Advertisement

Inhibitory effect of Chinese green tea on endothelial cell-induced LDL oxidation

      Abstract

      Green tea has been shown to inhibit Cu2+-induced LDL oxidation and suppress lipoxygenase activity. Since LDL oxidation is a characteristic feature of atherogenesis and lipoxygenase is involved in the disease process, the effect of Lung Chen Tea, a non-fermented Chinese green tea, on LDL oxidation induced by human umbilical cord vascular endothelial cell was investigated in the present study. Lung Chen Tea was extracted with methanol and the dried powder was redissolved in water before extraction with chloroform and then ethyl acetate. Lung Chen Tea, chloroform and ethyl acetate fractions dose-dependently reduced LDL oxidation and decreased its relative electrophoretic mobility (P<0.001) when compared to the oxidized LDL. The lipid peroxidation products, thiobarbituric acid reactive substances, and cellular cholesterol were also significantly lowered by 5 and 10 μg/ml Lung Chen Tea (P<0.001) in a dose-dependent manner. The remaining aqueous layer, which was devoid of catechins after chloroform and ethyl acetate extractions, did not prevent LDL oxidation. The results of this study demonstrated that Lung Chen Tea and catechin-rich fractions significantly prevented endothelial cell induced LDL oxidation. The consumption of Lung Chen Tea may therefore lower the risk of coronary heart diseases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Steinberg D.
        • Parthasarathy S.
        • Carew T.E.
        • Khoo J.C.
        • Witztum J.L.
        Beyond cholesterol: Modifications of low density lipoprotein that increase its atherogenicity.
        N. Engl. J. Med. 1989; 320: 915-924
        • Goldstein J.L.
        • Ho Y.K.
        • Basu S.K.
        • Brown M.S.
        Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition.
        Proc. Natl. Acad. Sci. USA. 1979; 76: 333-337
        • Henriksen T.
        • Mahoney E.M.
        • Steinberg D.
        Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins.
        Proc. Natl. Acad. Sci. USA. 1981; 78: 6499-6503
        • Shaish A.
        • Daugherty A.
        • O’ Sullivan F.
        • Schonfeld G.
        • Heinecke J.W.
        Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits.
        J. Clin. Invest. 1995; 96: 2075-2082
        • Bocan T.M.A.
        • Mueller S.B.
        • Brown E.Q.
        • Uhlendorf P.D.
        • Mazur M.J.
        • Newton R.S.
        Anti-atherosclerotic effects of antioxidants are lesion-specific when evaluated in hypercholesterolemic New Zealand white rabbits.
        Exp. Mol. Pathol. 1992; 57: 70-83
        • Miura S.
        • Watanabe J.
        • Sano M.
        • Tomita T.
        • Osawa T.
        • Hara Y.
        • Tomita I.
        Effects of various natural antioxidants on the Cu2+-mediated oxidative modification of low density lipoprotein.
        Biol. Pharm. Bull. 1995; 18: 1-4
        • Salah N.
        • Miller N.J.
        • Paganga G.
        • Tijburg L.
        • Bolwell G.P.
        • Rice-Evans C.
        Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants.
        Arch. Biochem. Biophys. 1995; 322: 339-346
        • Yang T.T.C.
        • Koo M.W.L.
        Hypocholesterolemic effects of Chinese Tea.
        Pharmacol. Res. 1997; 35: 505-512
        • Serafini M.
        • Ghiselli A.
        • Ferro-Luzzi A.
        In vivo antioxidant effect of green and black tea in man.
        Eur. J. Clin. Nutr. 1996; 50: 28-32
        • Liu C.H.
        • Huang M.T.
        • Huang P.C.
        Sources of triacylglycerol accumulation in livers of rats fed a cholesterol-supplemented diet.
        Lipids. 1995; 30: 527-531
        • Gamble W.
        • Vaughan M.
        • Kruth H.S.
        • Avigan J.
        Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells.
        J. Lipid Res. 1978; 19: 1068-1070
        • Havel R.J.
        Classification of the hyperlipidemias.
        Annu. Rev. Med. 1977; 28: 195-209
        • Ohkawa H.
        • Ohishi N.
        • Yagi K.
        Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.
        Anal. Biochem. 1979; 95: 351-358
        • Ballantyne F.C.
        Role of the clinical biochemistry laboratory in the assessment of dyslipoproteinaemias.
        Ann. Clin. Biochem. 1984; 21: 166-175
        • Ho C.T.
        • Chen Q.
        • Shu H.
        • Zhang K.Q.
        • Rosen R.T.
        Antioxidative effect of polyphenol extract prepared from various Chinese Teas.
        Prev. Med. 1992; 21: 520-525
        • Matsuda H.
        • Chisaka T.
        • Kubomura Y.
        • Yahahara J.
        • Tokunosake
        • Fujimura H.
        • Kimura H.
        Effects of crude drugs on experimental hypercholesterolemia. I. Tea and its active principles.
        J. Ethnopharmacol. 1986; 17: 213-224
        • Roeschlau P.
        • Bernt E.
        • Gruber W.
        Enzymatic determination of total cholesterol in serum.
        J. Clin. Chem. Biochem. 1974; 12: 403
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265-275
        • Daniel W.W.
        Biostatistics: A Foundation for Analysis in the Health Sciences. 5th edn. Wiley, New York1991
        • Haberland M.E.
        • Fong D.
        • Cheng L.
        Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits.
        Science. 1988; 241: 215-218
        • Palinski W.
        • Rosenfeld M.E.
        • Ylä-Herttuala S.
        • Gurther G.C.
        • Socher S.S.
        • Butler S.W.
        • Parthasarathy S.
        • Carew T.W.
        • Steinberg D.
        • Witztum J.L.
        Low density lipoprotein undergoes oxidative modification in vivo.
        Proc. Natl. Acad. Sci. USA. 1989; 86: 1372-1376
        • Fogelman A.M.
        • Shechter I.
        • Seager J.
        • Hokom M.
        • Child J.S.
        • Edwards P.A.
        Malondialdehyde alteration of low density lipoprotein leads in cholesteryl ester accumulation in human monocyte-macrophages.
        Proc. Natl. Acad. Sci. USA. 1980; 77: 2214-2218
        • Stanton L.W.
        • White R.T.
        • Bryant C.M.
        • Protter A.A.
        • Endemann G.
        A macrophage Fc receptor for IgG is also a receptor for oxidized low density lipoprotein.
        J. Biol. Chem. 1992; 267: 22446-22451
        • Mao S.T.J.
        • Yates M.T.
        • Parker R.A.
        • Chi E.M.
        • Jackson R.L.
        Attenuation of atherosclerosis in a modified strain of hypercholesterolemic Watanabe rabbits with use of a probucol analog (MDL29,311) that does not lower serum cholesterol.
        Arterioscler. Thromb. 1991; 11: 1266-1275
        • Da Silva E.L.
        • Piskula M.
        • Terao J.
        Enhancement of antioxidative ability of rat plasma by oral administration of (−)-epicatechin.
        Free Radic. Biol. Med. 1998; 24: 1209-1216
        • Bailey J.M.
        • Makheja A.N.
        • Lee R.
        • Simon T.H.
        Systemic activation of 15-lipoxygenase in heart, lung, and vascular tissues by hypercholesterolemia: relationship to lipoprotein oxidation and atherogenesis.
        Atherosclerosis. 1995; 113: 247-258
        • Folcik V.A.
        • Nivar-Aristy R.A.
        • Karjewski L.P.
        • Cathcart M.K.
        Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques.
        J. Clin. Invest. 1995; 96: 504-510
        • Esterbauer H.
        • Dieber-Rotheneder M.
        • Waeg G.
        • Striegl G.
        • Jurgens G.
        Biochemical, structural, and functional properties of oxidized low-density lipoprotein.
        Chem. Res. Toxicol. 1990; 3: 77-92