Advertisement

FH-Freiburg: a novel missense mutation (C317Y) in growth factor repeat A of the low density lipoprotein receptor gene in a German patient with homozygous familial hypercholesterolemia

      Abstract

      We describe the characterization of a novel mutation in the low density lipoprotein receptor (LDL-R) gene in a patient with true homozygous familial hypercholesterolemia (FH). The combined use of denaturing gradient gel electrophoresis (DGGE) and sequencing of genomic DNA revealed a guanine to adenine base substitution at nucleotide position 1013 of the LDL-R cDNA. This point mutation results in a change from cysteine to tyrosine at amino acid residue 317 of repeat A of the epidermal growth factor (EGF) precursor homology domain. Binding, uptake and degradation of iodinated LDL in skin fibroblasts from the homozygous patient were less than 10% of normal. In contrast, binding, uptake and degradation of iodinated VLDL was reduced by only 60, 30, and 38%, respectively. Incubation of the patient’s fibroblasts in the presence of cholesterol diminished the residual binding of VLDL by 50%, suggesting that the loss of the highly conserved cysteine at position 317 results in a LDL-R that fails to bind LDL, but retains some ability to bind VLDL by interacting with the apolipoprotein E. Both parents were heterozygous for the C317Y mutation. Interestingly, however, the father presented with markedly elevated levels of triglycerides and VLDL cholesterol, whereas his LDL cholesterol was unexpectedly low. The mother of the index patient had only slightly elevated LDL cholesterol. These observations testify to the biological complexity of genotype-environment interactions in individuals carrying mutations at the LDL-R locus and indicate that genetic analysis importantly complements the clinical and biochemical diagnosis of patients with hyperlipidemia.

      Keywords

      Abbreviations:

