Highlights
- •Genome-wide association studies (GWAS) have identified over 300 risk loci for coronary artery disease (CAD).
- •The majority of the variants are located within the non-coding regions of the genome with no known function.
- •The enrichment of GWAS variants within cis-regulatory elements of specific cell types suggests the variants exert their effects by regulating gene expression in defined tissue contexts.
- •Functional genomics approaches translate GWAS findings into mechanistic knowledge with clinical and therapeutic potential.
Abstract
Graphical abstract

Keywords
1. Introduction
Krishna G Aragam, Tao Jiang, Anuj Goel, Stavroula Kanoni, Brooke N Wolford, Deepak S Atri, Elle M Weeks, Minxian Wang, George Hindy, Wei Zhou, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet . 52 (12) (2022 Dec) 1803-1815, doi: 10.1038/s41588-022-01233-6.
- Won H.H.
- Natarajan P.
- Dobbyn A.
- Jordan D.M.
- Roussos P.
- Lage K.
- Raychaudhuri S.
- Stahl E.
- Do R.
2. Insights and implications of GWASs of CAD

- Örd T.
- Lönnberg T.
- Ravindran A.
- et al.

- Örd T.
- Lönnberg T.
- Ravindran A.
- et al.
Krishna G Aragam, Tao Jiang, Anuj Goel, Stavroula Kanoni, Brooke N Wolford, Deepak S Atri, Elle M Weeks, Minxian Wang, George Hindy, Wei Zhou, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet . 52 (12) (2022 Dec) 1803-1815, doi: 10.1038/s41588-022-01233-6.
3. A decade of evidence of the role of cis-regulatory elements mediating the effects of risk variants
- Chai T.
- Wang Z.
- Yang X.
- Qiu Z.
- Chen L.
- Tan J.
- Che Y.
- Liu Y.
- Hu J.
- Wang W.
- Hu L.
- Zhou Q.
- Wang H.
- Li J.
- Krause M.D.
- Huang R.T.
- Wu D.
- Shentu T.P.
- Harrison D.L.
- Whalen M.B.
- Stolze L.K.
- Di Rienzo A.
- Moskowitz I.P.
- Civelek M.
- et al.
- Nanda V.
- Wang T.
- Pjanic M.
- Liu B.
- Nguyen T.
- Matic L.P.
- Hedin U.
- Koplev S.
- Ma L.
- Franzén O.
- et al.
- Miller C.L.
- Pjanic M.
- Wang T.
- Nguyen T.
- Cohain A.
- Lee J.D.
- Perisic L.
- Hedin U.
- Kundu R.K.
- Majmudar D.
- et al.
4. Contribution of different tissues and cell types to the genetic risk of CAD

- Örd T.
- Lönnberg T.
- Ravindran A.
- et al.
- Hocker J.D.
- Poirion O.B.
- Zhu F.
- Buchanan J.
- Zhang K.
- Chiou J.
- Wang T.M.
- Zhang Q.
- Hou X.
- Li Y.E.
- et al.
5. In search of causal variants through computational fine-mapping
- Yang J.
- Ferreira T.
- Morris A.P.
- Medland S.E.
- Krause M.D.
- Huang R.T.
- Wu D.
- Shentu T.P.
- Harrison D.L.
- Whalen M.B.
- Stolze L.K.
- Di Rienzo A.
- Moskowitz I.P.
- Civelek M.
- et al.
- Krause M.D.
- Huang R.T.
- Wu D.
- Shentu T.P.
- Harrison D.L.
- Whalen M.B.
- Stolze L.K.
- Di Rienzo A.
- Moskowitz I.P.
- Civelek M.
- et al.
- Zou Y.
- Carbonetto P.
- Wang G.
- Stephens M.
- Buenrostro J.D.
- Wu B.
- Chang H.Y.
- Greenleaf W.J.
- Miller C.L.
- Pjanic M.
- Wang T.
- Nguyen T.
- Cohain A.
- Lee J.D.
- Perisic L.
- Hedin U.
- Kundu R.K.
- Majmudar D.
- et al.
