Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity


      A sensitive sandwich-type enzyme-linked immunosorbent assay (ELISA) for human plasma phospholipid transfer protein (PLTP) has been developed using a monoclonal capture antibody and a polyclonal detection antibody. The ELISA allows for the accurate quantification of PLTP in the range of 25–250 ng PLTP/assay. Using the ELISA, the mean plasma PLTP concentration in a Finnish population sample (n=159) was determined to be 15.6±5.1 mg/l, the values ranging from 2.30 to 33.4 mg/l. PLTP mass correlated positively with HDL-cholesterol (r=0.36, P<0.001), apoA-I (r=0.37, P<0.001), apoA-II (r=0.20, P<0.05), Lp(A-I) (r=0.26, P=0.001) and Lp(A-I/A-II) particles (r=0.34, P<0.001), and negatively with body mass index (BMI) (r=−0.28, P<0.001) and serum triacylglycerol (TG) concentration (r=−0.34, P<0.001). PLTP mass did not correlate with phospholipid transfer activity as measured with a radiometric assay. The specific activity of PLTP, i.e. phospholipid transfer activity divided by PLTP mass, correlated positively with plasma TG concentration (r=0.568, P<0.001), BMI (r=0.45, P<0.001), apoB (r=0.45, P<0.001), total cholesterol (r=0.42, P<0.001), LDL-cholesterol (r=0.34, P<0.001) and age (r=0.36, P<0.001), and negatively with HDL-cholesterol (r=−0.33, P<0.001), Lp(A-I) (r=−0.21, P<0.01) as well as Lp(A-I/A-II) particles (r=−0.32, P<0.001). When both PLTP mass and phospholipid transfer activity were adjusted for plasma TG concentration, a significant positive correlation was revealed (partial correlation, r=0.31, P<0.001). The results suggest that PLTP mass and phospholipid transfer activity are strongly modulated by plasma lipoprotein composition: PLTP mass correlates positively with parameters reflecting plasma high density lipoprotein (HDL) levels, but the protein appears to be most active in subjects displaying high TG concentration.



      BMI, body mass index (), CETP, cholesteryl ester transfer protein (), HDL, high density lipoprotein (), HL, hepatic lipase (), mAb, monoclonal antibody (), PL, phospholipid (), PLTP, phospholipid transfer protein (), SDS–PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis (), TG, triacylglycerol ()
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Atherosclerosis
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gordon D.J.
        • Rifkind B.M.
        High density lipoprotein — the clinical implications of recent studies.
        N. Engl. J. Med. 1989; 321: 1311-1316
        • Navab M.
        • Hama S.Y.
        • Hough G.B.
        • Hedrick C.C.
        • Sorensen R.
        • La Du B.N.
        • et al.
        High density lipoprotein associated enzymes: their role in vascular biology.
        Curr. Opin. Lipidol. 1998; 9: 449-456
        • Tollefson J.H.
        • Liu A.
        • Albers J.J.
        Isolation and characterization of a phospholipid transfer protein (LTP-II) from human plasma.
        J. Lipid Res. 1988; 29: 1593-1602
        • Damen J.
        • Regts J.
        • Scherphof G.
        Transfer of [14C]phosphatidylcholine between liposomes and human plasma high density lipoprotein. Partial purification of a transfer-stimulating plasma factor using a rapid transfer assay.
        Biochim. Biophys. Acta. 1982; 712: 444-452
        • Jauhiainen M.
        • Metso J.
        • Pahlman R.
        • Blomqvist S.
        • van Tol A.
        • Ehnholm C.
        Human plasma phospholipid transfer protein causes high density lipoprotein conversion.
        J. Biol. Chem. 1993; 268: 4032-4036
        • Tu A.-Y.
        • Nishida H.I.
        • Nishida T.
        High density lipoprotein conversion mediated by human plasma phospholipid transfer protein.
        J. Biol. Chem. 1993; 268: 23098-23105
        • Albers J.J.
        • Tu A.-Y.
        • Paigen B.
        • Chen H.
        • Cheung M.C.
        • Marcovina S.M.
        Transgenic mice expressing human phospholipid transfer protein have increased HDL/non-HDL cholesterol ratio.
        Int. J. Clin. Lab. Res. 1996; 26: 262-267
        • Jiang X.-C.
        • Francone O.
        • Bruce C.
        • Milne R.
        • Mar J.
        • Walsh A.
        • et al.
        Increased preβ-high density lipoprotein, apolipoprotein A-I, and phospholipid in mice expressing the human phospholipid transfer protein and human apolipoprotein A-I transgenes.
        J. Clin. Invest. 1996; 96: 2373-2380
        • Föger B.
        • Santamarina-Fojo S.
        • Shamburek R.D.
        • Parrot C.L.
        • Talley G.D.
        • Brewer Jr., H.B.