      Apo, apolipoprotein (), DGGE, denaturing gradient gel electrophoresis (), EDTA, ethylenediaminetetraacetate (), PCR, polymerase chain reaction (), PID, pedigree identification number (), RFLP, restriction fragment length polymorphism (), VLDL, LDL, HDL, very low, low and high density lipoproteins (), VLDL-chol, LDL-chol, HDL-chol, cholesterol of VLDL, LDL and HDL ()
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goldstein J.L.
        • Brown M.S.
        Familial hypercholesterolemia.
        in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic Basis of Inherited Diseases. 7th ed. McGraw-Hill, New York1995: 1981
        • Hobbs H.H.
        • Russell D.W.
        • Brown M.S.
        • Goldstein J.L.
        The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein.
        Annu. Rev. Genet. 1990; 24: 133
        • Leitersdorf E.
        • Tobin E.J.
        • Davignon J.
        • Hobbs H.H.
        Common low-density lipoprotein receptor mutations in the French Canadian population.
        J. Clin. Invest. 1990; 85: 1014
        • Leitersdorf E.
        • Reshef A.
        • Meiner V.
        • Dann E.J.
        • Beigel Y.
        • van Roggen F.G.
        • van der Westhuyzen D.R.
        • Coetzee G.A.
        A missense mutation in the low density lipoprotein receptor gene causes familial hypercholesterolemia in Sephardic Jews.
        Hum. Genet. 1993; 91: 141
        • Lehrman M.A.
        • Schneider W.J.
        • Brown M.S.
        • Davis C.G.
        • Elhammer A.
        • Russell D.W.
        • Goldstein J.L.
        The Lebanese allele at the low density lipoprotein receptor locus. Nonsense mutation produces truncated receptor that is retained in endoplasmic reticulum.
        J. Biol. Chem. 1987; 262: 401
        • Leitersdorf E.
        • van der Westhuyzen D.R.
        • Coetzee G.A.
        • Hobbs H.H.
        Two common low density lipoprotein receptor gene mutations cause familial hypercholesterolemia in Afrikaners.
        J. Clin. Invest. 1989; 84: 954
        • Koivisto U.M.
        • Turtola H.
        • Aalto-Setala K.
        • Top B.
        • Frants R.R.
        • Kovanen P.T.
        • Syvanen A.C.
        • Kontula K.
        The familial hypercholesterolemia (FH)-North Karelia mutation of the low density lipoprotein receptor gene deletes seven nucleotides of exon 6 and is a common cause of FH in Finland.
        J. Clin. Invest. 1992; 90: 219
        • Hobbs H.H.
        • Brown M.S.
        • Goldstein J.L.
        Molecular genetics of the LDL receptor gene in familial hypercholesterolemia.
        Hum. Mutat. 1992; 1: 445
        • Varret M.
        • Rabes J.P.
        • Thiart R.
        • Kotze M.J.
        • Baron H.
        • Cenarro A.
        • Descamps O.
        • Ebhardt M.
        • Hondelijn J.C.
        • Kostner G.M.
        • Miyake Y.
        • Pocovi M.
        • Schmidt H.
        • Schuster H.
        • Stuhrmann M.
        • Yamamura T.
        • Junien C.
        • Beroud C.
        • Boileau C.
        Ldlr Database (2nd ed.) — new additions to the database and the software, and results of the first molecular analysis.
        Nucleic Acids Res. 1998; 26: 248
        • Wilson D.J.
        • Gahan M.
        • Haddad L.
        • Heath K.
        • Whittal R.A.
        • Williams R.R.
        • Humphries S.E.
        • Day I.N.M.
        A world wide web site for low-density lipoprotein receptor gene mutations in familial hypercholesterolemia — sequence-based, tabular, and direct submission data handling.
        Am. J. Cardiol. 1998; 81: 1509
        • Jeenah M.
        • September W.
        • Graadt van Roggen F.
        • de Villiers W.
        • Seftel H.
        • Marais D.
        Influence of specific mutations at the LDL-receptor gene locus on the response to simvastatin therapy in Afrikaner patients with heterozygous familial hypercholesterolaemia.
        Atherosclerosis. 1993; 98: 51
        • Leitersdorf E.
        • Eisenberg S.
        • Eliav O.
        • Friedlander Y.
        • Berkman N.
        • Dann E.J.
        • Landsberger D.
        • Sehayek E.
        • Meiner V.
        • Wurm M.
        Genetic determinants of responsiveness to the HMG-CoA reductase inhibitor fluvastatin in patients with molecularly defined heterozygous familial hypercholesterolemia.
        Circulation. 1993; 87: III35
        • Sun X.M.
        • Patel D.D.
        • Knight B.L.
        • Soutar A.K.
        Influence of genotype at the low density lipoprotein (Ldl) receptor gene locus on the clinical phenotype and response to lipid-lowering drug therapy in heterozygous familial hypercholesterolaemia.
        Atherosclerosis. 1998; 136: 175
        • Sijbrands E.J.
        • Lombardi M.P.
        • Westendorp R.G.
        • Leuven J.A.
        • Meinders A.E.
        • Vanderlaarse A.
        • Frants R.R.
        • Havekes L.M.
        • Smelt A.H.
        Similar response to simvastatin in patients heterozygous for familial hypercholesterolemia with mRNA negative and mRNA positive mutations.
        Atherosclerosis. 1998; 136: 247
        • Program L.R.C.
        Lipid and Lipoprotein Analysis. 2nd ed. NIH, Bethesda1982
        • Nauck M.
        • Winkler K.
        • Wittmann C.
        • Mayer H.
        • Luley C.
        • März W.
        • Wieland H.
        Direct determination of lipoprotein(a) cholesterol by ultracentrifugation and agarose gel electrophoresis with enzymatic staining for cholesterol.
        Clin. Chem. 1995; 41: 731
        • Luley C.
        • Baumstark M.W.
        • Wieland H.
        Rapid apolipoprotein E phenotyping by immunofixation in agarose.
        J. Lipid Res. 1991; 32: 880
        • Miller S.A.
        • Dykes D.D.
        • Polesky H.F.
        A simple salting out procedure for extracting DNA from human nucleated cells.