- Miller C.L.
- Pjanic M.
- Wang T.
- Nguyen T.
- Cohain A.
- Lee J.D.
- Perisic L.
- Hedin U.
- Kundu R.K.
- Majmudar D.
- et al.
- Kichaev G.
- Yang W.Y.
- Lindstrom S.
- Hormozdiari F.
- Eskin E.
- Price A.L.
- Kraft P.
- Pasaniuc B.
Krishna G Aragam, Tao Jiang, Anuj Goel, Stavroula Kanoni, Brooke N Wolford, Deepak S Atri, Elle M Weeks, Minxian Wang, George Hindy, Wei Zhou, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet . 52 (12) (2022 Dec) 1803-1815, doi: 10.1038/s41588-022-01233-6.
- Krause M.D.
- Huang R.T.
- Wu D.
- Shentu T.P.
- Harrison D.L.
- Whalen M.B.
- Stolze L.K.
- Di Rienzo A.
- Moskowitz I.P.
- Civelek M.
- et al.
- Nanda V.
- Wang T.
- Pjanic M.
- Liu B.
- Nguyen T.
- Matic L.P.
- Hedin U.
- Koplev S.
- Ma L.
- Franzén O.
- et al.
- Örd T.
- Lönnberg T.
- Ravindran A.
- et al.
- Ma W.F.
- Turner A.W.
- Gancayco C.
- Wong D.
- Song Y.
- Mosquera J.V.
- Auguste G.
- Hodonsky C.J.
- Prabhakar A.
- Ekiz H.A.
- et al.
6. Experimental strategies to identify causal variants
- Karamanavi E.
- McVey D.G.
- van der Laan S.W.
- Stanczyk P.J.
- Morris G.E.
- Wang Y.
- Yang W.
- Chan K.
- Poston R.N.
- Luo J.
- et al.
Locus | Target Gene(s) | Experimental Method | Summary Functional Mechanism | Ref. |
---|---|---|---|---|
1p13/rs12740374 | SORT1 (Sortilin 1) | EMSA, Reporter assay, ChIP-qPCR | Variant creates of a C/EBP binding site and alters the hepatic expression of the SORT1 gene, which regulates plasma levels of LDL and VLDL. | [ [22] ] |
PHACTR1 (phosphatase and actin regulator 1) /rs9349379 | EDN1 (Endothelin 1) | Reporter assay, 4C-Seq, CRISPR deletion and variant editing | The SNP resides in an aorta specific enhancer. Enhancer deletion and variant editing leads to increased expression of EDN1 and Big ET-1 protein, through mechanisms that does not involve long-range chromatin loops. | [ [25] ] |
1p32.2/rs17114036 | PLPP3 (Phospholipid phosphatase 3) | Reporter assay, CRISPRi and deletion, ATAC-seq (caQTL), eQTL | The risk variant creates KLF2 binding site which increases enhancer activity under unidirectional flow to promote PLPP3 expression (mechanosensing role). | [ 26 ,
Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics. Proc. Natl. Acad. Sci. U. S. A. 2018 Nov 27; 115: E11349-E11358https://doi.org/10.1073/pnas.1810568115 69 ] |
rs2107595 | HDAC9 (Histone deacetylase 9) | Reporter assay, 4C-Seq, ChIP-qPCR | The risk allele disrupts the consensus binding site for E2F3, has higher transcriptional activity and associates with increased expression of HDAC9. | [ [27] ] |
rs34091558 | LMOD1 (leiomodin 1) | ChIP-qPCR, reporter assay, allelic expression imbalance, eQTL | The risk allele disrupts the binding of Forkhead box O3 (FOXO3), leading to downregulation of LMOD1, which results in increased proliferation and migration and decreased cell contraction of HCASMCs. | [ 28 ,
Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus. PLoS Genet. 2018 Nov 16; 14e1007755https://doi.org/10.1371/journal.pgen.1007755 31 ]
Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nat. Commun. 2016 Jul 8; 712092https://doi.org/10.1038/ncomms12092 |
