The V73M mutation in the hepatic lipase gene is associated with elevated cholesterol levels in four Dutch pedigrees with familial combined hyperlipidemia


      Familial combined hyperlipidemia (FCHL) is a heritable lipid disorder characterized by multiple lipoprotein phenotypes within a single family. Previously, we have shown an increased incidence of mutations in the LPL gene which was associated with elevated levels of very low density lipoprotein (VLDL) and decreased levels of high density lipoprotein among the families studied. Now, we report the results of our study on the hepatic lipase gene. We found the HL V73M variant to be present in four FCHL families. By means of a pedigree-based maximum log-likelihood method we analyzed the effect of this variant on the lipid levels in these families. Carriers of the HL V73M variant revealed significantly higher levels of total cholesterol (P<0.01) and apoB (P<0.01). These findings show that the HL V73M mutant explains another part of the variability in the phenotype observed among FCHL family members, compared with mutations in the LPL gene. Family analysis shows that in these FCHL families, carriers of mutations in the LPL or HL genes have an increased risk for FCHL compared with their non-carrier relatives.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Goldstein J.L.
        • Schrott H.G.
        • Hazzard W.R.
        • Bierman E.L.
        • Motulsky A.G.
        Hyperlipidemia in coronary heart disease. II: genetic analysis of lipid levels in 176 families land delineation of a new inherited disorder, combined hyperlipidemia.
        J. Clin. Invest. 1973; 52: 1544-1568
        • Rose H.G.
        • Kranz P.
        • Weinstock M.
        • Juliano J.
        • Haft J.I.
        Inheritance of combined hyperlipoproteinemia: evidence for a new lipoprotein phenotype.
        Am. J. Med. 1973; 54: 148-160
        • Hunt S.C.
        • Wu L.L.
        • Hopkins P.N.
        • Stults B.M.
        • Kuida H.
        • Ramirez M.E.
        • Lalouel J.M.
        • Williams R.R.
        Apolipoprotein, low density lipoprotein subfraction, and insulin associations with familial combined hyperlipidemia.
        Arteriosclerosis. 1989; 9: 335-344
        • Austin M.A.
        • Brunzell J.D.
        • Fitch W.L.
        • Krauss R.M.
        Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia.
        Arteriosclerosis. 1990; 10: 520-530
        • Brunzell J.D.
        • Albers J.J.
        • Chait A.
        • Grundy S.M
        • Groszek E.
        • McDonald G.B.
        Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia.
        J. Lipid. Res. 1983; 24: 147-155
        • Stalenhoef A.F.H.
        • Demacker P.N.M.
        • Lutterman J.A.
        • van ’t Laar A.
        Plasma lipoproteins, apolipoproteins, and triglyceride metabolism in familial hypertriglyceridemia.
        Arteriosclerosis. 1986; 6: 387-394
        • Chait A.
        • Albers J.J.
        • Brunzell J.D.
        Very low density lipoprotein overproduction in genetic forms of hypertriglyceridaemia.
        Eur. J. Clin. Invest. 1980; 10: 17-22
        • Sane T.
        • Nikkila E.A.
        Very low density lipoprotein triglyceride metabolism in relatives of hypertriglyceridemic probands: evidence for genetic control of triglyceride removal.
        Arteriosclerosis. 1988; 8: 217-226
        • Venkatesan S.
        • Cullen P.
        • Pacy P.
        • Halliday D.
        • Scott J.
        Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia.
        Arterioscler. Thromb. 1993; 13: 1110-1118
        • Kissebah A.H.
        • Alfarsi S.
        • Adams P.W.
        Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: normolipemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia.
        Metabolism. 1981; 30: 856-868
        • Cullen P.
        • Farren B.
        • Scott J.
        • Farrall M.
        Complex segregation analysis provides evidence for a major gene acting on serum triglyceride levels in 55 British families with familial combined hyperlipidemia.
        Arterioscler. Thromb. 1994; 14: 1233-1249
        • Jarvik G.P.
        • Brunzell J.D.
        • Austin M.A.
        • Krauss R.M.
        • Motulsky A.G.
        • Wijsman E.
        Genetic predictors of FCHL in four large pedigrees: influence of apoB level major locus predicted genotype and LDL subclass phenotype.
        Arterioscler. Thromb. 1994; 14: 1687-1694
        • Jarvik G.P.
        • Beaty T.H.
        • Gallagher P.R.
        • Coates P.M.
        • Cortner J.A.
        Genotype at a major locus with large effects on apolipoprotein B levels predicts familial combined hyperlipidemia.
        Genet. Epidemiol. 1993; 10: 257-270
        • Bredie S.J.
        • Kiemeney L.A.
        • de Haan A.F.
        • Demacker P.N.
        • Stalenhoef A.F.
        Inherited susceptibility determines the distribution of dense low-density lipoprotein subfraction profiles in familial combined hyperlipidemia.