        Nucleic Acids Res. 1988; 16: 1215
        • Rüdiger N.S.
        • Heinsvig E.M.
        • Hansen F.A.
        • Faergeman O.
        • Bolund L.
        • Gregersen N.
        DNA deletions in the low density lipoprotein (LDL) receptor gene in Danish families with familial hypercholesterolemia.
        Clin. Genet. 1991; 39: 451
        • Soutar A.K.
        A polymorphism in exon 2 of the human LDL-receptor gene (LDLR).
        Nucleic Acids Res. 1991; 19: 4314
        • Kotze M.J.
        • Langenhoven E.
        • Warnich L.
        • Marx M.P.
        • Retief A.E.
        Molecular characterisation of a low-frequency mutation in exon 8 of the human low-density lipoprotein receptor gene.
        S. Afr. Med. J. 1989; 76: 402
        • Yamakawa-Kobayashi K.
        • Kobayashi T.
        • Obara T.
        • Hamaguchi H.
        Four new nucleotide sequence polymorphisms in the LDL receptor gene detected by SSCP analysis.
        Hum. Genet. 1993; 92: 76
        • Leitersdorf E.
        • Hobbs H.H.
        Human LDL receptor gene: HincII polymorphism detected by gene amplification.
        Nucleic Acids Res. 1988; 16: 7215
        • Hobbs H.H.
        • Esser V.
        • Russell D.W.
        AvaII polymorphism in the human LDL receptor gene.
        Nucleic Acids Res. 1987; 15: 379
        • Geisel J.
        • Weisshaar B.
        • Oette K.
        • Mechtel M.
        • Doerfler W.
        Double MspI RFLP in the human LDL receptor gene.
        Nucleic Acids Res. 1987; 15: 3943
        • Kotze M.J.
        • Langenhoven E.
        • Dietzsch E.
        • Retief A.E.
        A RFLP associated with the low-density lipoprotein receptor gene (LDLR).
        Nucleic Acids Res. 1987; 15: 376
        • Nissen H.
        • Guldberg P.
        • Hansen A.B.
        • Petersen N.E.
        • Horder M.
        Clinically applicable mutation screening in familial hypercholesterolemia.
        Hum. Mutat. 1996; 8: 168
        • Sudhof T.C.
        • Goldstein J.L.
        • Brown M.S.
        • Russell D.W.
        The LDL receptor gene: a mosaic of exons shared with different proteins.
        Science. 1985; 228: 815
        • Nissen H.
        • Hansen P.S.
        • Faergeman O.
        • Horder M.
        Mutation screening of the codon 3500 region of the apolipoprotein B gene by denaturing gradient-gel electrophoresis.
        Clin. Chem. 1995; 41: 419
        • Goldstein J.L.
        • Brown M.S.
        Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia.
        J. Biol. Chem. 1974; 249: 5153
        • Goldstein J.L.
        • Basu S.K.
        • Brown M.S.
        Receptor-mediated endocytosis of low-density lipoprotein in cultured cells.
        Methods Enzymol. 1983; 98: 241
        • März W.
        • Baumstark M.W.
        • Scharnagl H.
        • Ruzicka V.
        • Buxbaum S.
        • Herwig J.
        • Pohl T.
        • Russ A.
        • Schaaf L.
        • Berg A.
        • Gross W.
        Accumulation of ‘small dense’ low density lipoproteins (LDL) in a homozygous patients with familial defective apolipoprotein B-100 results from heterogenous interaction of LDL subfractions with the LDL receptor.
        J. Clin. Invest. 1993; 92: 2922
        • Goldstein J.L.
        • Brown M.S.
        Regulation of the mevalonate pathway.
        Nature. 1990; 343: 425
        • Mehta K.D.
        • Chen W.J.
        • Goldstein J.L.
        • Brown M.S.
        The low density lipoprotein receptor in Xenopus laevis. I. Five domains that resemble the human receptor.
        J. Biol. Chem. 1991; 266: 10406
        • Funahashi T.
        • Yamashita S.
        • Maruyama T.
        • Ueyama Y.
        • Menju M.
        • Nagai Y.
        • Takemura K.
        • Miyake Y.
        • Tajima S.
        • Matsuzawa Y.
        A compound heterozygote for familial hypercholesterolaemia with a homozygous mother.
        J. Intern. Med. 1996; 239: 187
        • Funahashi T.
        • Miyake Y.
        • Yamamoto A.
        • Matsuzawa Y.
        • Kishino B.
        Mutations of the low density lipoprotein receptor in Japanese kindreds with familial hypercholesterolemia.
        Hum. Genet. 1988; 79: 103
        • Esser V.
        • Limbird L.E.
        • Brown M.S.
        • Goldstein J.L.
        • Russell D.W.
        Mutational analysis of the ligand binding domain of the low density lipoprotein receptor.
        J. Biol. Chem. 1988; 263: 13282
        • Russell D.W.
        • Brown M.S.
        • Goldstein J.L.
        Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins.
        J. Biol. Chem. 1989; 264: 21682
        • Williams R.R.
        • Hunt S.C.
        • Schumacher M.C.
        • Hegele R.A.
        • Leppert M.F.
        • Ludwig E.H.
        • Hopkins P.N.
        Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics.
        Am. J. Cardiol. 1993; 72: 171
        • Nissen H.
        • Hansen A.B.
        • Guldberg P.
        • Petersen N.E.
        • Larsen M.L.
        • Haghfelt T.
        • Kristiansen K.
        • Horder M.
        Genetic diagnosis with the denaturing gradient gel electrophoresis technique improves diagnostic precision in familial hypercholesterolemia.
        Circulation. 1995; 91: 1641
        • Koivisto U.M.
        • Hamalainen L.
        • Taskinen M.R.
        • Kettunen K.
        • Kontula K.
        Prevalence of familial hypercholesterolemia among young north Karelian patients with coronary heart disease: a study based on diagnosis by polymerase chain reaction.
        J. Lipid Res. 1993; 34: 269
      1. Ward AJ, O’Kane M, Nicholls DP, Young IS, Nevin NC, Graham CA. A novel single base deletion in the LDLR gene (211delG): effect on serum lipid profiles and the influence of other genetic polymorphisms in the ACE, APOE and APOB genes. Atherosclerosis 1996;120:83.