Chr9p21/rs1537373 | ANRIL, (CDKN2B antisense RNA 1) CDKN2B (cyclin dependent kinase inhibitor 2 B) | ChIP-qPCR, reporter assay, enhancer-trap, cis-eQTL | Allele specific binding of AP-1 and TCF21 to CRE in HCASMCs. The risk genotype increases the expression of the linear atherogenic RNA forms of ANRIL. | [ [32] ] |
rs17293632 | SMAD3 (SMAD family member 3) | ChIP-qPCR, Reporter assay | The non-risk allele disrupts AP-1 binding site in an intronic enhancer leading to reduced SMAD3 expression and impaired proliferation of HASMCs. | [ [29] ] |
rs17293632 | SMAD3 | STARR-Seq, eQTL, molQTL (p65, ATAC), CRISPR deletion | Strong allele specific enhancer activity features. Deletion of the intronic enhancer at this locus inhibits SMAD3 expression in HAECs. | [ [72] ] |
GUCY1A1 | GUCY1A1 (guanylate cyclase 1 soluble subunit alpha 1) | ChIP-qPCR, Reporter assay | The risk variant interferes with ZEB1 binding within intronic CRE which impaired GUCY1A3 expression and leads to reduced migration of HASMCs. | [ [66] ] |
rs585967 rs2250644/45 rs17680741 rs2297787 rs1965983 | APOB (apolipoprotein B) LIPA (lipase A, lysosomal acid type) TSPAN14 (tetraspanin 14) SFXN2 (sideroflexin 2) UBE2Z (ubiquitin conjugating enzyme E2 Z) | STARR-Seq, CRISPR deletion, CRISPRa, eQTL, PCHiC | CAD risk variants located in hepatocyte specific CREs located within 3D chromatin interaction hubs that regulate expression of many genes (only top one shown) in the liver. | [ [16] ] |
rs17514846 | FURIN (furin, paired basic amino acid cleaving enzyme) | Allelic expression imbalance, reporter assay, EMSA, CRISPR editing | CAD risk allele increases FURIN expression. FURIN promotes monocyte/macrophage migration and proliferation while inhibiting apoptosis. | [ [64] ] |
rs17514846 rs1894401 15q26.1 | FES (FES proto-oncogene, tyrosine kinase) | EMSA, CRISPR editing, eQTL | Two CRE variants reduce FES expression in monocytes which promotes their migration. FES depletion results in larger plaques with more monocyte/macrophages and SMCs. | [ [65] ]
The FES gene at the 15q26 coronary-artery-disease locus inhibits atherosclerosis. Circ. Res. 2022 Nov 2; https://doi.org/10.1161/CIRCRESAHA.122.321146 |
- Miller C.L.
- Pjanic M.
- Wang T.
- Nguyen T.
- Cohain A.
- Lee J.D.
- Perisic L.
- Hedin U.
- Kundu R.K.
- Majmudar D.
- et al.
- Nanda V.
- Wang T.
- Pjanic M.
- Liu B.
- Nguyen T.
- Matic L.P.
- Hedin U.
- Koplev S.
- Ma L.
- Franzén O.
- et al.
- Miller C.L.
- Pjanic M.
- Wang T.
- Nguyen T.
- Cohain A.
- Lee J.D.
- Perisic L.
- Hedin U.
- Kundu R.K.
- Majmudar D.
- et al.
- Nanda V.
- Wang T.
- Pjanic M.
- Liu B.
- Nguyen T.
- Matic L.P.
- Hedin U.
- Koplev S.
- Ma L.
- Franzén O.
- et al.
- Miller C.L.
- Pjanic M.
- Wang T.
- Nguyen T.
- Cohain A.
- Lee J.D.
- Perisic L.
- Hedin U.
- Kundu R.K.
- Majmudar D.
- et al.
- Krause M.D.
- Huang R.T.
- Wu D.
- Shentu T.P.
- Harrison D.L.
- Whalen M.B.
- Stolze L.K.
- Di Rienzo A.
- Moskowitz I.P.
- Civelek M.
- et al.
- Nanda V.
- Wang T.
- Pjanic M.