        Plasma phospholipid transfer protein-adenovirus-mediated overexpression in mice leads to decreased plasma high density lipoprotein (HDL) and enhanced hepatic uptake of phospholipids and cholesteryl esters from HDL.
        J. Biol. Chem. 1997; 272: 27393-27400
        • Ehnholm S.
        • van Dijk W.
        • van’t Hof B.
        • van der Zee A.
        • Olkkonen V.M.
        • Jauhiainen M.
        • et al.
        Adenovirus mediated overexpression of human phospholipid transfer protein alters plasma HDL levels in mice.
        J. Lipid Res. 1998; 39: 1248-1253
        • Riemens S.C.
        • van Tol A.
        • Sluiter W.J.
        • Dullaart R.P.F.
        Plasma phospholipid transfer protein activity is related to insulin resistance and altered free fatty acid and triglycerides: impaired acute lowering by insulin in obese type II diabetic patients.
        Diabetologia. 1998; 41: 929-934
        • Jiang X.-C.
        • D’Armiento J.
        • Mallampalli R.K.
        • Mar J.
        • Yan S.-F.
        • Lin M.
        Expression of plasma phospholipid transfer protein mRNA in normal and emphysematous lungs and regulation by hypoxia.
        J. Biol. Chem. 1998; 273: 15714-15718
        • Lagrost L.
        • Athias A.
        • Herbeth B.
        • Guyard-Dangremont V.
        • Artur Y.
        • Paille F.
        • et al.
        Opposite effects of cholesteryl ester transfer protein and phospholipid transfer protein on the size distribution of plasma high density lipoproteins. Physiological relevance in alcoholic patients.
        J. Biol. Chem. 1996; 271: 19058-19065
        • Jiang X.
        • Bruce C.
        Regulation of murine plasma phospholipid transfer protein activity and mRNA levels by lipopolysaccharide and high cholesterol diet.
        J. Biol. Chem. 1995; 270: 17133-17138
        • Yu B.
        • Hailman E.
        • Wright S.D.
        Lipopolysaccharide binding protein and soluble CD14 catalyze exchange of phospholipids.
        J. Clin. Invest. 1997; 99: 315-324
        • Lagrost L.
        • Athias A.
        • Gambert P.
        • Lallemant C.
        Comparative study of phospholipid transfer activities mediated by cholesteryl ester transfer protein and phospholipid transfer protein.
        J. Lipid Res. 1994; 35: 825-835
        • Havel R.J.
        • Eder H.A.
        • Bragdon J.R.
        The distribution and chemical composition of ultracentrifugally separated lipoproteins in human plasma.
        J. Clin. Invest. 1955; 34: 1345-1353
        • Ohnishi T.
        • Yokoyama S.
        • Yamamoto A.
        Rapid purification of human plasma lipid transfer proteins.
        J. Lipid Res. 1990; 31: 397-406
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265-275
        • Tahvanainen E.
        • Jauhiainen M.
        • Funke H.
        • Vartiainen E.
        • Sundvall J.
        • Ehnholm C.
        Serum phospholipid transfer protein activity and genetic variation of the PLTP gene.
        Atherosclerosis. 1999; 146: 107-116
        • Lin K.-H.
        • Cheng S.-Y.
        An efficient method to purify active eukaryotic proteins from the inclusion bodies in Escherichia coli.
        Biotechniques. 1991; 11: 748-751
        • Gefter M.L.
        • Margulies D.H.
        • Scharff M.D.
        A simple method for polyethylene glycol promoted hybridization of mouse myeloma cells.
        Somatic Cell Genet. 1977; 3: 231-236
        • Köhler G.
        • Howe S.C.
        • Milstein C.
        Fusion between immunoglobulin-secreting and non-secreting myeloma cell lines.
        Eur. J. Immunol. 1976; 6: 292-295
        • Röschlau P.
        • Bernt E.
        • Gruber W.
        Enzymatische bestimmung des gesamtcholesterins im serum.
        Z. Klin. Chem. Klin. Biochem. 1974; 12: 226-230
        • Wahlefeld A.W.
        Triglycerides: determination after enzymatic hydrolysis.
        in: Bergmeyer H.U. Methods of Enzymatic Analysis. Academic Press, New York1974: 18-31
        • Riepponen P.
        • Marniemi J.
        • Rautaoja T.
        Determination of apolipoproteins A-I and B in serum.
        Scand. J. Clin. Lab. Invest. 1987; 47: 739-744
        • Friedewald W.T.
        • Levy R.I.
        • Fredrickson D.S.
        Estimation of the concentration of low-density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge.
        Clin. Chem. 1972; 18: 499-502
        • Vartiainen E.
        • Puska P.
        • Jousilahti P.
        • Korhonen H.J.
        • Tuomilehto J.
        • Nissinen A.