        Am. J. Hum. Genet. 1996; 58: 812-822
        • Bredie S.J.H.
        • van Drongelen J.
        • Kiemeney L.A.
        • Demacker P.N.M.
        • Beaty T.H.
        • Stalenhoef A.F.H.
        Segregation analysis of plasma apolipoprotein B levels in familial combined hyperlipidemia.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 834-840
        • Wojciechowski A.P.
        • Farrall M.
        • Cullen P.
        • Wilson T.M.
        • Bayliss J.D.
        • Farren B.
        • Griffin B.A.
        • Caslake M.J.
        • Packard C.J.
        • Shepherd J.
        • et al.
        Familial combined hyperlipidaemia linked to the apolipoprotein AI-CII-AIV gene cluster on chromosome 11q23–q24.
        Nature. 1991; 349: 161-164
        • Dallinga Thie G.M.
        • Bu X.D.
        • Trip M.V.
        • Rotter J.I.
        • Lusis A.J.
        • DeBruin T.W.A.
        Apolipoprotein A-I/C-III/A-IV gene cluster in familial combined hyperlipidemia: Effects on LDL-cholesterol and apolipoproteins B and C-III.
        J. Lipid. Res. 1996; 37: 136-147
      1. Allayee H, Aouizerat BE, Cantor RM, Dallinga Thie GM, Krauss RM, Lanning CD, Rotter JI, Lusis AJ, De Bruin TWA Families with familial combined hyperlipidemia and families enriched for coronary artery disease share genetic determinants for the atherogenic lipoprotein phenotype, Am J Hum Genet 1998; 63.

        • Wijsman E.M.
        • Motulsky A.G.
        • Guo S.
        • Yang M.
        • Austin M.A.
        • Brunzell J.D.
        • Deep S.
        Evidence against linkage of familial combined hyperlipidemia to the AI-CIII-AIV gene complex.
        Circulation. 1992; 86: I420
        • Marcil M.
        • Boucher B.
        • Gagné E.
        • Davignon J.
        • Hayden M.
        • Genest Jr, J.
        Lack of association of the apolipoprotein A-I-C-III-A-IV gene XmnI and SstI polymorphisms and of the lipoprotein lipase gene mutations in familiar combined hyperlipoproteinemia in French Canadian subjects.
        J. Lipid. Res. 1996; 37: 309-319
        • Mailly F.
        • Tugrul Y.
        • Reymer P.W.A.
        • Bruin T.
        • Seed M.
        • Groenemeyer B.F.
        • et al.
        A common variant in the gene for lipoprotein lipase (Asp9- ->Asn): functional implications and prevalence in normal and hyperlipidemic subjects.
        Arterioscler. Thromb. 1995; 15: 468-478
        • Reymer P.W.A.
        • Groenemeyer B.E.
        • Gagne E.
        • Miao L.
        • Appelman E.E.G
        • . Seidel J.C.
        • et al.
        A frequently occurring mutation in the lipoprotein lipase gene (Asn291Ser) contributes to the expression of familial combined hyperlipidemia.
        Hum. Mol. Genet. 1995; 4: 1543-1549
        • Pihlajamaki J.
        • Rissanen J.
        • Heikkinen S.
        • Karjalainen L.
        • Laakso M.
        Codon 54 polymorphism of the human intestinal fatty acid binding protein two is associated with dyslipidemias but not with insulin resistance in patients with familial combined hyperlipidemia.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 1039-1044
      2. Deeb SS, Nevin DN, Iwasaki L, Brunzell JD Two novel apolipoprotein A-IV variants in individuals with familial combined hyperlipidemia and diminished levels of lipoprotein lipase activity, Hum Mut 1996; 319–325.

        • Gehrisch S.
        • Tesche R.
        • Kostka H.
        • Julius U.
        • Jaross W.
        Point mutations in the hepatic triglyceride lipase (HTGL) gene in familial combined hyperlipidemia.
        Circulation. 1995; 92: 493
        • Hoffer M.J.V.
        • Bredie S.J.H.
        • Boomsma D.I.
        • Reymer P.W.A.
        • Kastelein J.J.P.
        • De Knijff P.
        • Demacker P.N.M.
        • Stalenhoef A.F.H.
        • Havekes L.M.
        • Frants R.R.
        The lipoprotein lipase (Asn291→ Ser) mutation is associated with elevated lipid levels in families with familial combined hyperlipidaemia.
        Atherosclerosis. 1996; 119: 159-167
        • Assmann G.
        • Schulte H.
        Results and conclusions of the prospective cardiovascular munster (PROCAM) study.
        in: Lipid Metabolism Disorders and Cardiovascular Disease. MMV-Medizin, Munich1993: 19-98
        • Smit M.
        • De Knijff P.
        • Rosseneu M.
        • Bury J.
        • Klasen E.
        • Frants R.
        • Havekes L.
        Apolipoprotein E polymorphism in The Netherlands and its effect on plasma lipid and apolipoprotein levels.
        Hum. Genet. 1988; 80: 287-292
        • Demacker P.N.M.
        • Vos Janssen H.E.
        • Jansen A.P.
        • van ’t Laar A.
        Evaluation of the dual-precipitation method by comparison with the ultracentrifugation method for measurement of lipoproteins in serum.
        Clin. Chem. 1977; 23: 1238-1242
        • Demacker P.N.M.
        • Hijmans A.G.
        • Vos Janssen H.E.
        • van ‘t Laar A.
        • Jansen A.P.
        A study of the use of polyethylene glycol in estimating cholesterol in high-density lipoprotein.
        Clin. Chem. 1980; 26: 1775-1779
        • Bredie S.J.H.
        • De Bruin T.W.A.
        • Demacker P.N.M.
        • Kastelein J.J.P.
        • Stalenhoef A.F.H.
        Comparison of Gemfibrozil versus simvastatin in familial combined hyperlipidemia and effect on apolipoprotein-B-containing lipoproteins, low-density lipoprotein subfractions profile, and low-density lipoprotein oxidizability.
        Am. J. Cardiol. 1995; 75: 348-353
        • Miller S.A.
        • Dykes D.D.
        • Polesky H.F.
        A simple salting out procedure for extracting DNA from nucleated cells.
        Nucleic Acids Res. 1988; 16: 1215
        • Hegele R.A.
        • Tu L.
        • Connelly P.W.
        Human hepatic lipase mutations and polymorphisms.
        Hum. Mut. 1992; 1: 320-324
        • Lange K.
        • Weeks D.
        • Boehnke M.
        Programs for pedigree analysis: MENDEL, FISHER, and dGENE.
        Genet. Epidemiol. 1988; 5: 471-472
        • Lange K.
        • Westlake J.
        • Spence M.A.
        Extensions to pedigree analysis. III: variance components by the scoring method.
        Ann. Hum. Genet. 1976; 39: 485-491
        • Westendorp R.G.
        • Langermans J.A.M.
        • Huizinga T.W.J.
        • Elouali A.H.
        • Verweij C.L.
        • Boomsma D.I.
        • Vandenbrouke J.P.
        Genetic influence on cytokine production and fatal meningococcal disease.
        Lancet. 1997; 349: 170-173
        • Hoffer M.J.V.
        • Bredie S.J.H.
        • Snieder H.
        • Reymer P.W.
        • Demacker P.N.M.
        • Havekes L.M.
        • et al.
        Gender-related association between the -93T→G/D9N haplotype of the lipoprotein lipase gene and elevated lipid levels in familial combined hyperlipidemia.
        Atherosclerosis. 1998; 138: 91
        • Cohen J.C.
        • Wang Z.
        • Grundy S.M.
        • Stoesz M.R.
        • Guerra R.
        Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels.
        J. Clin. Invest. 1994; 94: 2377-2384
        • Ji Z.S.
        • Lauer S.J.
        • Fazio S.
        • Bensadoun A.
        • Taylor J.M.
        • Mahley R.W.
        Enhanced binding and uptake of remnant lipoproteins by hepatic lipase-secreting cells in culture.
        J. Biol. Chem. 1997; 269: 13429-13436
        • Demant T.
        • Carlson L.A
        • . Holmquist L.
        • Karpe F.
        • Nilsson-Ehle P.
        • Packard C.J.
        • Shepherd J.
        Lipoprotein metabolism in hepatic lipase deficiency: studies on the turnover of apolipoprotein B and on the effect of hepatic lipase on high density lipoprotein.
        J. Lipid Res. 1988; 29: 1603-1611
        • Tahvanainen E.
        • Syvanne M.
        • Heikki Frick M.
        • Murtomaki-Repo S.
        • Antikainen M.
        • Kesaniemi Y.A.
        • et al.
        Association of variation in hepatic lipase activity with promotor variation in the hepatic lipase gene.
        J. Clin. Invest. 1998; 101: 956-960
        • Rotter J.I.
        • Bu X.D.
        • Cantor R.M.
        • Warden C.H.
        • Brown J.
        • Gray R.J.
        • et al.
        Multilocus genetic determinants of LDL particle size in coronary artery disease families.
        Am. J. Hum. Genet. 1996; 58: 585-594
        • Pajukanta P.
        • Porkka K.V.K.
        • Antikainene M.
        • Taskinen M.R.
        • Perola M.
        • Murtomaki-Repo S.
        • et al.
        No evidence of linkage between familial combined hyperlipidemia and genes encoding lipolytic enzymes in Finnish families.
        Arterioscler. Thromb. Vasc. Biol. 1997; 17: 841-850
        • Kwiterovich P.O.
        Genetics and molecular biology of familial combined hyperlipidemia.
        Curr. Opin. Lipidol. 1993; 4: 133-143