- Liu B.
- Nguyen T.
- Matic L.P.
- Hedin U.
- Koplev S.
- Ma L.
- Franzén O.
- et al.
- Örd T.
- Lönnberg T.
- Ravindran A.
- et al.
- Krause M.D.
- Huang R.T.
- Wu D.
- Shentu T.P.
- Harrison D.L.
- Whalen M.B.
- Stolze L.K.
- Di Rienzo A.
- Moskowitz I.P.
- Civelek M.
- et al.
- von der Heyde B.
- Emmanouilidou A.
- Mazzaferro E.
- Vicenzi S.
- Höijer I.
- Klingström T.
- Jumaa S.
- Dethlefsen O.
- Snieder H.
- de Geus E.
- et al.
- Wünnemann F.
- Fotsing Tadjo T.
- Beaudoin M.
- Lalonde S.
- Sin Lo K.
- Lettre G.
7. Linking variants to genes

- Miller C.L.
- Pjanic M.
- Wang T.
- Nguyen T.
- Cohain A.
- Lee J.D.
- Perisic L.
- Hedin U.
- Kundu R.K.
- Majmudar D.
- et al.
C.U. Solomon, D.G. McVey, C. Andreadi, P. Gong, L. Turner, P.J. Stanczyk, S. Khemiri, J.C. Chamberlain, W. Yang, T.R. Webb, et al., Effects of coronary artery disease-associated variants on vascular smooth muscle cells, Circulation146 (12) (2022 Sep 20) 917-929, doi: 10.1161/CIRCULATIONAHA.121.058389.
- Ö Åkerborg
- Spalinskas R.
- Pradhananga S.
- Anil A.
- Höjer P.
- Poujade F.A.
- Folkersen L.
- Eriksson P.P.
- Sahlén P.
- Örd T.
- Lönnberg T.
- Ravindran A.
- et al.
- Örd T.
- Lönnberg T.
- Ravindran A.
- et al.
8. Conclusions and perspectives
Declaration of competing interest
Acknowledgements
- Örd T.
- Lönnberg T.
- Ravindran A.
- et al.
References
- Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study.J. Am. Coll. Cardiol. 2020 Dec 22; 76: 2982-3021https://doi.org/10.1016/j.jacc.2020.11.010
- Coronary artery disease genetics enlightened by genome-wide association studies.JACC Basic Transl Sci. 2021 Jul 26; 6: 610-623https://doi.org/10.1016/j.jacbts.2021.04.001
- Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease.Circ. Res. 2018 Feb 2; 122: 433-443https://doi.org/10.1161/CIRCRESAHA.117.312086
- A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease.Nat. Genet. 2015 Oct; 47: 1121-1130https://doi.org/10.1038/ng.3396
- Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease.Nat. Genet. 2020 Nov; 52: 1169-1177https://doi.org/10.1038/s41588-020-0705-3
- Large-scale genome-wide association study of coronary artery disease in genetically diverse populations.Nat. Med. 2022 Aug; 28: 1679-1692https://doi.org/10.1038/s41591-022-01891-3
Krishna G Aragam, Tao Jiang, Anuj Goel, Stavroula Kanoni, Brooke N Wolford, Deepak S Atri, Elle M Weeks, Minxian Wang, George Hindy, Wei Zhou, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. Nat Genet . 52 (12) (2022 Dec) 1803-1815, doi: 10.1038/s41588-022-01233-6.
