
        PLoS Genet. 2015 Oct 28; 11e1005622https://doi.org/10.1371/journal.pgen.1005622
        • Mountjoy E.
        • Schmidt E.M.
        • Carmona M.
        • Schwartzentruber J.
        • Peat G.
        • Miranda A.
        • Fumis L.
        • Hayhurst J.
        • Buniello A.
        • Karim M.A.
        An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci.
        Nat. Genet. 2021 Nov; 53: 1527-1533https://doi.org/10.1038/s41588-021-00945-5
        • Li L.
        • Chen Z.
        • von Scheidt M.
        • Li S.
        • Steiner A.
        • Güldener U.
        • Koplev S.
        • Ma A.
        • Hao K.
        • Pan C.
        • et al.
        Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes.
        Basic Res. Cardiol. 2022 Feb 17; 117: 6https://doi.org/10.1007/s00395-022-00917-8
        • Örd T.
        • Lönnberg T.
        • Ravindran A.
        • et al.
        Dissecting the polygenic basis of atherosclerosis using disease associated cell state signatures (preprint).
        Res. square. 2022; https://doi.org/10.21203/rs.3.rs-1775130/v1
        • Chen Z.
        • Schunkert H.
        Genetics of coronary artery disease in the post-GWAS era.
        J. Intern. Med. 2021 Nov; 290: 980-992https://doi.org/10.1111/joim.13362
        • Xie Z.
        • Bailey A.
        • Kuleshov M.V.
        • Clarke D.J.B.
        • Evangelista J.E.
        • Jenkins S.L.
        • Lachmann A.
        • Wojciechowicz M.L.
        • Kropiwnicki E.
        • Jagodnik K.M.
        • Jeon M.
        • Ma'ayan A.
        Gene set knowledge discovery with Enrichr.
        Curr Protoc. 2021 Mar; 1: e90https://doi.org/10.1002/cpz1.90
        • Selvarajan I.
        • Toropainen A.
        • Garske K.M.
        • López Rodríguez M.
        • Ko A.
        • Miao Z.
        • Kaminska D.
        • Õunap K.
        • Örd T.
        • Ravindran A.
        • et al.
        Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease.
        Am. J. Hum. Genet. 2021 Mar 4; 108: 411-430https://doi.org/10.1016/j.ajhg.2021.02.006
        • LeBlanc M.
        • Zuber V.
        • Andreassen B.K.
        • Witoelar A.
        • Zeng L.
        • Bettella F.
        • Wang Y.
        • McEvoy L.K.
        • Thompson W.K.
        • Schork A.J.
        • et al.
        Identifying novel gene variants in coronary artery disease and shared genes with several cardiovascular risk factors.
        Circ. Res. 2016 Jan 8; 118: 83-94https://doi.org/10.1161/CIRCRESAHA.115.306629
        • Koplev S.
        • Seldin M.
        • Sukhavasi K.
        • Ermel R.
        • Pang S.
        • Zeng L.
        • Bankier S.
        • Di Narzo A.
        • Cheng H.
        • Meda V.
        • et al.
        A mechanistic framework for cardiometabolic and coronary artery diseases.
        Nat. Cardiovasc. Res. 2022; 1: 85-100https://doi.org/10.1038/s44161-021-00009-1
        • Boix C.A.
        • James B.T.
        • Park Y.P.
        • Meuleman W.
        • Kellis M.
        Regulatory genomic circuitry of human disease loci by integrative epigenomics.
        Nature. 2021 Feb; 590: 300-307https://doi.org/10.1038/s41586-020-03145-z
        • Kundaje A.
        • Meuleman W.
        • Ernst J.
        • Bilenky M.
        • Yen A.
        • Heravi-Moussavi A.
        • Kheradpour P.
        • Zhang Z.
        • Wang J.
        • Ziller M.J.
        • Amin V.
        • et al.
        • Roadmap Epigenomics Consortium
        Integrative analysis of 111 reference human epigenomes.
        Nature. 2015 Feb 19; 518: 317-330https://doi.org/10.1038/nature14248
        • Zhang K.
        • Hocker J.D.
        • Miller M.
        • Hou X.
        • Chiou J.
        • Poirion O.B.
        • Qiu Y.
        • Li Y.E.
        • Gaulton K.J.
        • Wang A.
        • et al.
        A single-cell atlas of chromatin accessibility in the human genome.
