Statin treatment increases the sialic acid content of LDL in hypercholesterolemic patients


      Low density lipoprotein (LDL) with low sialic acid content has been reported to cause intracellular cholesterol accumulation, and therefore desialylation has been proposed to be an atherogenic modification of LDL. However, it is not known whether hypolipidemic treatment has any effect on LDL sialylation. Accordingly, we investigated the sialic acid/apolipoprotein (apo) B ratio of total LDL and its subfractions in 26 moderately hypercholesterolemic patients at baseline and after treatment with statins for 2–3 months. Cholesterol and triglyceride levels were reduced in all apo B-containing lipoproteins, including all LDL subfractions, while the sialic acid ratio was increased in total LDL and in all its subfractions. Cholesterol concentrations and sialic acid ratios were inversely correlated in light and dense LDL subfractions both before and during statin treatment, and the greater the decrease in cholesterol and apo B contents of dense LDL, the higher was the increase in its sialic acid ratio. Furthermore, the lower the baseline sialic acid ratio of dense LDL, the greater was the reduction in its lipid and apo B concentrations. In conclusion, inhibition of cholesterol synthesis by statin treatment increased sialic acid/apo B ratio in LDL proportionately to the decrease of LDL apo B and cholesterol.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Swaminathan N.
        • Aladjem F.
        The monosaccharide composition and sequence of the carbohydrate moiety of human serum low density lipoproteins.
        Biochemistry. 1976; 15: 1516-1522
        • Filipovic I.
        • Schwarzmann G.
        • Mraz W.
        • Wiegandt H.
        • Buddecke E.
        Sialic-acid content of low-density lipoproteins controls their binding and uptake by cultured cells.
        Eur. J. Biochem. 1979; 93: 51-55
        • Orekhov A.N.
        • Tertov V.V.
        • Mukhin D.N.
        • Mikhailenko I.A.
        Modification of low density lipoprotein by desialylation causes lipid accumulation in cultured cells: discovery of desialylated lipoprotein with altered cellular metabolism in the blood of atherosclerotic patients.
        Biochem. Biophys. Res. Commun. 1989; 162: 206-211
        • Sobenin I.A.
        • Tertov V.V.
        • Orekhov A.N.
        • Smirnov V.N.
        Synergetic effect of desialylated and glycated low density lipoproteins on cholesterol accumulation in cultured smooth muscle intimal cells.
        Atherosclerosis. 1991; 89: 151-154
        • Orekhov A.N.
        • Tertov V.V.
        • Mukhin D.N.
        Desialylated low density lipoprotein — naturally occurring modified lipoprotein with atherogenic potency.
        Atherosclerosis. 1991; 86: 153-161
        • Tertov V.V.
        • Sobenin I.A.
        • Gabbasov Z.A.
        • Popov E.G.
        • Jaakkola O.
        • Solakivi R.
        • Nikkari T.
        • Smirnov V.N.
        • Orekhov A.N.
        Multiple-modified desialylated low density lipoproteins that cause intracellular lipid accumulation. Isolation, fractionation and characterization.
        Lab. Invest. 1992; 67: 665-675
        • Tertov V.V.
        • Sobenin I.A.
        • Orekhov A.N.
        Characterization of desialylated low-density lipoproteins which cause intracellular lipid accumulation.
        Int. J. Tiss. Reac. 1992; 14: 155-162
        • Orekhov A.N.
        • Tertov V.V.
        • Sobenin I.A.
        • Smirnov V.N.
        • Via D.P.
        • Guevara Jr, J.
        • Gotto Jr, A.M.
        • Morrisett J.D.
        Sialic acid content of human low density lipoproteins affects their interaction with cell receptors and intracellular lipid accumulation.
        J. Lipid Res. 1992; 33: 805-817
        • Ruelland A.
        • Gallou G.
        • Legras B.
        • Paillard F.
        • Cloarec L.
        LDL sialic acid content in patients with coronary artery disease.
        Clin. Chim. Acta. 1993; 221: 127-133
        • Melajärvi N.
        • Gylling H.
        • Miettinen T.A.
        Sialic acids and the metabolism of low density lipoprotein.
        J. Lipid Res. 1996; 37: 1625-1631
        • Lindbohm N.
        • Gylling H.
        • Miettinen T.E.
        • Miettinen T.A.
        Sialic acid content of LDL and lipoprotein metabolism in combined hyperlipidemia and primary moderate hypercholesterolemia.
        Clin. Chim. Acta. 1999; 285: 69-84
        • Scandinavian Simvastatin Survival Study Group
        Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S).
        Lancet. 1994; 344: 1383-1389
        • Shepherd J.
        • Cobbe S.M.
        • Ford I.
        • Isles C.G.
        • Lorimer A.R.