- A decade of genome-wide association studies for coronary artery disease: the challenges ahead.Cardiovasc. Res. 2018 Jul 15; 114: 1241-1257https://doi.org/10.1093/cvr/cvy084
- Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.Proc. Natl. Acad. Sci. U. S. A. 2009 Jun 9; 106: 9362-9367https://doi.org/10.1073/pnas.0903103106
- Disproportionate contributions of select genomic compartments and cell types to genetic risk for coronary artery disease.PLoS Genet. 2015 Oct 28; 11e1005622https://doi.org/10.1371/journal.pgen.1005622
- An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci.Nat. Genet. 2021 Nov; 53: 1527-1533https://doi.org/10.1038/s41588-021-00945-5
- Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes.Basic Res. Cardiol. 2022 Feb 17; 117: 6https://doi.org/10.1007/s00395-022-00917-8
- Dissecting the polygenic basis of atherosclerosis using disease associated cell state signatures (preprint).Res. square. 2022; https://doi.org/10.21203/rs.3.rs-1775130/v1
- Genetics of coronary artery disease in the post-GWAS era.J. Intern. Med. 2021 Nov; 290: 980-992https://doi.org/10.1111/joim.13362
- Gene set knowledge discovery with Enrichr.Curr Protoc. 2021 Mar; 1: e90https://doi.org/10.1002/cpz1.90
- Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease.Am. J. Hum. Genet. 2021 Mar 4; 108: 411-430https://doi.org/10.1016/j.ajhg.2021.02.006
- Identifying novel gene variants in coronary artery disease and shared genes with several cardiovascular risk factors.Circ. Res. 2016 Jan 8; 118: 83-94https://doi.org/10.1161/CIRCRESAHA.115.306629
- A mechanistic framework for cardiometabolic and coronary artery diseases.Nat. Cardiovasc. Res. 2022; 1: 85-100https://doi.org/10.1038/s44161-021-00009-1
- Regulatory genomic circuitry of human disease loci by integrative epigenomics.Nature. 2021 Feb; 590: 300-307https://doi.org/10.1038/s41586-020-03145-z
- Integrative analysis of 111 reference human epigenomes.Nature. 2015 Feb 19; 518: 317-330https://doi.org/10.1038/nature14248
- A single-cell atlas of chromatin accessibility in the human genome.Cell. 2021 Nov 24; 184: 5985-6001.e19https://doi.org/10.1016/j.cell.2021.10.024
- From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus.Nature. 2010 Aug 5; 466: 714-719https://doi.org/10.1038/nature09266
- PSRC1 may affect coronary artery disease risk by altering CELSR2, PSRC1, and SORT1 gene expression and circulating granulin and apolipoprotein B protein levels.Front. Cardiovasc. Med. 2022 Feb 18; 9763015https://doi.org/10.3389/fcvm.2022.763015
- CELSR2 deficiency suppresses lipid accumulation in hepatocyte by impairing the UPR and elevating ROS level.Faseb. J. 2021 Oct; 35e21908https://doi.org/10.1096/fj.202100786RR
- A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression.Cell. 2017 Jul 27; 170: 522-533.e15
- Genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics.Proc. Natl. Acad. Sci. U. S. A. 2018 Nov 27; 115: E11349-E11358https://doi.org/10.1073/pnas.1810568115
- The atherosclerosis risk variant rs2107595 mediates allele-specific transcriptional regulation of HDAC9 via E2F3 and Rb1.Stroke. 2019 Oct; 50: 2651-2660https://doi.org/10.1161/STROKEAHA.119.026112
- Functional regulatory mechanism of smooth muscle cell-restricted LMOD1 coronary artery disease locus.PLoS Genet. 2018 Nov 16; 14e1007755https://doi.org/10.1371/journal.pgen.1007755
- Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease.Arterioscler. Thromb. Vasc. Biol. 2016 May; 36: 972-983https://doi.org/10.1161/ATVBAHA.116.307294
- Genetic and epigenetic associations of ANRIL with coronary artery disease and risk factors.BMC Med. Genom. 2021 Oct 6; 14: 240https://doi.org/10.1186/s12920-021-01094-8
- Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci.Nat. Commun. 2016 Jul 8; 712092https://doi.org/10.1038/ncomms12092
- Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis.Front. Cardiovasc. Med. 2018 Nov 6; 5: 145https://doi.org/10.3389/fcvm.2018.00145
- ANRIL and atherosclerosis.J. Clin. Pharm. Therapeut. 2020 Apr; 45: 240-248https://doi.org/10.1111/jcpt.13060
- An integrated encyclopedia of DNA elements in the human genome.Nature. 2012 Sep 6; 489: 57-74https://doi.org/10.1038/nature11247
- The international human epigenome consortium: a blueprint for scientific collaboration and discovery.Cell. 2016 Nov 17; 167: 1145-1149https://doi.org/10.1016/j.cell.2016.11.007
- Systematic localization of common disease-associated variation in regulatory DNA.Science. 2012 Sep 7; 337: 1190-1195https://doi.org/10.1126/science.1222794
- Mapping and analysis of chromatin state dynamics in nine human cell types.Nature. 2011 May 5; 473: 43-49https://doi.org/10.1038/nature09906
- Single-cell epigenomics and functional fine-mapping of atherosclerosis GWAS loci.Circ. Res. 2021 Jul 9; 129: 240-258https://doi.org/10.1161/CIRCRESAHA.121.318971
- Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk.Nat. Genet. 2022 Jun; 54: 804-816https://doi.org/10.1038/s41588-022-01069-0
- Intersecting single-cell transcriptomics and genome-wide association studies identifies crucial cell populations and candidate genes for atherosclerosis.Eur Heart J Open. 2021 Dec 21; 2: oeab043https://doi.org/10.1093/ehjopen/oeab043
- Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics.Circ. Res. 2020 Nov 6; 127: 1437-1455https://doi.org/10.1161/CIRCRESAHA.120.316770
- Cardiac cell type-specific gene regulatory programs and disease risk association.Sci. Adv. 2021 May 14; 7eabf1444https://doi.org/10.1126/sciadv.abf1444
- Linkage disequilibrium--understanding the evolutionary past and mapping the medical future.Nat. Rev. Genet. 2008 Jun; 9: 477-485https://doi.org/10.1038/nrg2361
- Genetic Investigation of ANthropometric Traits (GIANT) Consortium; DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium, Madden PA, Heath AC, Martin NG, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits.Nat. Genet. 2012 Mar 18; 44 (S1-375): 369-375https://doi.org/10.1038/ng.2213
- Bayesian refinement of association signals for 14 loci in 3 common diseases.Nat. Genet. 2012 Dec; 44: 1294-1301https://doi.org/10.1038/ng.2435
- FINEMAP: efficient variable selection using summary data from genome-wide association studies.Bioinformatics. 2016 May 15; 32: 1493-1501https://doi.org/10.1093/bioinformatics/btw018
- Fine-mapping from summary data with the "sum of single effects" model.PLoS Genet. 2022 Jul 19; 18e1010299https://doi.org/10.1371/journal.pgen.1010299
- Identifying causal variants at loci with multiple signals of association.Genetics. 2014 Oct; 198: 497-508https://doi.org/10.1534/genetics.114.167908
- A reliable method to display authentic DNase I hypersensitive sites at long-ranges in single-copy genes from large genomes.Nucleic Acids Res. 2006 Mar 1; 34: e34https://doi.org/10.1093/nar/gkl006
- Histone modifications at human enhancers reflect global cell-type-specific gene expression.Nature. 2009 May 7; 459: 108-112https://doi.org/10.1038/nature07829
- Combinatorial patterns of histone acetylations and methylations in the human genome.Nat. Genet. 2008 Jul; 40: 897-903https://doi.org/10.1038/ng.154
- ATAC-seq: a method for assaying chromatin accessibility genome-wide.Curr. Protoc. Mol. Biol. 2015 Jan 5; 109 (21.29.1-21.2921.29.9)https://doi.org/10.1002/0471142727.mb2129s109
- Integrating functional data to prioritize causal variants in statistical fine-mapping studies.PLoS Genet. 2014 Oct 30; 10e1004722https://doi.org/10.1371/journal.pgen.1004722
- Joint analysis of functional genomic data and genome-wide association studies of 18 human traits.Am. J. Hum. Genet. 2014 Apr 3; 94: 559-573https://doi.org/10.1016/j.ajhg.2014.03.004