        Cell. 2021 Nov 24; 184: 5985-6001.e19https://doi.org/10.1016/j.cell.2021.10.024
        • Musunuru K.
        • Strong A.
        • Frank-Kamenetsky M.
        • Lee N.E.
        • Ahfeldt T.
        • Sachs K.V.
        • Li X.
        • Li H.
        • Kuperwasser N.
        • Ruda V.M.
        • et al.
        From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus.
        Nature. 2010 Aug 5; 466: 714-719https://doi.org/10.1038/nature09266
        • Chai T.
        • Wang Z.
        • Yang X.
        • Qiu Z.
        • Chen L.
        PSRC1 may affect coronary artery disease risk by altering CELSR2, PSRC1, and SORT1 gene expression and circulating granulin and apolipoprotein B protein levels.
        Front. Cardiovasc. Med. 2022 Feb 18; 9763015https://doi.org/10.3389/fcvm.2022.763015
        • Tan J.
        • Che Y.
        • Liu Y.
        • Hu J.
        • Wang W.
        • Hu L.
        • Zhou Q.
        • Wang H.
        • Li J.
        CELSR2 deficiency suppresses lipid accumulation in hepatocyte by impairing the UPR and elevating ROS level.
        Faseb. J. 2021 Oct; 35e21908https://doi.org/10.1096/fj.202100786RR
        • Gupta R.M.
        • Hadaya J.
        • Trehan A.
        • Zekavat S.M.
        • Roselli C.
        • Klarin D.
        • Emdin C.A.
        • Hilvering C.R.E.
        • Bianchi V.
        • Mueller C.
        • et al.
        A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression.
        Cell. 2017 Jul 27; 170: 522-533.e15
        • Krause M.D.
        • Huang R.T.
        • Wu D.
        • Shentu T.P.
        • Harrison D.L.
        • Whalen M.B.
        • Stolze L.K.
        • Di Rienzo A.
        • Moskowitz I.P.
        • Civelek M.
        • et al.
        Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics.
        Proc. Natl. Acad. Sci. U. S. A. 2018 Nov 27; 115: E11349-E11358https://doi.org/10.1073/pnas.1810568115
        • Prestel M.
        • Prell-Schicker C.
        • Webb T.
        • Malik R.
        • Lindner B.
        • Ziesch N.
        • Rex-Haffner M.
        • Röh S.
        • Viturawong T.
        • Lehm M.
        • et al.
        The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1.
        Stroke. 2019 Oct; 50: 2651-2660https://doi.org/10.1161/STROKEAHA.119.026112
        • Nanda V.
        • Wang T.
        • Pjanic M.
        • Liu B.
        • Nguyen T.
        • Matic L.P.
        • Hedin U.
        • Koplev S.
        • Ma L.
        • Franzén O.
        • et al.
        Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus.
        PLoS Genet. 2018 Nov 16; 14e1007755https://doi.org/10.1371/journal.pgen.1007755
        • Turner A.W.
        • Martinuk A.
        • Silva A.
        • Lau P.
        • Nikpay M.
        • Eriksson P.
        • Folkersen L.
        • Perisic L.
        • Hedin U.
        • Soubeyrand S.
        • McPherson R.
        Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease.
        Arterioscler. Thromb. Vasc. Biol. 2016 May; 36: 972-983https://doi.org/10.1161/ATVBAHA.116.307294
        • Xu B.
        • Xu Z.
        • Chen Y.
        • Lu N.
        • Shu Z.
        • Tan X.
        Genetic and epigenetic associations of ANRIL with coronary artery disease and risk factors.
        BMC Med. Genom. 2021 Oct 6; 14: 240https://doi.org/10.1186/s12920-021-01094-8
        • Miller C.L.
        • Pjanic M.
        • Wang T.
        • Nguyen T.
        • Cohain A.
        • Lee J.D.
        • Perisic L.
        • Hedin U.
        • Kundu R.K.
        • Majmudar D.
        • et al.
        Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci.
        Nat. Commun. 2016 Jul 8; 712092https://doi.org/10.1038/ncomms12092
        • Holdt L.M.
        • Teupser D.
        Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis.
        Front. Cardiovasc. Med. 2018 Nov 6; 5: 145https://doi.org/10.3389/fcvm.2018.00145
        • Chen L.
        • Qu H.
        • Guo M.
        • Zhang Y.