        • Macfarlane P.W.
        • McKillop J.H.
        • Packard C.J.
        • West of Scotland Coronary Prevention Study Group
        Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia.
        N Engl J Med. 1995; 333: 1301-1307
        • Sacks F.M.
        • Pfeffer M.A.
        • Moyne L.A.
        • Rouleau J.L.
        • Rutherford J.D.
        • Cole T.G.
        • Brown L.
        • Warnica J.W.
        • Arnold J.M.O.
        • Nash D.T.
        • Wun C.-C.
        • Davis B.R.
        • Braunwald E.
        • Cholesterol and Recurrent Events Trial Investigators
        The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels.
        N Engl J Med. 1996; 335: 1001-1009
        • Downs J.R.
        • Clearfield M.
        • Weis S.
        • Whitney E.
        • Shapiro D.R.
        • Beere P.A.
        • Langendorfer A.
        • Stein E.A.
        • Kruyer W.
        • Gotto Jr A.M.
        • AFCAPS/TexCAPS Research Group
        Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels. Results of AFCAPS/TexCAPS.
        J. Am. Med. Assoc. 1998; 279: 1615-1622
        • The Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group
        Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels.
        N Engl J Med. 1998; 339: 1349-1357
        • Svennerholm L.
        Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method.
        Biochim. Biophys. Acta. 1957; 24: 604-611
        • Miettinen T.
        • Takki-Luukkainen I-T.
        Use of butyl acetate in determination of sialic acid.
        Acta Chem. Scand. 1959; 13: 856-858
      1. Lipid Research Clinics Program. Manual of Laboratory Operations. Lipids and Lipoprotein Analysis. National Institutes of Health. DHEW Publication No. (NIH) 75-628. Bethesda, MD 1974;1:51–59.

        • Gylling H.
        • Vanhanen H.
        • Miettinen T.A.
        Effects of ketoconazole on cholesterol precursors and low density lipoprotein kinetics in hypercholesterolemia.
        J. Lipid Res. 1993; 34: 59-67
        • Knuts L-R
        • Rastas M.
        • Haapala P.
        MicroNutrica, Version 1.0. Kansaneläkelaitos (National Pensions Institute), Helsinki1991
        • McFarlane A.S.
        Efficient trace-labelling of proteins with iodine.
        Nature. 1958; 182: 53
        • Bilheimer D.W.
        • Eisenberg S.
        • Levy R.I.
        The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations.
        Biochim. Biophys. Acta. 1972; 260: 212-221
        • Matthews C.M.E.
        The theory of tracer experiments with 131I-labelled plasma proteins.
        Phys. Med. Biol. 1957; 2: 36-53
        • Miettinen T.A.
        Cholesterol metabolism during ketokonazole treatment in man.
        J. Lipid Res. 1988; 29: 43-51
        • Orekhov A.N.
        • Tertov V.V.
        • Sobenin I.A.
        • Akhmedzhanov N.M.
        • Pivovarova E.M.
        Antiatherosclerotic and antiatherogenic effects of a calcium antagonist plus statin combination: amlodipine and lovastatin.
        Int. J. Cardiol. 1997; 62: S67-77
        • Warren L.
        The thiobarbituric acid assay of sialic acids.
        J. Biol. Chem. 1959; 234: 1971-1975
        • Ehnholm C.
        • Garoff H.
        • Renkonen O.
        • Simons K.
        Protein and carbohydrate composition of Lp(a) lipoprotein from human plasma..
        Biochemistry. 1972; 11: 3229-3232
        • Berglund L.
        Diet and drug therapy for lipoprotein (a).
        Curr. Opin. Lipidol. 1995; 6: 48-56
        • La Belle M.
        • Krauss R.M.
        Differences in carbohydrate content of low density lipoproteins associated with low density subclass patterns.
        J. Lipid. Res. 1990; 31: 1577-1588
        • Lee Y.C.
        • Townsend R.R.
        • Hardy M.R.
        • Lönngren J.
        • Arnarp J.
        • Haraldsson M.
        • Lönn H.
        Binding of synthetic oligosaccharides to hepatic Gal/GalNac lectin. Dependence on fine structural features.
        J. Biol. Chem. 1983; 258: 199-202
        • Grewal T.
        • Bartlett A.
        • Burgess J.W.
        • Packer N.H.
        • Stanley K.K.
        Desialylated LDL uptake in human and mouse macrophages can be mediated by a lectin receptor.
        Atherosclerosis. 1996; 121: 151-163
        • Ozaki K.
        • Lee R.T.
        • Lee Y.C.
        • Kawasaki T.
        The differences in structural specificity for recognition and binding between asialoglycoprotein receptors of liver and macrophages.
        Glycoconjugate J. 1995; 12: 268-274