- Functionally informed fine-mapping and polygenic localization of complex trait heritability.Nat. Genet. 2020 Dec; 52: 1355-1363https://doi.org/10.1038/s41588-020-00735-5
- PlaqView 2.0: a comprehensive web portal for cardiovascular single-cell genomics.Front. Cardiovasc. Med. 2022 Aug 8; 9969421https://doi.org/10.3389/fcvm.2022.969421
- BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes.Genome Biol. 2017 Feb 24; 18: 39https://doi.org/10.1186/s13059-017-1165-7
- ABC: a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-Seq experiments.Bioinformatics. 2015 Sep 15; 31: 3057-3059https://doi.org/10.1093/bioinformatics/btv321
- Predicting effects of noncoding variants with deep learning-based sequence model.Nat. Methods. 2015 Oct; 12: 931-934https://doi.org/10.1038/nmeth.3547
- Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics.Nucleic Acids Res. 2021 Jan 8; 49: D1311-D1320https://doi.org/10.1093/nar/gkaa840
- HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants.Nucleic Acids Res. 2012 Jan; 40: D930-D934https://doi.org/10.1093/nar/gkr917
- Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis.Nucleic Acids Res. 1981; 9: 6505-6525
- Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions.Nat. Protoc. 2007; 2: 1849-1861https://doi.org/10.1038/nprot.2007.249
- Influence of a coronary artery disease-associated genetic variant on FURIN expression and effect of furin on macrophage behavior.Arterioscler. Thromb. Vasc. Biol. 2018 Aug; 38: 1837-1844https://doi.org/10.1161/ATVBAHA.118.311030
- The FES gene at the 15q26 coronary-artery-disease locus inhibits atherosclerosis.Circ. Res. 2022 Nov 2; https://doi.org/10.1161/CIRCRESAHA.122.321146
- Functional characterization of the GUCY1A3 coronary artery disease risk locus.Circulation. 2017 Aug 1; 136: 476-489https://doi.org/10.1161/CIRCULATIONAHA.116.024152
- Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells.Genome Med. 2017 Jul 6; 9: 63https://doi.org/10.1186/s13073-017-0453-x
- A cautionary tale: the non-causal association between type 2 diabetes risk SNP, rs7756992, and levels of non-coding RNA, CDKAL1-v1.Diabetologia. 2015 Apr; 58: 745-748https://doi.org/10.1007/s00125-015-3508-9
- Systems genetics in human endothelial cells identifies non-coding variants modifying enhancers, expression, and complex disease traits.Am. J. Hum. Genet. 2020 Jun 4; 106: 748-763https://doi.org/10.1016/j.ajhg.2020.04.008
- Shared genetic effects on chromatin and gene expression indicate a role for enhancer priming in immune response.Nat. Genet. 2018 Mar; 50: 424-431https://doi.org/10.1038/s41588-018-0046-7
- Systems genetics analysis of gene-by-environment interactions in human cells,.Am J Hum Genet. 2010 Mar 12; 86: 399-410https://doi.org/10.1016/j.ajhg.2010.02.002
- Functional noncoding SNPs in human endothelial cells fine-map vascular trait associations.Genome Res. 2022 Mar; 32: 409-424https://doi.org/10.1101/gr.276064.121
- Multiple causal variants underlie genetic associations in humans.Science. 2022 Mar 18; 375: 1247-1254https://doi.org/10.1126/science.abj5117
- RNA-guided gene activation by CRISPR-Cas9-based transcription factors.Nat. Methods. 2013 Oct; 10: 973-976https://doi.org/10.1038/nmeth.2600
- Highly efficient Cas9-mediated transcriptional programming.Nat. Methods. 2015 Apr; 12: 326-328
- Cross-tissue regulatory gene networks in coronary artery disease.Cell Syst. 2016 Mar 23; 2: 196-208https://doi.org/10.1016/j.cels.2016.02.002
- Genetic variation in enhancers modifies cardiomyopathy gene expression and progression.Circulation. 2021 Mar 30; 143: 1302-1316https://doi.org/10.1161/CIRCULATIONAHA.120.050432
- Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach.Sci. Rep. 2020 Jul 16; 1011831https://doi.org/10.1038/s41598-020-68567-1
- CRISPR perturbations at many coronary artery disease loci impair vascular endothelial cell functions.bioRxiv. 2021; 10 (02)430527https://doi.org/10.1101/2021.02.10.430527
- Targeted Perturb-seq enables genome-scale genetic screens in single cells.Nat. Methods. 2020 Jun; 17: 629-635https://doi.org/10.1038/s41592-020-0837-5
- Cell type-specific genetic regulation of gene expression across human tissues.Science. 2020 Sep 11; 369: eaaz8528https://doi.org/10.1126/science.aaz8528
- Large-scale identification of common trait and disease variants affecting gene expression.Am. J. Hum. Genet. 2017 Jun 1; 100: 885-894https://doi.org/10.1016/j.ajhg.2017.04.016
- Mechanosensitive PPAP2B regulates endothelial responses to atherorelevant hemodynamic forces.Circ. Res. 2015 Jul 31; 117: e41-e53https://doi.org/10.1161/CIRCRESAHA.117.306457
- Genetic regulatory mechanisms of smooth muscle cells map to coronary artery disease risk loci.Am. J. Hum. Genet. 2018 Sep 6; 103: 377-388https://doi.org/10.1016/j.ajhg.2018.08.001
- Genetic regulation of human aortic smooth muscle cell gene expression and splicing predict causal CAD genes.Circ Res. 2023 Feb 3; 132: 323-338https://doi.org/10.1161/CIRCRESAHA.122.321586
R. Aherrahrou, D. Lue, M. Civelek, Genetic regulation of circular RNA expression in human aortic smooth muscle cells and vascular traits, HGG Adv. 4 (1) (2022 Nov 30) 100164. doi: 10.1016/j.xhgg.2022.100164.
C.U. Solomon, D.G. McVey, C. Andreadi, P. Gong, L. Turner, P.J. Stanczyk, S. Khemiri, J.C. Chamberlain, W. Yang, T.R. Webb, et al., Effects of coronary artery disease-associated variants on vascular smooth muscle cells, Circulation146 (12) (2022 Sep 20) 917-929, doi: 10.1161/CIRCULATIONAHA.121.058389.
- Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements.Nat. Genet. 2017 Nov; 49: 1602-1612https://doi.org/10.1038/ng.3963
- High-resolution regulatory maps connect vascular risk variants to disease-related pathways.Circ. Genom. Precis. Med. 2019 Mar; 12e002353https://doi.org/10.1161/CIRCGEN.118.002353
- Integrative analysis of vascular endothelial cell genomic features identifies AIDA as a coronary artery disease candidate gene.Genome Biol. 2019 Jul 8; 20: 133https://doi.org/10.1186/s13059-019-1749-5
- Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data.Nat. Rev. Genet. 2013 Jun; 14: 390-403https://doi.org/10.1038/nrg3454
- Genome-wide enhancer maps link risk variants to disease genes.Nature. 2021 May; 593: 238-243https://doi.org/10.1038/s41586-021-03446-x
- An atlas of active enhancers across human cell types and tissues.Nature. 2014 Mar 27; 507: 455-461https://doi.org/10.1038/nature12787
- Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data.Mol. Cell. 2018 Sep 6; 71: 858-871.e8https://doi.org/10.1016/j.molcel.2018.06.044
- ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis.Nat. Genet. 2021 Mar; 53: 403-411https://doi.org/10.1038/s41588-021-00790-6
- Comprehensive analysis of single cell ATAC-seq data with SnapATAC.Nat. Commun. 2021 Feb 26; 12: 1337https://doi.org/10.1038/s41467-021-21583-9
- Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements.Nat. Genet. 2020 Dec; 52: 1346-1354https://doi.org/10.1038/s41588-020-00740-8
- Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets.Nat. Commun. 2021 Oct 18; 12: 6052https://doi.org/10.1038/s41467-021-25171-9
- Identifying disease-critical cell types and cellular processes across the human body by integration of single-cell profiles and human genetics.Nat. Genet. 2022; 54: 1479-1492https://doi.org/10.1038/s41588-022-01187-9
Article info
Publication history
Publication stage
In Press Journal Pre-ProofIdentification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy