Advertisement

Noncoding RNAs in atherosclerosis

      Ever since the first studies demonstrated a role for the, then newly discovered, microRNAs in cardiac development [
      • Kwon C.
      • Han Z.
      • Olson E.N.
      • et al.
      MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling.
      ] and cardiac hypertrophy [
      • van Rooij E.
      • Sutherland L.B.
      • Liu N.
      • et al.
      A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure.
      ], the field on noncoding research in cardiovascular disease has been rapidly expanding. Noncoding RNAs have since been shown to play a role in all forms of cardiovascular disease and it has become hard to imagine cardiovascular research without studies on noncoding RNAs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kwon C.
        • Han Z.
        • Olson E.N.
        • et al.
        MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling.
        Proc. Natl. Acad. Sci. U. S. A. 2005; 102: 18986-18991
        • van Rooij E.
        • Sutherland L.B.
        • Liu N.
        • et al.
        A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure.
        Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 18255-18260
        • Uchida S.
        • Dimmeler S.
        Long noncoding RNAs in cardiovascular diseases.
        Circ. Res. 2015; 116: 737-750
        • Liu G.
        • Mattick J.S.
        • Taft R.J.
        A meta-analysis of the genomic and transcriptomic composition of complex life.
        Cell Cycle. 2013; 12: 2061-2072
        • Hoernes T.P.
        • Erlacher M.D.
        Translating the Epitranscriptome. vol. 8. Wiley interdisciplinary reviews. RNA, 2017
        • Mercer T.R.
        • Mattick J.S.
        Structure and function of long noncoding RNAs in epigenetic regulation.
        Nat. Struct. Mol. Biol. 2013; 20: 300-307
        • Marchese F.P.
        • Raimondi I.
        • Huarte M.
        The multidimensional mechanisms of long noncoding RNA function.
        Genome Biol. 2017; 18: 206
        • Bartel D.P.
        MicroRNAs: genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • van Rooij E.
        • Olson E.N.
        MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles.
        Nat. Rev. Drug Discov. 2012; 11: 860-872
        • Welten S.M.
        • Goossens E.A.
        • Quax P.H.
        • et al.
        The multifactorial nature of microRNAs in vascular remodelling.
        Cardiovasc. Res. 2016; 110: 6-22
        • van Ingen E.
        • van den Homberg D.A.L.
        • van der Bent M.L.
        • et al.
        C/D box snoRNA SNORD113-6/AF357425 plays a dual role in integrin signalling and arterial fibroblast function via pre-mRNA processing and 2'O-ribose methylation.
        Hum. Mol. Genet. 2022; 31: 1051-1066
        • Schaffer J.E.
        Death by lipids: the role of small nucleolar RNAs in metabolic stress.
        J. Biol. Chem. 2020; 295: 8628-8635
        • Keam S.P.
        • Hutvagner G.
        tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression.
        Life. 2015; 5: 1638-1651
        • Fu H.
        • Feng J.
        • Liu Q.
        • et al.
        Stress induces tRNA cleavage by angiogenin in mammalian cells.
        FEBS Lett. 2009; 583: 437-442
        • Fasolo F.
        • Paloschi V.
        • Maegdefessel L.
        Long non-coding RNAs at the crossroad of vascular smooth muscle cell phenotypic modulation in atherosclerosis and neointimal formation.
        Atherosclerosis. 2022;
        • Bink D.I.
        • Pauli J.
        • Maegdefessel L.
        • et al.
        Endothelial microRNAs and long noncoding RNAs in cardiovascular ageing.
        Atherosclerosis. 2023;
        • Sachse M.
        • Tual-Chalot S.
        • Ciliberti G.
        • et al.
        RNA-binding proteins in vascular inflammation and atherosclerosis.
        Atherosclerosis. 2023;
        • Lopez Rodriguez M.
        • Arasu U.T.
        • Kaikkonen M.U.
        Exploring the genetic basis of coronary artery disease using functional genomics.
        Atherosclerosis. 2023;
        • Rigo F.
        • Hua Y.
        • Krainer A.R.
        • et al.
        Antisense-based therapy for the treatment of spinal muscular atrophy.
        J. Cell Biol. 2012; 199: 21-25
        • Hegele R.A.
        • Tsimikas S.
        Lipid-lowering agents.
        Circ. Res. 2019; 124: 386-404
        • Blom D.J.
        • Marais A.D.
        • Moodley R.
        • et al.
        RNA-based therapy in the management of lipid disorders: a review.
        Lipids Health Dis. 2022; 21: 41
        • Saenz-Pipaon G.
        • Dichek D.A.
        Targeting and delivery of microRNA-targeting antisense oligonucleotides in cardiovascular diseases.
        Atherosclerosis. 2022;
        • Nossent A.Y.
        The epitranscriptome: RNA modifications in vascular remodelling.
        Atherosclerosis. 2022;
        • Farina F.M.
        • Weber C.
        • Santovito D.
        The emerging landscape of non-conventional RNA functions in atherosclerosis.
        Atherosclerosis. 2023;