        • Cui Y.
        • Yang Q.
        • Bai R.
        • Shi D.
        ANRIL and atherosclerosis.
        J. Clin. Pharm. Therapeut. 2020 Apr; 45: 240-248https://doi.org/10.1111/jcpt.13060
        • ENCODE Project Consortium
        An integrated encyclopedia of DNA elements in the human genome.
        Nature. 2012 Sep 6; 489: 57-74https://doi.org/10.1038/nature11247
        • Stunnenberg H.G.
        • Hirst M.
        • International Human Epigenome Consortium
        The international human epigenome consortium: a blueprint for scientific collaboration and discovery.
        Cell. 2016 Nov 17; 167: 1145-1149https://doi.org/10.1016/j.cell.2016.11.007
        • Maurano M.T.
        • Humbert R.
        • Rynes E.
        • Thurman R.E.
        • Haugen E.
        • Wang H.
        • Reynolds A.P.
        • Sandstrom R.
        • Qu H.
        • Brody J.
        • et al.
        Systematic localization of common disease-associated variation in regulatory DNA.
        Science. 2012 Sep 7; 337: 1190-1195https://doi.org/10.1126/science.1222794
        • Ernst J.
        • Kheradpour P.
        • Mikkelsen T.S.
        • Shoresh N.
        • Ward L.D.
        • Epstein C.B.
        • Zhang X.
        • Wang L.
        • Issner R.
        • Coyne M.
        • et al.
        Mapping and analysis of chromatin state dynamics in nine human cell types.
        Nature. 2011 May 5; 473: 43-49https://doi.org/10.1038/nature09906
        • Örd T.
        • Õunap K.
        • Stolze L.K.
        • Aherrahrou R.
        • Nurminen V.
        • Toropainen A.
        • Selvarajan I.
        • Lönnberg T.
        • Aavik E.
        • Ylä-Herttuala S.
        • et al.
        Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci.
        Circ. Res. 2021 Jul 9; 129: 240-258https://doi.org/10.1161/CIRCRESAHA.121.318971
        • Turner A.W.
        • Hu S.S.
        • Mosquera J.V.
        • Ma W.F.
        • Hodonsky C.J.
        • Wong D.
        • Auguste G.
        • Song Y.
        • Sol-Church K.
        • Farber E.
        • et al.
        Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk.
        Nat. Genet. 2022 Jun; 54: 804-816https://doi.org/10.1038/s41588-022-01069-0
        • Slenders L.
        • Landsmeer L.P.L.
        • Cui K.
        • Depuydt M.A.C.
        • Verwer M.
        • Mekke J.
        • Timmerman N.
        • van den Dungen N.A.M.
        • Kuiper J.
        • de Winther Mpj
        • et al.
        Intersecting single-cell transcriptomics and genome-wide association studies identifies crucial cell populations and candidate genes for atherosclerosis.
        Eur Heart J Open. 2021 Dec 21; 2: oeab043https://doi.org/10.1093/ehjopen/oeab043
        • Depuydt M.A.C.
        • Prange K.H.M.
        • Slenders L.
        • Örd T.
        • Elbersen D.
        • Boltjes A.
        • de Jager S.C.A.
        • Asselbergs F.W.
        • de Borst G.J.
        • Aavik E.
        • et al.
        Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics.
        Circ. Res. 2020 Nov 6; 127: 1437-1455https://doi.org/10.1161/CIRCRESAHA.120.316770
        • Hocker J.D.
        • Poirion O.B.
        • Zhu F.
        • Buchanan J.
        • Zhang K.
        • Chiou J.
        • Wang T.M.
        • Zhang Q.
        • Hou X.
        • Li Y.E.
        • et al.
        Cardiac cell type-specific gene regulatory programs and disease risk association.
        Sci. Adv. 2021 May 14; 7eabf1444https://doi.org/10.1126/sciadv.abf1444
        • Slatkin M.
        Linkage disequilibrium--understanding the evolutionary past and mapping the medical future.
        Nat. Rev. Genet. 2008 Jun; 9: 477-485https://doi.org/10.1038/nrg2361
        • Yang J.
        • Ferreira T.
        • Morris A.P.
        • Medland S.E.
        Genetic Investigation of ANthropometric Traits (GIANT) Consortium; DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium, Madden PA, Heath AC, Martin NG, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits.