        Twenty-year trends in coronary risk factors in North Karelia and in other areas of Finland.
        Int. J. Epidemiol. 1994; 23: 495-504
        • Huuskonen J.
        • Jauhiainen M.
        • Ehnholm C.
        • Olkkonen V.M.
        Biosynthesis and secretion of human plasma phospholipid transfer protein.
        J. Lipid Res. 1998; 39: 2021-2030
        • Huuskonen J.
        • Wohlfahrt G.
        • Jauhiainen M.
        • Ehnholm C.
        • Teleman O.
        • Olkkonen V.M.
        Structure and phospholipid transfer activity of human PLTP: analysis by molecular modelling and site-directed mutagenesis.
        J. Lipid Res. 1999; 40: 1123-1130
        • Desrumaux C.
        • Athias A.
        • Bessede G.
        • Verges B.
        • Farnier M.
        • Persegol L.
        • et al.
        Mass concentration of plasma phospholipid transfer protein in normolipidemic, type IIa hyperlipidemic, type IIb hyperlipidemic, and non-insulin-dependent diabetic subjects as measured by a specific ELISA.
        Arterioscler. Thromb. Vasc. Biol. 1999; 19: 266-275
        • Jiang X.-C.
        • Bruce C.
        • Mar J.
        • Lin M.
        • Ji Y.
        • Francone O.L.
        • et al.
        Targeted mutation of plasma phospholipid transfer protein gene markedly reduces high-density lipoprotein levels.
        J. Clin. Invest. 1999; 103: 907-914
        • Van Tol A.
        • Ligtenberg J.J.M.
        • Riemens S.C.
        • van Haeften T.W.
        • Reitsma W.D.
        • Dullaart R.P.F.
        Lowering of plasma phospholipid transfer protein activity by acute hyperglycaemia-induced hyperinsulinaemia in healthy men.
        Scand. J. Clin. Lab. Invest. 1997; 57: 147-158
        • Rye K.-A.
        • Jauhiainen M.
        • Barter P.J.
        • Ehnholm C.
        Triglyceride-enrichment of high density lipoproteins enhances their remodelling by phospholipid transfer protein.
        J. Lipid Res. 1998; 39: 613-622
        • Albers J.J.
        • Tollefson J.H.
        • Chen C.-H.
        • Steinmetz A.
        Isolation and characterization of human plasma lipid transfer proteins.
        Arteriosclerosis. 1984; 4: 49-58
        • Tall A.
        Plasma lipid transfer proteins.
        Annu. Rev. Biochem. 1995; 64: 235-257
        • Patsch J.R.
        • Prasad S.
        • Gotto Jr., A.M.
        • Bengtsson-Olivecrona G.
        Postprandial lipemia. A key for the conversion of high density lipoprotein2 into high density lipoprotein3 by hepatic lipase.
        J. Clin. Invest. 1984; 74: 2017-2023
        • Patsch J.R.
        • Prasad S.
        • Gotto Jr., A.M.
        • Patsch W.
        High density lipoprotein2: relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipemia, and to the activities of lipoprotein lipase and hepatic lipase.
        J. Clin. Invest. 1987; 80: 341-347
        • Clay M.A.
        • Newnham H.H.
        • Barter P.J.
        Hepatic lipase promotes a loss of apolipoprotein A-I from triglyceride-enriched human high density lipoproteins during incubation in vitro.
        Arterioscler. Thromb. 1991; 11: 415-422
        • Speijer H.
        • Groener J.E.M.
        • van Ramhorst E.
        • van Tol A.
        Different locations of cholesteryl ester transfer protein and phospholipid transfer protein activities in plasma.
        Atherosclerosis. 1991; 90: 159-168
        • Albers J.J.
        • Chen C.H.
        • Adolphson J.L.
        Lecithin-cholesterol acyltransferase (LCAT) mass; its relationship to LCAT activity and cholesterol esterification rate.
        J. Lipid Res. 1991; 22: 1206-1213
        • Marcel Y.L.
        • McPherson R.
        • Hogue M.
        • Czarnecka H.
        • Zawadzki Z.
        • Weech P.K.
        • et al.
        Distribution and concentration of cholesteryl ester transfer protein in plasma of normolipemic subjects.
        J. Clin. Invest. 1990; 85: 10-17
        • McPherson R.
        • Mann C.J.
        • Tall A.R.
        • Hogue M.
        • Martin L.
        • Milne R.W.
        • et al.
        Plasma concentrations of cholesteryl ester transfer protein in hyperlipoproteinemia.
        Arterioscler. Thromb. 1991; 11: 797-804
        • Clark R.W.
        • Moberly J.B.
        • Bamberger M.J.
        Low level quantification of cholesteryl ester transfer protein in plasma subfractions and cell culture media by monoclonal antibody-based immunoassay.
        J. Lipid Res. 1995; 36: 876-889