        • Chait A.
        • Mancini M.
        • February A.W.
        • Lewis B.
        Clinical and metabolic study of alcoholic hyperlipidaemia.
        Lancet. 1972; 2: 62
        • Taskinen M.R.
        • Nikkila E.A.
        • Valimaki M.
        • Sane T.
        • Kuusi T.
        • Kesaniemi A.
        • Ylikahri T.
        Alcohol-induced changes in serum lipoproteins and in their metabolism.
        Am. Heart J. 1987; 113: 458
        • Hulley S.B.
        • Gordon S.
        Alcohol and high-density lipoprotein cholesterol: causal inference from diverse study designs.
        Circulation. 1981; 64: III57
        • Castelli W.P.
        • Doyle J.T.
        • Gordon T.
        • Hames C.G.
        • Hjortland M.C.
        • Hulley S.B.
        • Kagan A.
        • Zukel W.J.
        Alcohol and blood lipids. The cooperative lipoprotein phenotyping study.
        Lancet. 1977; 2: 153
        • Schuster H.
        • Luft F.C.
        Clinical criteria versus DNA diagnosis in heterozygous familial hypercholesterolemia — is molecular diagnosis superior to clinical diagnosis?.
        Arterioscler. Thromb. Vasc. Biol. 1998; 18: 331

      Linked Article