        Nat. Genet. 2012 Mar 18; 44 (S1-375): 369-375https://doi.org/10.1038/ng.2213
        • Maller J.B.
        • McVean G.
        • Byrnes J.
        • Vukcevic D.
        • Palin K.
        • Su Z.
        • Howson J.M.
        • Auton A.
        • Myers S.
        • Morris A.
        • et al.
        • Wellcome Trust Case Control Consortium
        Bayesian refinement of association signals for 14 loci in 3 common diseases.
        Nat. Genet. 2012 Dec; 44: 1294-1301https://doi.org/10.1038/ng.2435
        • Benner C.
        • Spencer C.C.
        • Havulinna A.S.
        • Salomaa V.
        • Ripatti S.
        • Pirinen M.
        FINEMAP: efficient variable selection using summary data from genome-wide association studies.
        Bioinformatics. 2016 May 15; 32: 1493-1501https://doi.org/10.1093/bioinformatics/btw018
        • Zou Y.
        • Carbonetto P.
        • Wang G.
        • Stephens M.
        Fine-mapping from summary data with the "sum of single effects" model.
        PLoS Genet. 2022 Jul 19; 18e1010299https://doi.org/10.1371/journal.pgen.1010299
        • Hormozdiari F.
        • Kostem E.
        • Kang E.Y.
        • Pasaniuc B.
        • Eskin E.
        Identifying causal variants at loci with multiple signals of association.
        Genetics. 2014 Oct; 198: 497-508https://doi.org/10.1534/genetics.114.167908
        • Pipkin M.E.
        • Lichtenheld M.G.
        A reliable method to display authentic DNase I hypersensitive sites at long-ranges in single-copy genes from large genomes.
        Nucleic Acids Res. 2006 Mar 1; 34: e34https://doi.org/10.1093/nar/gkl006
        • Heintzman N.D.
        • Hon G.C.
        • Hawkins R.D.
        • Kheradpour P.
        • Stark A.
        • Harp L.F.
        • Ye Z.
        • Lee L.K.
        • Stuart R.K.
        • Ching C.W.
        • et al.
        Histone modifications at human enhancers reflect global cell-type-specific gene expression.
        Nature. 2009 May 7; 459: 108-112https://doi.org/10.1038/nature07829
        • Wang Z.
        • Zang C.
        • Rosenfeld J.A.
        • Schones D.E.
        • Barski A.
        • Cuddapah S.
        • Cui K.
        • Roh T.Y.
        • Peng W.
        • Zhang M.Q.
        • Zhao K.
        Combinatorial patterns of histone acetylations and methylations in the human genome.
        Nat. Genet. 2008 Jul; 40: 897-903https://doi.org/10.1038/ng.154
        • Buenrostro J.D.
        • Wu B.
        • Chang H.Y.
        • Greenleaf W.J.
        ATAC-seq: a method for assaying chromatin accessibility genome-wide.
        Curr. Protoc. Mol. Biol. 2015 Jan 5; 109 (21.29.1-21.2921.29.9)https://doi.org/10.1002/0471142727.mb2129s109
        • Kichaev G.
        • Yang W.Y.
        • Lindstrom S.
        • Hormozdiari F.
        • Eskin E.
        • Price A.L.
        • Kraft P.
        • Pasaniuc B.
        Integrating functional data to prioritize causal variants in statistical fine-mapping studies.
        PLoS Genet. 2014 Oct 30; 10e1004722https://doi.org/10.1371/journal.pgen.1004722
        • Pickrell J.K.
        Joint analysis of functional genomic data and genome-wide association studies of 18 human traits.
        Am. J. Hum. Genet. 2014 Apr 3; 94: 559-573https://doi.org/10.1016/j.ajhg.2014.03.004
        • Weissbrod O.
        • Hormozdiari F.
        • Benner C.
        • Cui R.
        • Ulirsch J.
        • Gazal S.
        • Schoech A.P.
        • van de Geijn B.
        • Reshef Y.
        • Márquez-Luna
        • et al.
        Functionally informed fine-mapping and polygenic localization of complex trait heritability.
        Nat. Genet. 2020 Dec; 52: 1355-1363https://doi.org/10.1038/s41588-020-00735-5
        • Ma W.F.
        • Turner A.W.
        • Gancayco C.
        • Wong D.
        • Song Y.
        • Mosquera J.V.
        • Auguste G.
