Advertisement

Multiple cytokines regulate the expression of extracellular superoxide dismutase in human vascular smooth muscle cells

      Abstract

      Oxygen free radicals as well as immunological reactions have been suggested to play important roles in atherogenesis and other pathological processes of the blood vessel wall. We have previously shown that the vascular wall contains exceptionally large amounts of extracellular superoxide dismutase (EC-SOD) and that the enzyme is produced and secreted to the extracellular space by the smooth muscle cells. In this work, we studied the influence of inflammatory cytokines on vascular smooth muscle cell expression of EC-SOD, the mitochondrial manganese superoxide dismutase (Mn-SOD) and the cytosolic copper zinc superoxide dismutase (CuZn-SOD). The expression of EC-SOD was up-regulated by interferon-γ (IFN-γ) and interleukin 4 (IL-4), and was down-regulated by tumor necrosis factor-α (TNF-α). The ratio between the maximal stimulation and depression observed was around 20-fold. The responses were slow and developed over periods of several days. The Mn-SOD activity was strongly up-regulated by TNF-α and IL-1α and moderately by IFN-γ. The CuZn-SOD activity of the smooth muscle cells was not significantly influenced by any of the cytokines. The findings suggest that large changes in the SOD isoenzymes might occur in vascular diseases, significantly altering the susceptibility of the vascular wall to adverse effects of the superoxide radical.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Griendling K.K.
        • Minieri C.A.
        • Ollerenshaw J.D.
        • Alexander A.W.
        Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.
        Circ Res. 1994; 74: 1141-1148
        • White C.R.
        • Darley Usmar V.
        • Berrington W.R.
        • et al.
        Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits.
        Proc Natl Acad Sci USA. 1996; 93: 8745-8749
        • Chanock S.J.
        • El Benna J.
        • Smith R.M.
        • Babior B.M.
        The respiratory burst oxidase.
        J Biol Chem. 1994; 269: 24519-24522
        • Pritchard K.A.
        • Groszek L.
        • Smalley D.M.
        • et al.
        Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion.
        Circ Res. 1995; 77: 510-518
        • Kukreja R.C.
        • Kontos H.A.
        • Hess M.L.
        • Ellis E.F.
        PGH synthase and lipoxygenase generate superoxide in the presence of NADH and NADPH.
        Circ Res. 1986; 59: 612-619
        • Nakazono K.
        • Watanabe N.
        • Matsuno K.
        • Sasaki J.
        • Sato T.
        • Inoue M.
        Does superoxide underlie the pathogenesis of hypertension?.
        Proc Natl Acad Sci USA. 1991; 88: 10045-10048
        • Hattori Y.
        • Kawasaki H.
        • Abe K.
        • Kanno M.
        Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta.
        Am J Physiol. 1991; 261: H1086-1094
        • White R.C.
        • Brock T.A.
        • Chang L.Y.
        • et al.
        Superoxide and peroxynitrite in atherosclerosis.
        Proc Natl Acad Sci USA. 1994; 91: 1044-1048
        • Huie T.E.
        • Padmaja S.
        The reaction of NO with superoxide.
        Free Radic Res Commun. 1993; 18: 195-199
        • Koppenol W.H.
        • Moreno J.J.
        • Pryor W.A.
        • Ischiropoulos H.
        • Beckman J.S.
        Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide.
        Chem Res Toxicol. 1992; 5: 834-842
        • Radomski M.W.
        • Palmer R.M.J.
        • Moncada S.
        Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium.
        Lancet. 1987; 8567: 1057-1058
        • Gaboury J.
        • Woodman R.C.
        • Granger D.N.
        • Reinhardt P.
        • Kubes P.
        Nitric oxide prevents leukocyte adherence: role of superoxide.
        Am J Physiol. 1993; 265: H862-H867
        • Rubbo H.
        • Radi R.
        • Trujillo M.
        • et al.
        Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation: formation of novel nitrogen-containing oxidized lipid derivatives.
        J Biol Chem. 1994; 269: 26066-26075
        • Darley-Usmar V.M.
        • Hogg N.
        • O’Leary V.J.
        • Wilson M.T.
        • Moncada S.
        The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low-density lipoprotein.
        Free Radic Res Commun. 1992; 17: 9-20
        • Ischiropoulos H.
        • Zhu L.
        • Chen J.
        • et al.
        Peroxynitrite-mediated tyrosine nitration catalysed by superoxide dismutase.
        Arch Biochem Biophys. 1992; 298: 431-437
        • Beckman J.S.
        • Yao Z.Y.
        • Anderson P.G.
        • et al.
        Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry.
        Biol Chem Hoppe-Seyler. 1994; 175: 81-88
        • Heinecke J.W.
        • Baker L.
        • Rosen H.
        • Chait A.
        Superoxide-mediated modification of low-density lipoprotein by arterial smooth muscle cells.
        J Clin Invest. 1986; 77: 757-761
        • Kawamura M.
        • Heinecke J.W.
        • Chait A.
        Pathophysiological concentrations of glucose promote oxidative modification of low-density lipoprotein by a superoxide-dependent pathway.
        J Clin Invest. 1994; 94: 771-778
        • Heinecke J.W.
        • Kawamura M.
        • Suzuki L.
        • Chait A.
        Oxidation of low-density lipoprotein by thiols: superoxide-dependent and -independent mechanisms.
        J Lipid Res. 1993; 34: 2051-2061
        • Mukhopadhyay C.K.
        • Ehrenwald E.
        • Fox P.L.
        Ceruloplasmin enhances smooth muscle cell- and endothelial cell-mediated low-density lipoprotein oxidation by a superoxide-dependent mechanism.
        J Biol Chem. 1996; 271: 14773-14778
        • Ross R.
        The pathogenesis of atherosclerosis: a perspective for the 1990s.
        Nature. 1993; 362: 801-809
        • Steinberg D.
        • Parthasarathy S.
        • Carew T.E.
        • Khoo J.C.
        • Witztum J.L.
        Beyond cholesterol: modifications of low-density lipoprotein that increases its atherogenicity.
        New Engl J Med. 1989; 320: 915-924
        • Strålin P.
        • Karlsson K.
        • Johansson B.O.
        • Marklund S.L.
        The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase.
        Arterioscler Thromb Vasc Biol. 1995; 15: 2032-2036
        • Oury T.D.
        • Day B.J.
        • Crapo J.D.
        Extracellular superoxide dismutase in vessels and airways of humans and baboons.
        Free Radic Biol Med. 1996; 20: 957-965
        • Marklund S.L.
        Human copper-containing superoxide dismutase of high molecular weight.
        Proc Natl Acad Sci USA. 1982; 79: 7634-7638
        • McCord J.M.
        • Fridovich I.
        Superoxide dismutase, an enzymic function for erythrocuprein.
        J Biol Chem. 1969; 244: 6049-6055
        • Weisiger R.A.
        • Fridovich I.
        Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localisation.
        J Biol Chem. 1973; 248: 4793-4796
        • Marklund S.L.
        Regulation by cytokines of extracellular superoxide dismutase and other superoxide dismutase isoenzymes in fibroblasts.
        J Biol Chem. 1992; 267: 6696-6701
        • Fager G.
        • Hansson G.K.
        • Ottosson P.
        • Dahllöf B.
        • Bondjers G.
        Human arterial smooth muscle cells in culture: effects of platelet-derived growth factor and heparin on growth in vitro.
        Exp Cell Res. 1988; 176: 319-335
        • Skalli O.
        • Ropraz P.
        • Trzeciak A.
        • Benzonana G.
        • Gillessen D.
        • Gabbiani G.
        A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation.
        J Biol Chem. 1986; 103: 2787-2796
        • Karlsson K.
        • Marklund S.L.
        Plasma clearance of human extracellular-superoxide dismutase C in rabbits.
        J Clin Invest. 1988; 82: 762-766
        • Marklund S.L.
        Spectrophotometric study of spontaneous disproportionation of superoxide anion radical and sensitive direct assay for superoxide dismutase.
        J Biol Chem. 1976; 251: 7504-7507
        • Marklund S.L.
        Direct assay of superoxide dismutase with potassium superoxide.
        in: Greenwald R.E. Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, FL1985: 249-255
        • Andersen P.M.
        • Nilsson P.
        • Forsgren L.
        • Marklund S.L.
        CuZn-superoxide dismutase, extracellular superoxide dismutase, and glutathione peroxidase in blood from individuals homozygous for Asp90Ala CuZu-superoxide dismutase mutation.
        J Neurochem. 1998; 70: 715-720
        • Tibell L.
        • Hjalmarsson K.
        • Edlund T.
        • Skogman G.
        • Engström Å.
        • Marklund S.L.
        Expression of human extracellular-superoxide dismutase in Chinese hamster ovary cells and characterization of the product.
        Proc Natl Acad Sci USA. 1987; 84: 6634-6638
        • Bradford M.M.
        A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding.
        Anal Biochem. 1976; 72: 248-254
        • Labarca C.
        • Paigen K.
        A simple, rapid and sensitive DNA assay procedure.