        • Hodonsky C.J.
        • Prabhakar A.
        • Ekiz H.A.
        • et al.
        PlaqView 2.0: a comprehensive web portal for cardiovascular single-cell genomics.
        Front. Cardiovasc. Med. 2022 Aug 8; 9969421https://doi.org/10.3389/fcvm.2022.969421
        • de Santiago I.
        • Liu W.
        • Yuan K.
        • O'Reilly M.
        • Chilamakuri C.S.
        • Ponder B.A.
        • Meyer K.B.
        • Markowetz F.
        BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes.
        Genome Biol. 2017 Feb 24; 18: 39https://doi.org/10.1186/s13059-017-1165-7
        • Bailey S.D.
        • Virtanen C.
        • Haibe-Kains B.
        • Lupien M.
        ABC: a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-Seq experiments.
        Bioinformatics. 2015 Sep 15; 31: 3057-3059https://doi.org/10.1093/bioinformatics/btv321
        • Zhou J.
        • Troyanskaya O.G.
        Predicting effects of noncoding variants with deep learning-based sequence model.
        Nat. Methods. 2015 Oct; 12: 931-934https://doi.org/10.1038/nmeth.3547
        • Ghoussaini M.
        • Mountjoy E.
        • Carmona M.
        • Peat G.
        • Schmidt E.M.
        • Hercules A.
        • Fumis L.
        • Miranda A.
        • Carvalho-Silva D.
        • Buniello A.
        • Burdett T.
        • Hayhurst J.
        • et al.
        Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics.
        Nucleic Acids Res. 2021 Jan 8; 49: D1311-D1320https://doi.org/10.1093/nar/gkaa840
        • Ward L.D.
        • Kellis M.
        HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants.
        Nucleic Acids Res. 2012 Jan; 40: D930-D934https://doi.org/10.1093/nar/gkr917
        • Fried M.G.
        • Crothers D.M.
        Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis.
        Nucleic Acids Res. 1981; 9: 6505-6525
        • Hellman L.M.
        • Fried M.G.
        Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions.
        Nat. Protoc. 2007; 2: 1849-1861https://doi.org/10.1038/nprot.2007.249
        • Zhao G.
        • Yang W.
        • Wu J.
        • Chen B.
        • Yang X.
        • Chen J.
        • McVey D.G.
        • Andreadi C.
        • Gong P.
        • Webb T.R.
        • et al.
        Influence of a coronary artery disease-associated genetic variant on FURIN expression and effect of furin on macrophage behavior.
        Arterioscler. Thromb. Vasc. Biol. 2018 Aug; 38: 1837-1844https://doi.org/10.1161/ATVBAHA.118.311030
        • Karamanavi E.
        • McVey D.G.
        • van der Laan S.W.
        • Stanczyk P.J.
        • Morris G.E.
        • Wang Y.
        • Yang W.
        • Chan K.
        • Poston R.N.
        • Luo J.
        • et al.
        The FES gene at the 15q26 coronary-artery-disease locus inhibits atherosclerosis.
        Circ. Res. 2022 Nov 2; https://doi.org/10.1161/CIRCRESAHA.122.321146
        • Kessler T.
        • Wobst J.
        • Wolf B.
        • Eckhold J.
        • Vilne B.
        • Hollstein R.
        • von Ameln S.
        • Dang T.A.
        • Sager H.B.
        • Moritz Rumpf P.
        • et al.
        Functional characterization of the GUCY1A3 coronary artery disease risk locus.
        Circulation. 2017 Aug 1; 136: 476-489https://doi.org/10.1161/CIRCULATIONAHA.116.024152
        • López Rodríguez M.
        • Kaminska D.
        • Lappalainen K.
        • Pihlajamäki J.
        • Kaikkonen M.U.
        • Laakso M.
        Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells.
        Genome Med. 2017 Jul 6; 9: 63https://doi.org/10.1186/s13073-017-0453-x
        • Locke J.M.
        • Wei F.Y.
        • Tomizawa K.
        • Weedon M.N.
        • Harries L.W.
        A cautionary tale: the non-causal association between type 2 diabetes risk SNP, rs7756992, and levels of non-coding RNA, CDKAL1-v1.
        Diabetologia. 2015 Apr; 58: 745-748https://doi.org/10.1007/s00125-015-3508-9
        • Stolze L.K.
        • Conklin A.C.
        • Whalen M.B.
        • López Rodríguez M.
        • Õunap K.
        • Selvarajan I.
        • Toropainen A.
        • Örd T.
        • Li J.
        • Eshghi A.
        • et al.
        Systems genetics in human endothelial cells identifies non-coding variants modifying enhancers, expression, and complex disease traits.
        Am. J. Hum. Genet. 2020 Jun 4; 106: 748-763https://doi.org/10.1016/j.ajhg.2020.04.008
        • Alasoo K.
        • Rodrigues J.
        • Mukhopadhyay S.
        • Knights A.J.
        • Mann A.L.
        • Kundu K.
        • Hale C.
        • Dougan G.
        • Gaffney D.J.
        • HIPSCI Consortium
        Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response.
        Nat. Genet. 2018 Mar; 50: 424-431https://doi.org/10.1038/s41588-018-0046-7
        • Romanoski C.E.
        • Lee S
        • Kim M.J.
        • Ingram-Drake L
        • Plaisier C.L.
        • Yordanova R.
        • Tilford C.
        • Guan B.
        • He A.
        • Gargalovic P.S.
        • et al.
        Systems genetics analysis of gene-by-environment interactions in human cells,.
        Am J Hum Genet. 2010 Mar 12; 86: 399-410https://doi.org/10.1016/j.ajhg.2010.02.002
        • Toropainen A.
        • Stolze L.K.
        • Örd T.
        • Whalen M.B.
        • Torrell P.M.
        • Link V.M.
        • Kaikkonen M.U.
        • Romanoski C.E.
        Functional noncoding SNPs in human endothelial cells fine-map vascular trait associations.
        Genome Res. 2022 Mar; 32: 409-424https://doi.org/10.1101/gr.276064.121
        • Abell N.S.
        • DeGorter M.K.
        • Gloudemans M.J.
        • Greenwald E.
        • Smith K.S.
        • He Z.
        • Montgomery S.B.
        Multiple causal variants underlie genetic associations in humans.
        Science. 2022 Mar 18; 375: 1247-1254https://doi.org/10.1126/science.abj5117
        • Perez-Pinera P.
        • Kocak D.D.
        • Vockley C.M.
        • Adler A.F.
        • Kabadi A.M.
        • Polstein L.R.
        • Thakore P.I.
        • Glass K.A.
        • Ousterout D.G.
        • Leong K.W.
        • et al.
        RNA-guided gene activation by CRISPR-Cas9-based transcription factors.
        Nat. Methods. 2013 Oct; 10: 973-976https://doi.org/10.1038/nmeth.2600
        • Chavez A.
        • Scheiman J.
        • Vora S.
        • Pruitt B.W.
        • Tuttle M.
        • Iyer E P.R.
        • Lin S.
        • Kiani S.
        • Guzman C.D.
        • Wiegand D.J.
        • et al.
        Highly efficient Cas9-mediated transcriptional programming.
        Nat. Methods. 2015 Apr; 12: 326-328
        • Talukdar H.A.
        • Foroughi Asl H.
        • Jain R.K.
        • Ermel R.
        • Ruusalepp A.
        • Franzén O.
        • Kidd B.A.
        • Readhead B.
        • Giannarelli C.
        • Kovacic J.C.
        • et al.
        Cross-tissue regulatory gene networks in coronary artery disease.
        Cell Syst. 2016 Mar 23; 2: 196-208https://doi.org/10.1016/j.cels.2016.02.002
        • Gacita A.M.
        • Fullenkamp D.E.
        • Ohiri J.
        • Pottinger T.
        • Puckelwartz M.J.
        • Nobrega M.A.
        • McNally E.M.
        Genetic variation in enhancers modifies cardiomyopathy gene expression and progression.
        Circulation. 2021 Mar 30; 143: 1302-1316https://doi.org/10.1161/CIRCULATIONAHA.120.050432
        • von der Heyde B.
        • Emmanouilidou A.
        • Mazzaferro E.
        • Vicenzi S.
        • Höijer I.
        • Klingström T.
        • Jumaa S.
        • Dethlefsen O.
        • Snieder H.
        • de Geus E.
        • et al.
        Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach.
        Sci. Rep. 2020 Jul 16; 1011831https://doi.org/10.1038/s41598-020-68567-1
        • Wünnemann F.
        • Fotsing Tadjo T.
        • Beaudoin M.
        • Lalonde S.
        • Sin Lo K.
        • Lettre G.
        CRISPR perturbations at many coronary artery disease loci impair vascular endothelial cell functions.
        bioRxiv. 2021; 10 (02)430527https://doi.org/10.1101/2021.02.10.430527
        • Schraivogel D.
        • Gschwind A.R.
        • Milbank J.H.
        • Leonce D.R.
        • Jakob P.
        • Mathur L.
        • Korbel J.O.
        • Merten C.A.
        • Velten L.
        • Steinmetz L.M.
        Targeted Perturb-seq enables genome-scale genetic screens in single cells.
        Nat. Methods. 2020 Jun; 17: 629-635https://doi.org/10.1038/s41592-020-0837-5
        • Kim-Hellmuth S.
        • Aguet F.
        • Oliva M.
        • Muñoz-Aguirre M.
        • Kasela S.
        • Wucher V.
        • Castel S.E.
        • Hamel A.R.
        • Viñuela A.
        • Roberts A.L.
        • et al.
        Cell type-specific genetic regulation of gene expression across human tissues.
        Science. 2020 Sep 11; 369: eaaz8528https://doi.org/10.1126/science.aaz8528
        • Hauberg M.E.
        • Zhang W.
        • Giambartolomei C.
        • Franzén O.
        • Morris D.L.
        • Vyse T.J.
        • Ruusalepp A.
        • Consortium CommonMind
        • Sklar P.
        • Schadt E.E.
        • et al.
        Large-scale identification of common trait and disease variants affecting gene expression.
        Am. J. Hum. Genet. 2017 Jun 1; 100: 885-894https://doi.org/10.1016/j.ajhg.2017.04.016
        • Wu C.
        • Huang R.T.
        • Kuo C.H.
        • Kumar S.
        • Kim C.W.
        • Lin Y.C.
        • Chen Y.J.
        • Birukova A.
        • et al.
        Mechanosensitive PPAP2B regulates endothelial responses to atherorelevant hemodynamic forces.
        Circ. Res. 2015 Jul 31; 117: e41-e53https://doi.org/10.1161/CIRCRESAHA.117.306457
        • Liu B.
        • Pjanic M.
        • Wang T.
        • Nguyen T.
        • Gloudemans M.
        • Rao A.
        • Castano V.G.
        • Nurnberg S.
        • Rader D.J.
        • Elwyn S.
        • et al.
        Genetic regulatory mechanisms of smooth muscle cells map to coronary artery disease risk loci.
        Am. J. Hum. Genet. 2018 Sep 6; 103: 377-388https://doi.org/10.1016/j.ajhg.2018.08.001
        • Aherrahrou R.
        • Lue D.
        • Perry R.N.
        • Aberra Y.T.
        • Khan M.D.
        • Soh J.Y.
        • Örd T.
        • Singha P.
        • Yang Q.
        • Gilani H.
        • et al.
        Genetic regulation of human aortic smooth muscle cell gene expression and splicing predict causal CAD genes.
        Circ Res. 2023 Feb 3; 132: 323-338https://doi.org/10.1161/CIRCRESAHA.122.321586
      2. R. Aherrahrou, D. Lue, M. Civelek, Genetic regulation of circular RNA expression in human aortic smooth muscle cells and vascular traits, HGG Adv. 4 (1) (2022 Nov 30) 100164. doi: 10.1016/j.xhgg.2022.100164.

      3. C.U. Solomon, D.G. McVey, C. Andreadi, P. Gong, L. Turner, P.J. Stanczyk, S. Khemiri, J.C. Chamberlain, W. Yang, T.R. Webb, et al., Effects of coronary artery disease-associated variants on vascular smooth muscle cells, Circulation146 (12) (2022 Sep 20) 917-929, doi: 10.1161/CIRCULATIONAHA.121.058389.

        • Mumbach M.R.
        • Satpathy A.T.
        • Boyle E.A.
        • Dai C.
        • Gowen B.G.
        • Cho S.W.
        • Nguyen M.L.
        • Rubin A.J.
        • Granja J.M.
        • Kazane K.R.
        • et al.
        Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements.
        Nat. Genet. 2017 Nov; 49: 1602-1612https://doi.org/10.1038/ng.3963
        • Ö Åkerborg
        • Spalinskas R.
        • Pradhananga S.
        • Anil A.