        Anal Biochem. 1980; 102: 344-352
        • Frid M.G.
        • Dempsey C.E.
        • Durmowicz A.G.
        • Stenmark K.R.
        Smooth muscle cell heterogeneity in pulmonary and systemic vessels: importance in vascular disease.
        Arterioscler Thromb Vasc Biol. 1997; 17: 1203-1209
        • Wong G.H.W.
        • Elwell J.H.
        • Oberley L.W.
        • Goeddel D.V.
        Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor.
        Cell. 1989; 58: 923-931
        • Winterbourn C.C.
        • Stern A.
        Human red cells scavenge extracellular hydrogen peroxide and inhibit formation of hypochlorous acid and hydroxyl radical.
        J Clin Invest. 1987; 80: 1486-1491
        • Iyer V.R.
        • Eisen M.B.
        • Ross D.T.
        • et al.
        The transcriptional program in the response of human fibroblasts to serum.
        Science. 1999; 283: 83-87
        • Vadiveloo P.K.
        • Stanton H.R.
        • Cochran F.W.
        • Hamilton J.A.
        Interleukin-4 inhibits human smooth muscle cell proliferation.
        Artery. 1994; 21: 161-181
        • Harris C.A.
        • Derbin K.S.
        • Hunte McDonough B.
        • et al.
        Manganese superoxide dismutase is induced by IFN-gamma in multiple cell types. Synergistic induction by IFN-gamma and tumor necrosis factor or IL-1.
        J Immunol. 1991; 147: 149-154
        • Hansson G.K.
        • Holm J.
        • Jonasson L.
        Detection of activated T lymphocytes in the human atherosclerotic plaque.
        Am J Pathol. 1989; 135: 169-175
        • Mosmann T.R.
        • Coffman R.L.
        TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties.
        Annu Rev Immunol. 1989; 7: 145-173
        • Plaut M.
        • Pierce J.H.
        • Watson C.J.
        • Hanley-Hyde J.
        • Nordan R.P.
        • Paul W.E.
        Mast cell lines produce lymphokines in responce to cross-linkage of Fc epsilon RI or to calcium ionophores.
        Nature. 1989; 339: 64-67
        • Ramshaw A.L.
        • Roskell D.E.
        • Parums D.V.
        Cytokine gene expression in aortic adventitial inflammation associated with advanced atherosclerosis.
        J Clin Pathol. 1994; 47: 721-727
        • Barath P.
        • Fishbein M.C.
        • Cao J.
        • Berenson J.
        • Helfant R.H.
        • Forrester J.S.
        Detection and localisation of tumor necrosis factor in human atheroma.
        Am J Cardiol. 1990; 65: 297-302
        • Moyer C.V.
        • Sajuthi D.
        • Tulli H.
        • Williams J.K.
        Synthesis of IL-1α and IL-1β by arterial cells in atherosclerosis.
        Am J Pathol. 1991; 138: 951-960
        • Nathan C.F.
        • Murray H.W.
        • Wiebe M.E.
        • Rubin B.Y.
        Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity.
        J Exp Med. 1983; 158: 670-689
        • Warren J.S.
        • Kunkel S.L.
        • Cunningham T.W.
        • Johnson K.J.
        • Ward P.A.
        Macrophage-derived cytokines amplify immune complex-triggered O2 responses by rat alveolar macrophages.
        Am J Pathol. 1988; 130: 489-495
        • Zhou Y.
        • Lin G.
        • Murtaugh M.P.
        Interleukin-4 suppresses the expression of macrophage NADPH oxidase heavy chain subunit (gp91-phox).
        Biochim Biophys Acta. 1995; 1265: 40-48
        • Tennenberg S.D.
        • Fey D.E.
        • Lieser M.J.
        Oxidative priming of neutrophils by Interferon-γ.
        J Leukoc Biol. 1993; 53: 301-308
        • Berkow R.L.
        • Wang D.
        • Larrick J.W.
        • Dodson R.W.
        • Howard T.H.
        Enhancement of neutrophil superoxide production by preincubation with recombinant human tumor necrosis factor.
        J Immunol. 1987; 139: 3783-3791
        • Matsubara T.
        • Ziff M.
        Increased superoxide anion release from human endothelial cells in response to cytokines.
        J Immunol. 1986; 137: 3295-3298
        • Luoma J.S.
        • Stralin P.
        • Marklund S.L.
        • Hiltunen T.P.
        • Sarkioja T.
        • Yla-Herttuala S.
        Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins.
        Arterioscler Thromb Vasc Biol. 1998; 18: 157-167