        • Höjer P.
        • Poujade F.A.
        • Folkersen L.
        • Eriksson P.P.
        • Sahlén P.
        High-resolution regulatory maps connect vascular risk variants to disease-related pathways.
        Circ. Genom. Precis. Med. 2019 Mar; 12e002353https://doi.org/10.1161/CIRCGEN.118.002353
        • Lalonde S.
        • Codina-Fauteux V.A.
        • de Bellefon S.M.
        • Leblanc F.
        • Beaudoin M.
        • Simon M.M.
        • Dali R.
        • Kwan T.
        • Lo K.S.
        • Pastinen T.
        • Lettre G.
        Integrative analysis of vascular endothelial cell genomic features identifies AIDA as a coronary artery disease candidate gene.
        Genome Biol. 2019 Jul 8; 20: 133https://doi.org/10.1186/s13059-019-1749-5
        • Dekker J.
        • Marti-Renom M.A.
        • Mirny L.A.
        Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data.
        Nat. Rev. Genet. 2013 Jun; 14: 390-403https://doi.org/10.1038/nrg3454
        • Nasser J.
        • Bergman D.T.
        • Fulco C.P.
        • Guckelberger P.
        • Doughty B.R.
        • Patwardhan T.A.
        • Jones T.R.
        • Nguyen T.H.
        • Ulirsch J.C.
        • Lekschas F.
        • et al.
        Genome-wide enhancer maps link risk variants to disease genes.
        Nature. 2021 May; 593: 238-243https://doi.org/10.1038/s41586-021-03446-x
        • Andersson R.
        • Gebhard C.
        • Miguel-Escalada I.
        • Hoof I.
        • Bornholdt J.
        • Boyd M.
        • Chen Y.
        • Zhao X.
        • Schmidl C.
        • Suzuki T.
        • et al.
        An atlas of active enhancers across human cell types and tissues.
        Nature. 2014 Mar 27; 507: 455-461https://doi.org/10.1038/nature12787
        • Pliner H.A.
        • Packer J.S.
        • McFaline-Figueroa J.L.
        • Cusanovich D.A.
        • Daza R.M.
        • Aghamirzaie D.
        • Srivatsan S.
        • Qiu X.
        • Jackson D.
        • Minkina A.
        • et al.
        Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data.
        Mol. Cell. 2018 Sep 6; 71: 858-871.e8https://doi.org/10.1016/j.molcel.2018.06.044
        • Granja J.M.
        • Corces M.R.
        • Pierce S.E.
        • Bagdatli S.T.
        • Choudhry H.
        • Chang H.Y.
        • Greenleaf W.J.
        ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis.
        Nat. Genet. 2021 Mar; 53: 403-411https://doi.org/10.1038/s41588-021-00790-6
        • Fang R.
        • Preissl S.
        • Li Y.
        • Hou X.
        • Lucero J.
        • Wang X.
        • Motamedi A.
        • Shiau A.K.
        • Zhou X.
        • Xie F.
        • et al.
        Comprehensive analysis of single cell ATAC-seq data with SnapATAC.
        Nat. Commun. 2021 Feb 26; 12: 1337https://doi.org/10.1038/s41467-021-21583-9
        • Amariuta T.
        • Ishigaki K.
        • Sugishita H.
        • Ohta T.
        • Koido M.
        • Dey K.K.
        • Matsuda K.
        • Murakami Y.
        • Price A.L.
        • Kawakami E.
        • et al.
        Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements.
        Nat. Genet. 2020 Dec; 52: 1346-1354https://doi.org/10.1038/s41588-020-00740-8
        • Márquez-Luna C.
        • Gazal S.
        • Loh P.R.
        • Kim S.S.
        • Furlotte N.
        • Auton A.
        • Price A.L.
        • 23andMe Research Team
        Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets.
        Nat. Commun. 2021 Oct 18; 12: 6052https://doi.org/10.1038/s41467-021-25171-9
        • Jagadeesh K.A.
        • Dey K.K.
        • Montoro D.T.
        • Mohan R.
        • Gazal S.
        • Engreitz J.M.
        • Xavier R.J.
        • Price A.L.
        • Regev A.
        Identifying disease-critical cell types and cellular processes across the human body by integration of single-cell profiles and human genetics.
        Nat. Genet. 2022; 54: 1479-1492https://doi.org/10.1038/s41588-022-01187-9